
Low-latency XPath Query Evaluation on Multi-Core Processors

Ben Karsin
University of Hawai‘i at Manoa

karsin@hawaii.edu

Henri Casanova
University of Hawai‘i at Manoa

henric@hawaii.edu

Lipyeow Lim
University of Hawai‘i at Manoa

lipyeow@hawaii.edu

Abstract

XML and the XPath querying language have become
ubiquitous data and querying standards used in many
industrial settings and across the World-Wide Web. The
high latency of XPath queries over large XML databases
remains a problem for many applications. While this
latency could be reduced by parallel execution, issues
such as work partitioning, memory contention, and
load imbalance may diminish the benefits of paralleliza-
tion. We propose three parallel XPath query engines:
Static Work Partitioning, Work Queue, and Producer-
Consumer-Hybrid. All three engines attempt to solve
the issue of load imbalance while minimizing sequen-
tial execution time and overhead. We analyze their per-
formance on sets of synthetic and real-world datasets.
Results obtained on two multi-core platforms show that
while load-balancing is easily achieved for most syn-
thetic datasets, real-world datasets prove more chal-
lenging. Nevertheless, our Producer-Consumer-Hybrid
query engine achieves good results across the board
(speedup up to 6.31 on an 8-core platform).

1. Introduction

The increasing number of processing cores on modern
commodity multi-core systems represents an opportu-
nity for reducing the latency of XPath query process-
ing. Most state-of-the-art XPath processing libraries,
such as Apache Xalan [18], leverage multi-core archi-
tectures through the concurrent execution of multiple
XPath queries: multiple threads each evaluating a dif-
ferent XPath query simultaneously. Although the over-
all throughput is increased, there is no improvement in
query latency because each query is executed sequen-
tially. Concurrent evaluation of multiple XPath queries
can actually increase individual query latencies due to
sharing of hardware resources (caches, memory bus).
Previous work on parallel evaluation of XPath queries
on multi-core architectures have used a static partition-
ing of the query evaluation task and a fixed assign-
ment of partitions to cores in order to achieve significant
speedups on well-behaved datasets and queries [4, 3].

However, such static approaches are unlikely to work
well when the partitions are unbalanced in the amount
of work they contain.

In this work we study the parallelization of XPath
query evaluation with the goal of reducing the latency
of a single XPath query over an in-memory XML Doc-
ument Object Model (DOM) tree on multi-core archi-
tectures. This work focuses on single-query latency
because, for web-based applications, this latency can
severely degrade performance for end-users. Paralleliza-
tion is achieved by partitioning the query evaluation into
work units, i.e., XML tree nodes that can be evaluated
independently

We investigate three strategies: (i) Static Work Parti-
tion (SWP), (ii) Work Queue (WQ), and (iii) Producer-
Consumer-Hybrid (PCH). SWP is a straightforward ap-
proach used in previous work [4, 3] in which work units
are assigned to threads statically before the onset of con-
current computation. Because it uses static work par-
titioning, SWP can lead to poor load balance if query
processing is more computationally intensive for some
sub-trees than some others. With WQ, work units are
placed in a thread-safe shared workqueue. Threads re-
trieve work units from the workqueue and evaluate them
dynamically, which improves load balance when com-
pared to SWP but comes with additional overhead for
ensuring thread-safety of the workqueue. Both SWP and
WQ correspond to well-known parallelization strategies
that have been used in countless parallelization contexts.
Another such well-known strategy is the producer con-
sumer approach in which threads can either produce
work units into or consume work units from a shared
workqueue. We generalize the producer consumer ap-
proach and develop the PCH strategy in which can also
be a “hybrid”: it can play the role of both consumer and
producer. Given n threads, PCH allows any combina-
tion of p producers, c consumers, and h hybrids, where
p+c+h = n, thus widening the design space compared
to the standard producer consumer approach. This paper
presents the PCH strategy and an empirical study of all
three SWP, WQ, and PCH strategies, making the follow-
ing contributions:
• We implement a custom sequential query engine and

6222

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41916
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


an accompanying performance model that serve as
bases for developing parallel query engines and as-
sessing their performance.

• We implement query engines that parallelize the ex-
ecution of a single XPath query on multi-core plat-
forms using the SWP, WQ, and PCH strategies. While
SWP and WQ are standard approaches, PCH is a
novel generalization of the producer consumer model.

• We evaluate our query engines with synthetic bench-
marks, and a real-world XML dataset (DBLP).

• We find that all of our parallel query engines
can achieve some speedup, with PCH achieving
near-linear speedup for most synthetic datasets and
queries, and significant speedup for most queries on
real-world and benchmark datasets. The good per-
formance of PCH is explained by the use of hybrid
threads that can be used to improve upon the tradi-
tional producer consumer approach.

• We find that some queries over the DBLP dataset are
particularly difficult to parallelize, and we identify the
root causes of poor parallel performance. Some of
these causes can be addressed by modifying our par-
allelization approach. Others are inherent to querying
XML DOM trees and would require modifying the
document order to achieve good parallel speedup.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes
our baseline sequential XPath query engine and a simple
performance model. Section 4 details our three parallel
XPath query engines. Their performance is evaluated on
synthetic and real-world datasets in Section 5. Finally,
Section 6 summarizes our results and highlights future
work directions.

2. Related Work

The field of XML processing is prolific, with many
studies focusing on both analytic and empirical aspects.
Several areas have been studied extensively and are re-
lated but often orthogonal to our work. The problem of
XML cardinality and selectivity estimation is one such
area [2, 15, 5, 17, 11, 12]. Incorporating estimation
techniques in our methods could yield performance im-
provements, but it is beyond the scope of this paper. An-
other area of XML processing that has been extensively
studied is that of embedded XML processing and hybrid
XML/relational systems. This area has been a hotbed
in recent years (see several broad surveys [7, 8, 14, 1]).
The recent focus has been on comparing and integrating
native XML query processing with embedded XML in
relational systems. The work in [7] compares these two
approaches (and integration), applied to the problem of
twig pattern matching. Our work could also be applied

to pattern matching, but in this paper we only attempt
to leverage multi-core hardware for native XML query
processing. The work in [8] focuses on XED (embedded
databases) versus NED (native databases) and relevant
query optimization techniques. Moro et al. [14] provide
a broader overview of the entire field, with discussions
on many topics including query processing, views, and
schema evolution. Schwentick [1] provides a more ana-
lytic study, focusing on automata capable of processing
XML trees efficiently. While some of the ideas pertain-
ing to tree processing are relevant for our work, this pa-
per provides a more empirical study of parallel XPath
query execution.

Several authors have studied multi-query process-
ing on XML databases in recent years [16, 19, 6].
These studies aim to improve query throughput on
XML databases by leveraging parallel hardware archi-
tectures. Wang et al. [16] utilize a range of meth-
ods to increase throughput when evaluating multiple
queries over a compressed XML dataset. The work
in [19] incorporates large numbers of queries into a sin-
gle NFA (Non-deterministic Finite Automata), which is
then fragmented to enable parallelization. Results show
significant throughput improvement. Our work differs
because we focus on reducing the latency of a single
query. Cong et al. [6] aim to increase query through-
put as well as reduce query latency. The proposed
approach consists in decomposing XPath queries into
several smaller sub-queries for parallel execution and
then merge query results. The authors describe paral-
lelization methods for XPath queries on both cluster and
multi-core platforms. They obtain significant speedup
using all methods, though there are concerns about re-
dundant processing of query nodes. Query decomposi-
tion results in several smaller sub-queries, causing the
possibility of duplicate processing on portions of each
sub-query. Additionally, the process of merging results
of sub-queries can be computationally costly, especially
if there are many query matches. Our approach avoids
these problems by implementing intra-query parallelism
through distribution of XML document tree nodes to
processor cores. The work in [13] improves the perfor-
mance of XML serialization through parallel processing
of XML DOM structures. The authors use work-stealing
to balance work among threads, with region-based query
partitioning to improve scalability. While their approach
successfully achieves parallel speedup, it is limited to
XML serialization. Furthermore, results are only pro-
vided for a single 4-core platform and for one relatively
small (25MB) dataset. Our work aims at parallelization
of general XPath queries on XML DOM tree structures,
with results presented for 4- and 8-core platforms on a
range of synthetic and real-world datasets (up to 1GB in

6223



size).
Some of the work in this paper builds on [3] and [4].

The work in [3] gives an overview of the problem of par-
allelization of XPath queries and presents preliminary
experimental results obtained with the Xalan query en-
gine. The work in [4] compares XPath parallelization
results using three static work partitioning techniques
(data, query, and hybrid partitioning), with arguably lim-
ited success. In this work we extend the work in [3, 4]
by developing and evaluating parallel query engines that
utilize more sophisticated and dynamic work partition-
ing approaches to achieve drastically more efficient par-
allelization.

3. Sequential XPath Query Engine

3.1. Custom Query Engine

Some XPath query engines, such as Apache Xalan, uti-
lize additional indexing data structures to support more
efficient navigation of the XML DOM tree for certain
types of traversals. While this provides improved per-
formance for some queries, it creates unpredictability
when analyzing the overall performance of the query
engines especially in a parallel context. Our initial ex-
periments with the parallelization of Xalan produced in-
consistent results. Table 1 shows parallel query evalu-
ation times in seconds, averaged over 100 trials using
a binary XML tree and a query resulting in every leaf
node being a match node. These results are obtained
on Greenwolf, the 4-core platform described in Table 2.
As explained in more detail in later sections, a simple
approach for parallelizing an XPath query is to first use
a sequential phase that traverses the XML tree down to
some predefined depth, which we call the context depth.
This traversal leads to N sub-match nodes at that depth,
and these nodes can then be evaluated in parallel by P
threads on P cores, each thread evaluating N/P nodes.
The context depth is thus a key driver of parallel query
evaluation time. Another such driver is the tag length,
since longer tags imply more time consuming tag com-
parisons. The left-hand side of Table 1 show results ob-
tained with Xalan as the basis for the simple paralleliza-
tion described above. We see that with a context depth
of 2 or 6 the query time is very large above 50 sec or
25 sec, respectively, even though it is below 1 sec for
a context depth of 4. While one may expect that there
would be an optimal context depth, such drastic differ-
ences are difficult to explain. Furthermore, the query
time is not necessarily monotonically increasing with
the tag length. Other results not presented here show
that the query times are not always reproducible. We
conclude that Xalan likely utilizes indexing data struc-

Xalan (sec.) Custom (sec.)
Tag / Context 2 4 6 2 4 6
1 54.25 0.16 28.77 0.26 0.17 0.17
2 65.54 0.16 26.76 0.28 0.19 0.17
4 65.41 0.16 26.95 0.30 0.20 0.18
8 64.90 0.29 29.19 0.35 0.23 0.20
16 55.02 0.36 28.01 0.44 0.29 0.25
32 66.05 0.25 28.71 0.58 0.39 0.33
64 57.99 0.28 27.02 0.85 0.57 0.49
128 66.45 0.27 29.49 1.34 0.89 0.77
256 59.66 0.36 28.28 2.37 1.58 1.35
512 57.25 0.32 27.04 4.23 2.82 2.42
1024 54.97 0.31 27.77 7.61 5.07 4.35

Table 1: Custom vs. Xalan parallel runtimes using
an all-match query on a 20 level deep binary tree
with 4 threads on Greenwolf. Varying context depth
has a large and unpredictable impact on Xalan per-
formance, while tag length does not.

tures that have complex effects on the query time. As a
result, Xalan is not a viable target for this work.

Since our goal is to study the parallelization of XPath
queries on an in-memory DOM tree, and given the re-
sults obtained with Xalan, we opt to develop our own
sequential query engine to form the basis for our paral-
lel query engines. Our custom query engine recursively
traverses the XML document tree, comparing the XML
tag of each traversed node with the XPath query string
of the corresponding depth. If the comparison succeeds,
the nodes’ children are evaluated recursively (recall that
such a node is called a sub-match node). When a node is
found with a tag matching the final string of the XPath
query at the query depth, it is saved as a match node.
The right-hand side of Table 1 shows results obtained
for the same parallel query engine as above but using
our custom sequential query engine as a basis instead of
Xalan. The results show stable trends, with increasing
query times as the tag length increase, and comparable
results across different context depths.

3.2. Performance Model
Given an XML tree and an XPath query, our goal is
to derive a closed form formula to estimate the per-
formance of our custom sequential query engine. We
achieve this by averaging attributes of individual nodes
over the entire XML tree and measuring single-node
computation times on the given hardware. The result is
a performance estimate based on the XML tree, XPath
query, and hardware environment. However, due to lim-
ited space, we provide only a brief overview of our se-
quential performance model in this paper. We direct in-
terested readers to [9] for a full derivation and analysis.
In short, the performance model relies on the following

6224



parameters:
• Tree Height (H): The maximum depth of the XML

tree;
• Branch Factor (B): The number of children per non-

leaf node;
• Tag Length (L): The number of characters per query

tag;
• Query Depth (D ≤ H): The maximum depth of the

query; and
• Selectivity (S): The number of (sub-)match children

per non-leaf node.
• τ : The time to compare a single character of a node

tag to a single character of a query tag, so that com-
paring two tags of L characters takes at most τ × L
seconds; and

• α: The time to perform all processing of a single node
besides tag comparison (e.g., pointer chasing).

Using these parameters and counting the average num-
ber of nodes evaluated, we obtain the following formula
for our sequential performance model:

Tseq = [
B(SD−1 − 1)

S − 1
+ 1]× (τ × L + α).

To enable accurate performance estimation, we execute
several benchmarks to measure α and τ given a partic-
ular hardware platform. More specifically, we consider
two platforms, Greenwolf and DiRT, described in Ta-
ble 2 and used in dedicated mode for all experiments.
By measuring query execution time on each environ-
ment for a range of synthetic data sets, we empirically
measure τ and α. To conserve space, we omit the details
and direct the reader to [9] for full details. With empir-
ical values for τ and α, we are able to estimate the exe-
cution time of any query using the parameters described
above.

Env. Name Cores Proc. Type
Greenwolf 4 Intel Core i7 2.67 GHz

DiRT 8 Intel Xeon 2.40 GHz

Table 2: Overview of the 2 hardware environments
used for experimentation.

3.3. Performance Model Validation
In this section we validate both our query engine imple-
mentation and our instantiated performance model by
comparing actual query processing times to analytical
estimates. We perform experiments for a set of syn-
thetic datasets (XML trees and queries), i.e., for various

Figure 1: Average query runtime vs. S (Selectivity)
on Greenwolf and DiRT. Results shown for D6 B20
L1 and D4 B150 L1 synthetic experiments. All ini-
tial results indicate that our custom query engine
performs closely in-line with our performance esti-
mates.

values of the D, B, L, and S parameters. We define a
notation for our synthetic datasets based on these param-
eters. Each dataset comprises an XML tree and a query
for that tree, and the query depth (D) is equal to the tree
depth (H). We use a Dw Bx Ly Sz notation to describe
the query/tree depth, the branching factor, the tag length,
and the selectivity for a given dataset. For example, D20
B2 L16 S1 denotes a 20-level deep binary tree with 16-
character tags and a 20-level deep query that matches 1
child at each tree node. All generated trees are complete,
and (sub-)match children are selected among a non-leaf
node’s children using a uniform probability distribution.
Each run of a query engine for an experimental scenario
is repeated 100 times. The average is reported and error
bars are displayed on all graphs (often they are so small
that they cannot be seen).

Figure 1 shows the results of one set of experiments
and the corresponding performance estimates on DiRT.
Due to lack of space, we omit further results of the other
experiments, though we find that estimates are relatively
accurate (relative error rates under %10) with respect
to actual query evaluation times and they exhibit the
same trends. For this particular experiment, we obtained
an average error of %3.5. We conclude that our cus-
tom query engine performs as expected, that our perfor-
mance model can be used to estimate query evaluation
times, and that our query engine can serve as a viable
baseline for developing parallel query engines.

4. Parallel XPath Query Engines

In this section, we introduce our three parallel XPath
query engines: Static Work Partitioning (SWP), Work
Queue (WQ), and Producer-Consumer-Hybrid (PCH).
SWP and WQ are based on the same two-phase ap-
proached described below, but they differ in how they

6225



Figure 2: Example allocation of work distributed
among 8 threads for each level of a 1024-node XML
tree using SWP.

implement the second phase leading to various trade-
offs between load-balance and overhead. All three par-
allel engines use the custom sequential query engine de-
scribed in Section 3.1 as a basis.

A simple approach for parallelizing our sequential
query engine is to use two phases:
• Sequential Phase – Execution of the query to depth
C, the context depth, generating a set of sub-match
nodes. These nodes, which we call the context nodes,
can be evaluated independently.

• Parallel Phase – Parallel evaluation of the context
nodes by N threads on N cores.

4.1. Static Work Partitioning (SWP)

SWP uses a static work distribution. After the sequential
phase, the context nodes are partitioned intoN “blocks”
as evenly as possible, and each block is assigned to a
thread for evaluation. Figure 2 shows an example work
distribution across eight cores using SWP on a small
1024-node synthetic dataset (D11 B2 L1 S2, see Sec-
tion 3.3 for details on our synthetic datasets). This fig-
ure is generated from an actual query execution on an
8-core platform during which each node was labelled by
the index of the thread that evaluated it. These nodes
are displayed in the figure based on their location in the
document tree, and the top C = 6 levels correspond to
the context nodes.

SWP is designed to minimize runtime overhead, and
it can achieve good load-balancing, as seen for instance
in Figure 2. However, several factors can degrade its
performance. First, the sequential context computation
limits overall parallel speedup (Amdahl’s law). Second,
if the context nodes are not evenly divisible by the num-
ber of processor cores, some cores will inevitably have
more work. Third, if some context nodes are more com-
putationally intensive than others (e.g., they have more
children, they have more sub-match children), load bal-
ance will be poor and so will be the parallel speedup. For
these reasons, we view SWP as a baseline approach that
is simple, low-overhead (no shared state among threads

Figure 3: Example allocation of work distributed
among 8 threads for each level of a 1024-node XML
tree using WQ.

and thus no synchronization necessary), but that is not
expected to achieve high speedup in practice.

4.2. Work Queue (WQ)

WQ employs a simple workqueue to attempt to avoid
load imbalance and improve parallel performance. The
goal is to distribute work among threads more evenly
by dynamically assigning work to idle threads. Once
the context depth C is reached through sequential exe-
cution, the context nodes are divided into W work units
and placed in a shared, i.e., thread-safe, workqueue data
structure. The N threads then begin parallel execution,
each reading a work unit from the queue, processing it,
and returning to the workqueue for more work. Once
the workqueue is empty and all threads finish, the query
is complete. The use of a shared thread-safe workqueue
increases overhead. Figure 3 is similar to Figure 2 and
shows an example work allocation across 8 threads us-
ing WQ with W = 16 for the same small synthetic
dataset.

Parameters W and C determine the size and the num-
ber of the work units read from the workqueue. Through
empirical testing, we determine that good values of C
and W can be easily found. We find that we can achieve
good performance with small values of C and W , but
we omit the details due to limited space and direct in-
terested readers to [9]. For all further experiments with
SWP and WQ, we use C = 3 and W = 16.

4.3. Producer-Consumer-Hybrid (PCH)

PCH extends the well-known producer-consumer model
to evaluate XPath queries in parallel using a novel par-
allel execution model. Unlike SWP and WQ, PCH does
not require a sequential phase to compute context nodes.
Instead, parallel execution can begin as early as possi-
ble (i.e., once the root node has been processed). By
Amdahl’s law we know that reducing the amount of se-
quential computation even by a small amount can lead
to large improvements in speedup. We define three types

6226



of threads that share a thread-safe workqueue of work
units and can be mixed to achieve various trade-offs be-
tween load imbalance and overhead. An overview of
these thread types and their corresponding activities is:
• Producer – given one tree node, evaluates all children

of this node and writes those children that are sub-
match nodes to the shared workqueue;

• Consumer – reads a tree node from the shared
workqueue, recursively evaluates all its children
nodes and add match nodes to the query results, re-
peats; and

• Hybrid – reads a tree node from the shared
workqueue, recursively evaluates all its children
nodes, recursing only up to Rdepth times, writes sub-
match nodes back to the shared workqueue and adds
match nodes to the query results, repeats.

The next three sections give details on the algorithms
used by each type of thread above as well as relevant
implementation details.

Producer Threads. Producer threads are designed to
recurse only once given a tree node and write sub-match
nodes to the workqueue so that these nodes can be pro-
cessed by Consumer or Hybrid threads. Consequently,
producer threads never read from the workqueue. One
difficulty with this approach is that it is very likely that
a producer threads would become idle early in the query
evaluation process. To address this problem, producer
threads do not write back to the workqueue all of the
sub-match nodes they have identified. Instead, they keep
a small number of sub-match nodes for themselves. We
use Nkeep to denote this number of sub-match nodes.
These kept nodes are used to continue execution once
all nodes in the set of nodes initially assigned to the
producer have been evaluated. We find that any small
value (between 2 and 10) for Nkeep results in good per-
formance. Due to limited space, we omit the details of
this experimentation and direct interested readers to [9].
We utilize Nkeep = 5 for further experimentation.

Our implementation assumes assumes that a “list of
nodes” abstract data type is available, with usual re-
moveFirst, removeFirstN, and append operations to re-
move and return the first node from a list, remove the
first N nodes of a list and return them as a list, and ap-
pend a node or a list to the end of a list. All operations
on the shared workqueue are enforced to be atomic by
using a single lock. All our implementations use a spin-
lock so as to reduce locking overhead.

Consumer Threads. Like producers, consumer
threads have limited interaction with the shared
workqueue. While producers never read from the
workqueue, consumers threads never write to the queue.

They perform a standard tree traversal for whatever
node(s) they are given. Consequently, load-balancing
is achieved solely by the use of producer and/or hybrid
threads. For instance, if a consumer thread happens
to be given the root node of the document tree, it will
evaluate the entire query itself and all other threads will
remain idle. To prevent this worst-case scenario from
occurring, our implementation insures that all producer
and hybrid threads receive work, i.e., nodes to evaluate,
before any consumer thread reads from the workqueue.

Hybrid Threads. Hybrid threads incorporate features
from both consumer, i.e., reading from the shared queue
and recursing, and producers, i.e., writing sub-match
nodes to the shared queue. The Rdepth parameter con-
trols the number of times hybrid threads will recurse be-
fore writing to the shared queue. If Rdepth = 0, hybrids
are producers, although they read when they run out of
work to do. If Rdepth = D, hybrids are consumers and
never write back to the workqueue. Through experimen-
tation we find that performance is not greatly impacted
by Rdepth, as long as it is close to D/2. Due to lim-
ited space, we omit the details of these experiments and
utilize D/2 for further experimentation with PCH.

PCH Thread Mix. Due to differences between each
thread type and their potentially complex interactions,
PCH corresponds to a class of query engines. We use
the PCH-p/c/h notation to denote an instance of PCH
with p producer threads, c consumer threads, and h hy-
brid threads (e.g., PCH-3/4/1 would be three producers,
four consumers, and one hybrid). A challenge with PCH
is determining the best mix of producer, consumer, and
hybrid threads. As might be expected, the best mix de-
pends on the dataset, the query, and the hardware.

Figure 4 shows how work is distributed by three dif-
ferent PCH instances on a small 1024-node synthetic
dataset on an 8-core platform. Not surprisingly, the
numbers of producer, consumer, and hybrid threads
greatly affects work distribution. In Figure 4a we see
that load-balancing is poor since only 1 producer thread
(in this case configured with Nkeep = 1) is available.
The first node placed on the work queue requires a large
amount of of work, causing the first consumer thread to
be assigned much more work than the other consumers.
Adding a second producer thread, shown in Figure 4b,
greatly improves load-balancing by further partitioning
the work. By adding the second producer thread, we
increase the maximum possible speedup from 2 to 4.
Figure 4c is the most extreme case of work partitioning,
with all 8 threads as hybrids (Rdepth = 0 in this exam-
ple). We see that the entire tree is segmented and threads
all have seemingly random partitions. While such an ex-

6227



(a) PCH-1/7/0 (1 Producer, 7 Consumers) (b) PCH-2/6/0 (2 Producers, 6 Consumers) (c) PCH-0-0-8 (8 Hybrids)

Figure 4: Example allocation of work to 8 threads for each level of a 1024-node XML tree when using PCH on
an 8-core platform (results obtained by executing a query in which all leaf nodes are match nodes).

ecution provides good load balance, it comes at the price
of high overhead due to constant thread interactions with
the shared workqueue.

5. Parallel Query Engine Evaluation

5.1. Performance Bounds
In Section 3.2 we presented a performance model that
accurately estimates the average execution time of a
given query on a given hardware platform. It uses a se-
ries of data-, query-, and hardware-specific parameters
and was seen to accurately estimate the performance of
our sequential query engine on a series of synthetic ex-
periments. Using our sequential performance model as a
basis, we can define a simple estimate of a lower bound
on parallel query execution time, Tbound, as:

Tbound =
Tseq
P

where Tseq is the sequential performance estimate from
Section 3.2, and P is the number of threads/cores. This
lower bound ignores all parallelization overhead and as-
sumes a perfect parallel speedup of P when using P
cores. Tbounds is based on Tseq , and Tseq is only an
estimate of sequential query evaluation time. Therefore,
Tbound is not a lower bound in the theoretical sense of
the term. Nevertheless, our results show that Tbound is
meaningful to assess the absolute performance of our
parallel query engines.

5.2. Validation Experiments
To initially measure the performance of our parallel
query engines, we perform a range of synthetic ex-
periments varying each of our query- and data-specific
parameters (defined in Section 3.3). We measure the
speedup of each parallel query engine and compare re-
sults with our parallel lower-bounds. Note that the
SWP and WQ engines cannot achieve perfect parallel

Figure 5: Average query runtime on DiRT vs. L (tag
length). Results shown for the D4 B100 S100 syn-
thetic experiments. All query engines achieve good
parallel speedup, with the best parallel performance
obtained using PCH (speedup of 5.92 using PCH-
2/1/5).

speedup, as they have a sequential computation phase.
The PCH query engine does not use a sequential phase,
and thus could conceivably achieve linear speedup.

Figure 5 shows one among many sets of (similar) re-
sults for a particular synthetic dataset and query (D4
B100 S100) for varying tag length (L) on DiRT. As ex-
pected all curves grow roughly linearly as L increases.
The results of sequential execution indicate that our
query engine exhibits predictable results, with an aver-
age deviation from the sequential query time estimate of
3.1% for this experiment. Our three parallel query en-
gines achieve good parallel speedup, with a maximum
value for SWP, WQ, and PCH of 4.10, 4.15, and 5.86,
respectively, out of an absolute maximum of 8. We use
PCH-2/1/5 for these experiments, which we found to
perform well for synthetic datasets. Similar results are
obtained for other experiments on both Greenwolf and
DiRT. In all of these experiments PCH achieves signif-
icantly better performance than SWP and WQ, close to
the lower bound estimate.

5.3. Query engine parameters
Each of our parallel query engines has a distinct set of
parameters that define its behavior. In this section we
present results from experiments used to measure the

6228



Figure 6: Speedup achieved by
PCH for every p/c/h combination
for D13 B4 synthetic test on DiRT.

Figure 7: Speedup achieved by
PCH for every p/c/h combination
for D24 B2 synthetic test on DiRT.

Figure 8: Speedup achieved by
PCH for Q2dblp on the DBLP
dataset using varying p/c/h com-
binations on DiRT.

impact of these parameters, making it possible to deter-
mine good parameter values for each query engine for a
given dataset/query on a given hardware platform. Due
to limited space, we omit the details of several of these
parameters and direct interested readers to [9] for full
details.

We evaluate the performance of different PCH-p/c/h
instances via a series of experiments with synthetic
datasets. In each experiment we measure average query
execution time using every possible p/c/h combination,
from 1/1/0 to 0/0/N , where N is the number of threads.
We count a hybrid thread as both a producer and con-
sumer, so that PCH-N /N /0 is actually PCH-0/0/N (i.e.,
all threads are both producers and consumers). Figures 6
and 7 show the parallel speedup achieved for each P/C/H
combination on DiRT for two different synthetic exper-
iments. Each experiment has similar tag length and se-
lectivity and corresponds to a document tree with a sim-
ilar number of nodes but with different depth and width
(D13 B4 and D24 B23). In this figure, all data points
above the anti-diagonal correspond to cases in which at
least one hybrid thread is used (with the upper-right cor-
ner corresponding to an all-hybrid query engine).

We see from Figures 6 and 7 that significant paral-
lel speedup is achieved with a range of combinations.
The best parameter configuration is PCH-2/1/5 for both
of these tests. The maximum speedup achieved in Fig-
ures 6 and 7 are 5.69 and 5.62, respectively. In all of our
synthetic experiments, PCH-2/1/5 is never more than
%10 slower than the fastest configuration and performs
better than other configurations in most cases. We see
similar results with the 4-core Greenwolf environment,
with a maximum speedup using PCH-1/0/3 of 3.06 and
3.13, respectively.

The results, overall, indicate that the load-balancing
benefits of hybrid threads lead to performance improve-
ments when compared to a standard producer-consumer
approach. However, the all-hybrid configuration ex-
hibits poorer performance, indicating that over-utilizing
hybrid threads makes the shared workqueue a bottle-

neck. Note that these experiments are for complete
and balanced trees and queries. We expect that the
best PCH-p/c/h combination may differ for real-world
datasets.

5.4. Experiments on real-world dataset
The DBLP [10] dataset is a 900MB XML file with
nearly 25 million lines. The structure of the XML file,
when parsed and loaded into memory, results in a very
shallow (H = 2) tree with widely varying branch fac-
tor. The root node (depth 0) has approximately B = 2.7
million children, yet at the subsequent level the branch
factor is much lower (ranging from B = 5 to B = 100).
The chosen queries we use for DBLP execute in a rea-
sonable time on our multi-core platforms (between 1 and
100 seconds), have various node selection patterns, and
thus lead to a range of performance behaviors. See the
top part of Table 3 for full details on each query.

As in Section 5, we measure the performance for
all possible p/c/h combinations for each query to de-
termine the best combination. Figure 8 shows the par-
allel speedup achieved for Q2dblp for each p/c/h com-
bination on DiRT. The results indicate that, like pre-
vious synthetic experiments, the best configuration for
queries over the DBLP dataset as well is also PCH-2/1/5.
However, the maximum speedup achieved on queries
over DBLP is 3.08, which is much less than previous
synthetic experiments. We see similarly poor parallel
performance for all queries we execute on the DBLP
dataset.

The results of executing six diverse queries over
DBLP are shown in Table 4 and indicate that PCH out-
performs SWP and WQ in all cases. However, we find
that while some parallel speedup is achieved, it is much
lower than that seen for synthetic experiments. Fur-
thermore, it is inconsistent across queries. On both
platforms, speedup between 1.92 and 3.11 is achieved
for queries Q2dblp, Q5dblp, and Q6dblp (results shown
in boldface). However, queries Q1dblp, Q3dblp, and
Q4dblp show low parallel speedup (even a slowdown for

6229



Query ID Query String Depth Match Nodes

D
B

L
P

Q1dblp /dblp/incollection/cite 3 736
Q2dblp /dblp/article/author 3 1782468
Q3dblp /dblp/mastersthesis/* 3 50
Q4dblp /dblp/book/cite 3 3319
Q5dblp /dblp/inproceedings/pages 3 949501
Q6dblp /dblp/www/title 3 1008156

X
M

ar
k

Q1xmark /site/open auctions/open auction/ 5 59486 × scaling
bidder/increase

Q2xmark /site/people/person/name 4 25500 × scaling
Q3xmark /site/people/person/profile/interest 5 37688 × scaling
Q4xmark /site/closed auctions/closed auction/ 8 6799 × scaling

annotation/description/parlist/listitem/text

Table 3: Queries on real-world data sets. For XMark each query is run on several differently scaled datasets,
each returning a different number of query matches.

Runtime in seconds and (speedup) on DiRT
Query Seq. SWP WQ PCH
Q1dblp 1.94 (1) 1.64 (1.18) 1.82 (1.06) 1.21 (1.60)
Q2dblp 3.94 (1) 3.05 (1.29) 2.85 (1.38) 1.28 (3.08)
Q3dblp 1.22 (1) 1.36 (0.90) 1.40 (0.87) 1.22 (1.00)
Q4dblp 1.20 (1) 1.31 (0.92) 1.35 (0.89) 1.24 (0.97)
Q5dblp 5.12 (1) 5.58 (0.92) 5.64 (0.91) 1.78 (2.87)
Q6dblp 2.73 (1) 1.80 (1.52) 1.79 (1.53) 1.42 (1.92)

Runtime in seconds and (speedup) on Greenwolf
Query Seq. SWP WQ PCH
Q1dblp 1.37 (1) 1.29 (1.06) 1.23 (1.11) 1.20 (1.14)
Q2dblp 5.17 (1) 2.67 (1.94) 2.61 (1.98) 1.66 (3.11)
Q3dblp 1.31 (1) 1.37 (0.96) 1.41 (0.93) 1.27 (1.03)
Q4dblp 1.25 (1) 1.22 (1.02) 1.35 (0.93) 1.11 (1.13)
Q5dblp 6.66 (1) 2.64 (2.52) 2.58 (2.58) 2.26 (2.95)
Q6dblp 2.65 (1) 1.75 (1.51) 1.76 (1.50) 1.19 (2.23)

Table 4: Average runtimes of six queries over the
DBLP data set on the DiRT and Greenwolf plat-
forms. On three of the queries, speedup is signifi-
cant (shown in boldface), though on the others there
is very little speedup or even slowdown. Details
about each query are given in Table 3.

Q4dblp). We obtain similar parallel speedup on Green-
wolf (4 cores) and on DiRT (8 cores), showing that par-
allel efficiency is low.

By examining the shape of the tree, we can deter-
mine if load imbalance is the cause of the poor parallel
speedup. DBLP is a very large, shallow tree with widely
varying numbers of children per node. Table 5 out-
lines some details about the dataset and our six queries.
We see that the root node has a very large number of
children, as expected. For queries Q1dblp, Q3dblp, and
Q4dblp (those that show poor speedup), a very small
number of those children match the query. We postulate

Query Children % Children Complete
of Root Match Query Query Matches

Q1dblp 2767177 0.60% 738
Q2dblp 2767177 25.7% 1782468
Q3dblp 2767177 <0.01% 50
Q4dblp 2767177 0.32% 3319
Q5dblp 2767177 36.2% 949501
Q6dblp 2767177 36.4% 1008156

Table 5: Details about the DBLP dataset and queries.
The root node has an enormous number of children
(over 2.7 million). The three queries that lead to
poor parallel performance (Q1dblp, Q3dblp, and Q4dblp)
have a very small number of sub-match nodes. The
high initial branch factor and the low number of sub-
matches contribute to load imbalance.

that this, combined with the small query depth, causes
load imbalance for all of our parallel query engines. Fig-
ure 9 further illustrates the cause of load imbalance.

The large initial branch factor and shallow query
depth combine to cause load imbalance that cannot
be avoided by our query engines. Since all of the
2.7 million nodes at depth 1 are children of the root
node, they must all be processed by a single thread (the
thread to which the root node is assigned, say thread 1).
While processing these nodes, thread 1 writes query sub-
matches to the shared workqueue. Other threads read
these nodes from the workqueue and process their chil-
dren. As Figure 9 shows, however, the small number
of matches and shallow total depth enables these nodes
to be processed quickly, causing other threads to re-
main mostly idle while thread 1 works. This bottleneck
at a single thread is also the reason for the compara-
ble parallel performance between Greenwolf and DiRT
(more cores do not help since they remain idle anyway).

6230



Figure 9: An illustration of what a query over the
DBLP may look like and how work would be dis-
tributed among threads by a parallel query engine
(nodes assigned to a thread are grouped in boxes).
In this example thread 1 has a much larger workload
than the other threads, thus degrading parallel per-
formance.

The three queries on which we do see significant paral-
lel speedup (Q2dblp, Q5dblp, and Q6dblp) have a much
higher selectivity, giving the other threads more work
while thread 1 evaluates all 2.7 million nodes.

As expected, idiosyncrasies of real-world datasets
cause parallel performance degradation. However, de-
spite the extreme shape of the DBLP dataset (2.7 mil-
lion children of the root and a maximum depth of 3),
PCH does achieve some parallel speedup on three of the
queries, thereby outperforming SWP and WQ.

6. Conclusion

In this paper we have evaluated the performance of three
different parallelization approaches that achieve differ-
ent trade-offs between overhead and load imbalance.
The first two approaches, SWP and WQ, correspond
to well-known parallel computing techniques, while the
third, PCH, is a generalization of the producer-consumer
paradigm. We have evaluated implementations of paral-
lel XPath query engines that use these three approaches
on a range of synthetic and real-world datasets. Our
results indicate that the addition of Hybrid threads to
the well-known Producer-Consumer paradigm provides
a significant improvement, though an all-Hybrid config-
uration is not ideal. Through experimentation, we found
that the PCH-2/1/5 configuration lead to best overall per-
formance on our 8-core environment (and PCH-1/0/3
using 4 cores). Using this configuration, the PCH query
engine consistently achieves good parallel speedup and
out-performs our other parallel query engines. However,
PCH fails to achieve acceptable parallel performance on
some queries of the DBLP dataset. We have identified
the cause of this behavior, which is attributed to idiosyn-
cratic features of certain queries on that dataset. Overall,
we expect PCH to lead to good results in the vast major-
ity of practical scenarios.

References

[1] Automata for XML: A survey. Journal of Computer and
System Sciences, 73(3):289–315, 2007.

[2] A. Aboulnaga, A. Alameldeen, and J. Naughton. Esti-
mating the selectivity of XML path expressions for inter-
net scale applications. In VLDB, pages 591–600, 2001.

[3] R. Bordawekar, L. Lim, A. Kementsietsidis, and B. Kok.
Statistics-based parallelization of XPath queries in
shared memory systems. In EDBT, pages 159–170,
2010.

[4] R. Bordawekar, L. Lim, and O. Shmueli. Parallelization
of path queries using multi-core processors: Challenges
and experiences. In EDBT, pages 180–191, 2009.

[5] Z. Chen, H. V. Jagadish, F. Korn, and N. Koudas. Count-
ing twig matches in a tree. In Internation Conference on
Data Engineering (ICDE), pages 595–604, 2001.

[6] G. Cong, W. Fan, A. Kementsietsidis, J. Li, and X. Liu.
Partial evaluation for distributed XPath query processing
and beyond. In Transactions on Database Systems, 2011.

[7] G. Gou and R. Chirkova. Efficiently querying large XML
data repositories: A survey. IEEE TKDE, 19(10):1381–
1403, 2007.

[8] S. Haw and C. Lee. Data storage practices and query
processing in XML databases: A survey. Knowledge-
Based Systems, 24:1317–1340, 2011.

[9] B. Karsin. Parallel XPath Query Evaluation on Multi-
core Processors. Master’s thesis, University of Hawai‘i
at Manoa, 2012.

[10] M. Ley. Digital bibliography and library project, 2011.
[11] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr.

XPathLearner: An on-line self-tuning markov histogram
for XML path selectivity estimation. In VLDB, 2002.

[12] L. Lim, M. Wang, and J. S. Vitter. CXHist : An on-line
classification-based histogram for XML string selectivity
estimation. In VLDB, pages 1187–1198, 2005.

[13] W. Lu and D. Gannon. Parallel XML processing by work
stealing. In SOCP, pages 31–38, 2007.

[14] M. M. Moro, V. Braganholo, C. F. Dorneles, D. Duarte,
R. Galante, and R. S. Mello. XML: Some papers in a
haystack. SIGMOD Record, 38(2):29–34, 2009.

[15] J. Teubner, T. Grust, S. Maneth, and S. Sakr. Depend-
able cardinality forecasts for XQuery. VLDB Endow.,
1(1):463–477, 2008.

[16] X. Wang, A. Zhou, J. He, W. Ng, and P. Hung.
Multi-query evaluation over compressed XML data in
DaaS. Lecture Notes in Business Information Process-
ing, 74(3):185–208, 2011.

[17] Y. Wu, J. Patel, and H. Jagadish. Estimating answer sizes
for XML queries. In EDBT, pages 590–608, 2002.

[18] Xalan. http://xml.apache.org.
[19] Y. Zhang, Y. Pan, and K. Chiu. A parallel xpath engine

based on concurrent NFA execution. In ICPDS, pages
314–321, 2010.

6231


