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Abstract 
Mobile devices are increasingly being embraced 

by both organizations and individuals in today’s 

society. Specifically, Android devices have been the 

prominent mobile device OS for several years. This 

continued amalgamation creates an environment that 

is an attractive attack target. The heightened 

integration of these devices prompts an investigation 

into the viability of maintaining non-compromised 

devices. Hence, this research presents a preliminary 

investigation into the effectiveness of current 

commercial anti-virus, static code analysis and 

dynamic code analysis engines in detecting unknown 

repackaged malware piggybacking on popular 

applications with excessive permissions. The 

contribution of this paper is two-fold. First, it provides 

an initial assessment of the effectiveness of anti-virus 

and analysis tools in detecting malicious applications 

and behavior in Android devices. Secondly, it provides 

process for inserting code injection attacks to 

stimulate a zero-day repackaged malware that can be 

used in future research efforts. 

 

 

1. Introduction  

 
Mobile devices are rapidly becoming the dominant 

mode for voice and data communications in today’s 

globally networked environment. Market reports 

indicate smartphone sales reached 1.4 billion in 2015, 

they predict that the number of connected devices will 

expand to 6.4 billion in 2016 and that application 

downloads will hit 268 billion by 2017 [4, 11, 15]. The 

Android Operating System (OS) has been, by far, the 

dominant mobile device OS for several years making 

up 86.2% of the world mobile market in quarter 2 of 

2016 [6]. Hence, it is reasonable that attackers are not 

only refocusing targeting efforts from computers to 

mobile devices, they are focusing specifically on the 

Android OS. 

The proliferation of the Android OS makes it a 

natural target for the distribution of malicious code 

that has the potential to impact individuals along with 

public and private sector organizations. A number of 

recent articles highlight the fact that malicious code 

has successfully bypassed market vendor security [1-

3]. According to one article, recent adware/malware, 

referenced as Android/Clicker.G, that was available 

on the Play Store, targeted Russian speakers, 

implemented a six-hour delay prior to behaving badly 

and then proceeded to bombard the user with requests 

every two minutes [2]. Another article discusses 

phishing applications that pose as interface 

applications for online payment systems that were 

available on the Play Store [3]. Coupling this type of 

activity with the growth of the Internet of Things (IoT) 

introduces new opportunities for remote code 

execution, Distributed Denial of Service (DDoS) 

attacks and acquisition of personal information [8]. 

The impact of an increased attack surface escalates 

reoccurrence issues by stifling malicious software 

detection and eradication efforts.  

Complicating matters, increases in sophisticated 

stealth techniques such as code virtualization, 

encryption, and transformation have made it even 

harder to detect malware. As noted by Zhou and Jiang 

[24], a popular approach in the distribution of malware 

is the injection of seemingly innocuous code into 

trusted android applications. They go on to state that 

out of 1260 malware samples that they collected, 86% 

were repackaged applications. This indicates that 

repacking popular applications with malicious code 

and distributing them through market vendors is a 

viable attack vector. Hence, it is advantageous for both 

individuals and industry professionals alike to acquire 

an understanding of the effectiveness of anti-virus, 

static and dynamic software solutions in detecting 

repackaged applications that contain malicious code. 

This environment prompted the hypothesis that 

commercial and open source tools will not detect a 

repackaged application with excessive permissions 

that contain malicious code. In order to address this 

hypothesis the following research questions were 

identified: 

1. Do software solutions detect repackaged 

applications? 

2. Do analysis tools detect malicious code activity? 
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The contribution of our work is two-fold. First, we 

demonstrate that detecting repacked applications with 

malicious code is a significant issue with current 

commercial and open source software solutions that 

are currently available from the market. We developed 

new malware, inserted it into a reverse engineered 

application (app) that already contained extensive 

permissions and is currently available in the market. 

Once the malware had been successfully inserted into 

the application, the app was re-packaged and tested 

against 12 anti-virus solutions, three static analysis 

engines, two dynamic analysis engines and four 

engines that implement a combination of static and 

dynamic solutions. Second, we present a reverse 

engineering methodology that can be replicated to test 

detection solutions and used as a guide for future code 

investigations and research efforts. 

The balance of the paper is structured in the 

following manner. Section two presents relevant back 

ground research. Section three presents the research 

methodology along with a detailed experimental 

design. Section four discusses the research results 

along with providing relevant analysis. Section five 

draws conclusions from the analysis and presents areas 

of future work.  

 

2. Background  

 
The continued amalgamation of mobile devices 

into businesses environments and personal activities 

raises concerns about risk [16, 27]. Coupling this 

concern with the growing impact that mobile device 

residual data appears to be having in legal 

environments escalates interest in understanding how 

to mitigate this risk [10, 18]. Hence, the popularity of 

the Android mobile platform has prompted increased 

research interest in detecting malicious Android 

applications. Existing research can be grouped into 

three broad categories: static analysis, dynamic 

analysis and Risk Analysis. 

 
2.1 Static analysis 

 
Static analysis, in the context of android operating 

systems, is typically based on source code, manifest, 

or binary analysis that searches for strings and patterns 

that may match known malicious behaviors. These 

techniques are not limited to analyzing manifest 

permission requests from applications, but also control 

flow, signature-based detection, and static taint-

analysis. 

Felt, et.al., [26] developed Stowaway, a static 

analysis tool, that extracts manifest files and detects 

over-privilege requests during install. Stowaway’s 

main concern is detecting whether developers 

followed a least privilege guideline when setting up 

their permission requests. Stowaway analyzes the 

applications and determines the set of API calls that it 

uses. It then maps those API calls to permissions in 

order to detect overly privileged applications.  

A severe limitation of current static analysis 

techniques is the reliance on permission-based 

requests in the Android manifest. Although 

permissions are a key factor in characterizing and 

detecting malware, the manifest contains much more 

information that might help detect malware. Feldman 

et al. [12] proposed Manilyzer, a tool that uses 

additional information found in the manifest file. It 

employs a machine learning algorithm that classifies 

an application as malicious or benign. Specifically, 

Manilyzer considers the following characteristics in 

the manifest file to be significant: 1) permission 

requests, 2) high priority receivers, 3) low version 

number, and 4) abused services. Based on profiling 

617 applications, they reported that the accuracy 

detection rate of the tool was at 90% with a false 

positive and false negative rate of only 10%.  

Sanz et al. [13] proposed a method for malware 

detection using extracted strings from application files 

as a way to detect anomalies. The researcher’s 

methodology relies on readable string extraction from 

applications. The process involves the following steps: 

disassembly, tokenization of symbols, and term 

frequency. Disassembly involves using Android 

disassembler smali in order to extract the disassembly. 

The researchers search for const-string operational 

code within the disassembled code in order to obtain 

the strings. The tokenizer utilizes dot, comma, colon, 

semi-colon, and blank space in order to conform the 

string. Finally, the string is tested with a point in 

feature space for anomalies detection. The researchers, 

however, stated that their detection systems produced 

high error rates because of false positives, but they 

state that with more normalization the error rates will 

decrease. Furthermore, the authors state that this is 

only from a static stand-point and not a dynamic one 

where strings can be generated at run-time. 

 
2.2 Dynamic Analysis 

 
Dynamic analysis studies the run-time behavior of 

programs to classify them as malicious. Min et al. [19] 

propose a run time-based, behavioral analysis method 

for detecting malicious applications. They employ a 

customized emulator by applying API hook 

technology to the loadable kernel module. Thus, when 

an app is running through a customized emulator, all 

sensitive information is logged and sent to the analyzer 

via Logcat. Their log parser categorizes behavior into 

6182



the following categories: 1) application use of intent 

permission, 2) third part advertisement, 3) leakage of 

private data, and 4) sending SMS signatures. Based on 

the amount of information leakage, an application is 

classified as malicious or benign. 

Burguera, et. al., [25] present a behavior-based 

malware detection system that uses similar dynamic 

analysis techniques. Their Crowdroid implements a 

monitor that invokes system calls in order to create a 

frequency table of system calls on the client side. They 

employ a K-means algorithm to detect malicious 

behavior on the server side.  

Mahmood et al. [22] presented a scalable dynamic 

analysis framework for evaluating Android 

application by utilizing the cloud. The platform 

utilizes robotium test automation in order to perform 

fuzz and dynamic analysis on android applications. 

Specifically, the paper describes a program analysis 

technique capable of fuzzing an Android application 

using a large set of test cases. The downside to this 

project is that black-box testing by robotium requires 

that applications are signed; thus, resigned 

applications that are automatically generated may 

show a decrease in functionality or failure.  

Reina et al. [20] presents CopperDroid a dynamic 

analysis tool that characterizes low-level OS-Specific 

and high-level Android specific behaviors. 

CopperDroid utilizes QEMU [29] to automatically 

perform black-box dynamic analysis on Android 

applications. The VM-based centric system utilizes 

dynamic system call analysis in order to determine 

Android behaviors. CopperDroid also has the ability 

to determine whether a malware was initiated using 

Java, JNI, or native code. Results showed that from 

1,600 samples of malware, CopperDroid was able to 

differentiate different behaviors. 

In [23], Yan and Yin present DroidScope, an 

analysis tool that utilizes a virtual-based system in 

order to detect malware. Specifically, DroidScope 

reconstructs both the kernel and system level 

semantics in order to facilitate malware analysis. 

Furthermore, DroidScope utilizes three tiers of APIs 

to emulate an Android device. These three tiers 

included: the hardware, OS, and Dalvik Virtal 

Machine. Results indicates that the tool was affective 

in assessing malware samples with low overhead. 

 
2.3 Risk Analysis 

 
Grace, et. al., [21] put forth a system called 

RiskRanker which is designed to analyze apps for 

dangerous behaviors. Specifically, RiskRanker 

provides a proactive scheme in order to detect zero-

day malware without relying on signature based 

algorithms for detection. RiskRanker provides 

scalability by automating behavior detection of 

applications. The aim of the research was to reduce the 

search space needed to detect malware. Thus, the 

system was designed for scalability, efficiency, and 

accuracy. The system uses a first-order and second-

order analysis to assess potentially dangerous behavior 

in applications. First-order analysis is mainly designed 

to quickly evaluate untrusted apps for high and 

medium risk behaviors. High-risk behaviors exploit 

the kernel for vulnerabilities. This includes any apps 

that try to perform privilege escalation. Medium level 

exploits are classified as application that attempts to 

charge user money surreptitiously, upload sensitive 

data, or send SMS messages. Second-order analysis 

consisted of searching for encrypted native code in 

application and unsafe bytecode loading. Results for 

first-order analysis shows that out of 9877 applications 

that contained native code, 24 was found to have 

embedded rootkits ranging from 6 different malware 

family. Medium level risk results indicate that 2374 

applications exhibit SMS sending behaviors in the 

background. Second-order results indicate that 315 

samples were found to have encrypted native code 

execution causing malware installation. Furthermore, 

184 unsafe dalvik code loading applications were 

found. In total, out of 118,318 applications from the 

Android markets analyzed, 718 malware samples from 

29 different families were found. 

Crussell, et. al. [14] proposed AnDarwin, a 

scalable framework that analyzes Android 

applications for plagiarism. Specifically, semantic 

information was used in order to detect repackaged 

applications. Results indicate that out of 265,359 

applications, AnDarwin was able to identify 36,106 

repackaged or rebranded applications. Furthermore, 

88 new variants of malware were found. 

While there has been substantial work conducted 

examining the detection of malicious code from static 

and dynamic perspectives, there is minimal 

substantive research that specifically investigates the 

effectiveness of these solutions in a re-packaged zero-

day app that already contains excessive permissions. 

 

3. Methodology  

 
To support the hypothesis proposed in the 

introduction, the overall research was separated into 

two high-level stages. The first stage utilizes an initial 

iteration of a design science methodology as defined 

by Peffers, et. al, [28] to develop and implement the 

malicious code into an application. Any over-

privileged application could have been chosen for this 

experiment. As a matter of convenience, excessive 

permission practice, large user base, and application 
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size, Snapchat was chosen as the target application. 

The second stage of this research utilizes the 

modifications in the first part to conduct a controlled 

experiment as defined by Sadish, et. al. [30]. The high-

level problem statement examines the effectiveness of 

commercial and open source tools at detecting 

malicious code that has been injected and repackaged 

in a legitimate application. 

 
3.1 Malicious Code 

 
The first step in the design and development stage 

investigated what could be achieved with existing 

Snapchat permissions. Analysis of the 

AndroidManifest.xml file reveals that Snapchat 

requests 19 permissions from the user. The next step 

ran the Quick Android Review Kit [9], a static 

analyzer tool designed to look for security flaws and 

vulnerabilities. The application found components that 

were not protected by a permission. Specifically, the 

following components in ‘com.snapchat.android.’ 

were identified as not being protected:  

 AppInstallBroadcastReceiver; 

 notification.GcmMessageReceiver; 

 LandingPageActivity; 

 deeplink.DeepLinkActivity 

The malicious application we developed as a result 

of the analysis is called AndroidTracker. It consists of 

implanting a hidden service in the form of a botnet that 

utilizes identified Snapchat permissions in order to 

steal sensitive data. Furthermore, the application 

utilizes a standard API to obtain sensitive data without 

requiring root access. Remote commands are 

communicated over WiFi, 3G, and/or 4G. It should be 

noted that for the purposes of this experiment, the 

malicious service was not obfuscated or packed when 

injected.  

Command and control is created based on Google 

Cloud Messaging (GCM) by broadcasting messages to 

the hidden service. One of the main reasons for this 

choice is due to the amount of services and 

applications that take advantage of GCM in order to 

communicate notification and updates for products. 

Snapchat is a prime example of this. GCM service is 

embedded into the application easily by leveraging 

Snapchat’s built-in GCM libraries. The GCM enables 

the device to utilize common APIs and libraries that 

normal applications would use in order to act as a 

benign service. Additionally, GCM does not quickly 

drain the battery of the device as normal sockets do.  

The android devices selected for this experiment 

are detailed in Table 1-Smartphone Attributes. The 

devices were initialized in an attempt to remove 

previous data interaction on the device. The 

initialization process was repeated prior to the 

execution of each experiment. 

The following steps were conducted to initialize 

the Android devices: First the device is turned off so 

that it can be booted into recovery mode. Second, the 

volume-down button is held down while holding the 

power button in order to boot into advance startup. 

Third, the volume-down button is used to scroll down 

to recovery mode. The power button is used to select 

this option. Fourth, the power button is held down 

while pressing the volume up button once. The power 

button is then released. Fifth, the wipe data/factory 

reset option is selected similar to step three. The final 

step is to reboot the system. 

 

Table 1. Smart Mobile Device Attributes 
Trait Asus 

Nexus 4 

Phone 

Asus 

Memo 

Pad 7  

Asus 

Nexus 5 

Tablet 

LG Leon 

H345 

O.S. Android 

KitKat 

4.4 

Android 

Kitkat 

4.4.2 

Android 

Lollipo

p 5.1 

Android 

Lollipop 

5.0 

Internal 

Memory 

16 GB 16 GB 16 GB 8GB 

Memory 

Card 

Yes Yes Yes No 

 

The device must then be configured to allow USB 

debugging in order to use ADB to extract and install 

applications. USB debugging is enabled by going to 

the ‘Developer Options’ in the system menu of the 

settings page. 

 
3.2 Reverse Engineering & Injection Process  

 
The AndroidTracker malware is coded as a service 

intent. Our service intent has the ability to listen to 

commands from an outside service in order to execute 

commands. The commands include: 1) taking a 

picture, 2) sending live GPS feed, 3) displaying 

messages on the phone, and 4) sending notifications. 

Figure 1 – Repackaging malware illustrates the attack 

vector we implemented to modify the application. 

 

 
Figure 1. Repackaging malware 
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The injection process follows a structural 

procedure. The specific steps implemented to inject 

the code are as follows: 

1. Initially, the latest Snapchat apk is pulled from the 

phone using adb. The following command 

identifies the exact location of the snapchat apk: 

“adb shell pm list packages -f |grep snapchat” 

2. Once the location of the apk was identified, the 

apk was pulled using the following adb command:  

“adb pull /data/app/com.snapchat.android-

1/base.apk” 

3. Using apktool [7], we decompiled the current 

version of Snapchat into smali byte code using the 

following command: 

 “apktool d Snapchat.apk” 

4. In addition, the apktool was used to decompile our 

malicious service to obtain the malicious payload. 

The main purpose of this step is to obtain the 

actual payload in smali format. Furthermore, the 

main activity onCreate function can be utilized 

and copied into Snapchat’s function to startup the 

activity. This step helps the reverse engineering 

process since the smali bytecode does not have to 

be completely coded by hand. 

5. The manifest file, extracted from the disassembly 

of Snapchat with the apktool, was utilized in order 

to identify the startup activity payload injection 

site: 

com.snapchat.android.LandingPageActivity. 

Notice that this was one of the components that 

was listed as vulnerable based on the static 

analysis tool. The payload utilizes the main 

startup event from the startup activity. 

6. Next, the service intent and broadcast receivers 

that the hidden service used was injected into the 

AndroidManifest. The Google Cloud Messaging 

system’s receivers and services were utilized 

using the original Snapchat’s permission.  

7. The smali code obtained from AndroidTracker 

was copied and extracted into the Snapchat smali 

folder. 

8. The main service activity from AndroidTracker’s 

onCreate function was copied and pasted into the 

main activity of Snapchat’s onCreate function. 

The function was altered to utilize Snapchat’s 

class to correctly initialize the service without the 

application crashing. The placement is visible in 

Figure 3-Injection Code to Start AndroidTracker. 

9. Snapchat is recompiled using the following 

command: “apktool b Snapchat” 

10. Java’s keytool was used to generate a signature 

with the following command: “keytool -genkey -

v -keystore apk-key.keystore -alias apk-key -

keyalg RSA -keysize 2048 -validity 10000” 

11. Java’s jarsigner was used to sign the generated 

apk from step nine using the following command: 

“jarsigner -verbose -sigalg SHA1withRSA -

digestalg SHA1 -keystore apk-key.keystore 

'Snapchat.apk’ apk-key” 

12. Finally, the apk was deployed onto the Android 

device using the following command: “adb install 

‘Snapchat.apk’ -r” 

 
new-instance v0, Landroid/content/Intent; 
 
const-class v1, Lexample/com/trackerservice/MyService; 
 
invoke-direct {v0, p0, v1}, Landroid/content/Intent;-> 
<init>{Landroid/content/Context;Ljava/lang/Class;) 
 
.local v0, “intent”:Landroid/content/Intent; 
 
Invoke-virtual {p0, v0}, 
Lcom/example/com/trackerservice/TrackerService;-> 
startService(Landroid/content/Intent;)Landroid/content/ComponentName
; 

Figure 3. Injection Code to Start 
AndroidTracker 

 
3.3 Controlled Experiments 

  
With the growth of malware, an influx of anti-virus 

solution can now be downloaded from the Android 

Play Store. For this test, we chose a sample of the top 

rated anti-virus apps by user from the store. 

Furthermore, we evaluated popular anti-virus 

solutions that currently have over one million 

downloads. Based on these two criteria, we chose a list 

of 12 anti-virus apps for our experiment. Furthermore, 

case one studies anti-virus engines that are publicly 

available online. Anti-virus engines are classified as 

any scalable online detection engine utilizing multiple 

suites of security tools.  

Research tools were chosen with a web-based 

interface from a list of scanners acquired from 

research projects or papers. For online tools, we chose 

those that had at least one of these criteria:  1) static 

analysis, 2) dynamic analysis, or 3) combination of 

static and dynamic analysis. Tools that are limited in 

size are listed as well. For instance, Andrubis only 

allows for scanning files under 8 MB. Based on the 

tools selected, two experiments were conducted. 

 
3.3.1 Experiment One. The first controlled 

experiment utilizes a structured methodology to test 

effectiveness of locally installed anti-virus and online 

antivirus scanning engines. The following provides 

overview for analysis of commercial anti-virus that 

have been locally installed. First, the Android device 

is initialized to the default states based on the steps in 

the initialization process presented previously. 
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Second, the commercial anti-virus is installed from the 

Play Store. Third, the settings are configured to real 

time monitoring where possible in the commercial 

anti-virus software. Fourth, the repackaged snapchat is 

installed with adb using the following command: “adb 

install ‘Snapchat.apk’ -r”. The fifth step initiates a full 

system scan. The sixth step initializes Snapchat to 

ensure functionality of AndroidTracker. The final step 

records the results and any warnings.  

The online anti-virus engine suite follows a similar 

methodology as the commercial anti-virus 

applications. However, the online anti-virus engine 

requires the user to upload the apk onto the server first. 

The process then follows step six.  

 
3.2.2 Experiment Two. The second controlled 

experiment runs the repackaged application through 

online scanner tools that are either static analyzer, 

dynamic analyzer, or a combination of both. Risk 

ranking scores are recorded based on the tool’s scoring 

system. Thus, the risk ranking system can be either 

numeric or descriptive. Furthermore, file size limits 

are recorded to assess the scope of the scanner. Since 

the modified version of Snapchat is 29 MB, if the 

online engine cannot support the file size, then the tool 

is deemed unsuccessful. Evidence of residual data is 

marked successful if any sign of the hidden service 

name is picked up from the results by manual analysis. 

Repackage detection assesses whether or not the tool 

was successfully able to identify a modified version of 

Snapchat. Finally, the tool was deemed successful if it 

was able to classify the malware. 

 

4. Results and analysis  

 
Injection of the repackaged app was successful in 

all four different Android devices that were tested. 

Each device was tested for functionality of Snapchat 

and AndroidTracker to ensure successful code 

injection. Snapchat was able to operate as normal on 

all four devices. When the user started the modified 

application, AndroidTracker was initialized in the 

background as well. The background service 

communicated with the central http command server 

using Google Cloud Messaging in order to register 

devices. In addition, the background service was 

successful in storing the device data and information 

in a remote SQL database. Querying of the commands 

utilized GCM in order to send messages to the device. 

Figure 4 displays the result of querying our Nexus 4 

device for a live picture feed and GPS data. The live 

picture feed accurately displayed the front camera 

taking a screenshot of the desktop screen. The GPS 

data was accurate in displaying the tablet current 

location as well.   

Furthermore, the hidden service was able to listen 

to query commands including:  message notification, 

message toast, and turn off phone. This was conducted 

to verify that the botnet was successfully built and 

deployed using a common API to tests the 

effectiveness of anti-viruses at differentiating between 

benign and malicious API calls. 

 

 
Figure 4. AndroidTracker http command 

server 
 

The installation and successful communication with 

the HTTP remote server demonstrates that even 

though common API calls and libraries were used, a 

botnet was able to be created. Thus, signature based 

algorithms have trouble determining if a function’s 

signature is malicious or a false positive. 
 
4.1 Experiment one 

 
Results from experiment one indicate that current 

anti-virus applications are not detecting the newly 

repackaged malware. However, CM Security did give 

a warning indicating that the application may be 

leaking data. The data leakage warning was not 

surprising as the Quick Android Review Tool pointed 

out potential data leakage from components during the 

development process. Our results show that all 12 

popular anti-viruses did not properly detect our 

sample. Table 1 - Anti-Virus Detection provides a 

summary of the test results. 

Similar results were displayed from the online apk 

anti-virus scanners. No scanners were able to detect 

the presence of malware in the modified Snapchat. It 
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should be noted that each of the locally installed and 

on-line anti-virus suites utilize a signature based 

algorithm to check for malware. It is known that 

signature based algorithms are prone to not being able 

to affectively distinguish code variants [17]; the results 

indicate that they also have problems detecting new 

vulnerabilities in repackaged applications. 

 

Table 1: Anti-Virus Detection  

 
 

While there is no holistic or heuritstic checks for 

malware, it is interesting that no warnings were 

displayed for any online anti-virus engine. Table 2 

summarizes the results for online engines. 

 

Table 2. Online Anti-Virus Engines Detection  

 
 
4.2 Experiment two 

 
The results from the second controlled experiment 

were more promising in terms of overall detection. 

The online tools that use anti-virus engines did not 

classify our sample as malware. However, tools that 

use either static analysis, dynamic analysis, or a 

combination of both did give high risk scores or alerts 

that the application may be malicious, although no 

engine declared our sample to be malware. The tools 

did provide risk scores which appear to be based 

primarily on use of sensitive API calls and 

permissions. Scores range from numerical values to 

descriptive ratings. Furthermore, one of the main 

constraints with some of the static, dynamic, and 

combinational analysis tools was the file intake size. 

Since the repackaged Snapchat was 29MB, some of 

the tools were not able to handle a file that large. 

The second controlled experiment was subdivided 

into two separate experiments. The first looked at 

Static analysis and the second looked at tools that 

utilize a combination of static and dynamic analysis. 

Dynamic analysis by itself was not included due to 

limited information given and file size constraint. 

Some dynamic results showed recording of the 

applications simply just opening and closing without 

any data generated while others simply displayed IP 

address and Geolocations. Thus, work towards a better 

scalable, automated dynamic engine for malware 

analysis is needed. Android Static analysis provided 

the most useful information compared to dynamic 

analysis. One of the problems with dynamic analysis 

is being unable to trigger the correct event for data 

analysis. Since AndroidTracker required Google Play 

Store to be installed, dynamic analysis utilizing 

sandbox environments were not able to activate the 

malicious conditions. 

 
4.2.1 Static Analysis. The fully functional static 

analysis tools included AVC UnDroid, MobiSec 

Eacus, and Visual Threat. AVC UnDroid had a file 

size limit of 7 MB; thus, it was insufficient for 

dedicating malware. Static analysis results displayed 

the following types of features such as permission 

listing, website access strings, geolocation of 

networks that the application is talking too, sensitive 

API calls display, component analysis, and 

certification analysis MobiSec showed unique 

features since it was able to give a risk ranking score 

in combination with detecting that the apk was 

repackaged. Visual Threat gave a risk score of 55 out 

of 100 due to the permission usage and type of 

services associated with the application. None of the 

three static analysis engines were able to detect 

malware in the repackaged Snapchat. Table 3 

summarizes the engines that we used and the results. 

Overall, static analysis did provide useful information 

for reverse engineering the malware. 
 

Table 3: Static Analysis Engines Summary 
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4.2.2 Combinational analysis. Like static and 

dynamic analysis, combinational analysis faced issues 

with file size limit as well. Andrubis and APK 

Analyzer were not tested due to their 8 MB and 20 MB 

limit respectively. SandDroid was able to display a 

risk ranking score of 100. SandDroid  defines 1) 

connecting to the internet, 2) executing shell code, 3) 

having unused permission, 4) getting GPS info, 5) 

opening the camera, 6) recording audio, 7) getting 

unique device id and IMEI, and 8) executing internal 

requests as all risky behaviors [5]. The normal 

application that we piggybacked off of uses all of these 

permissions and behaviors non-maliciously and is 

flagged as risky: thus, SandDroid also considered our 

repackaged version risky. The dynamic analysis 

portion simply displays a gif of the application starting 

up and closing. No further details were provided for 

dynamic analysis.  
NVISO ApkScan file size limited was unlisted, but 

it was able to successfully scan the repackaged 

Snapchat. Results show that the application only 

shows a medium level of risk since it marked the 

application as suspicious out of the three options: no 

malicious behavior, suspicious behavior, and 

confirmed malicious. Dynamic analysis was 

unsuccessful at providing any useful information.  

Combinational analysis provided as much 

information as static analysis. The dynamic analysis 

did not provide useful information since no malicious 

behaviors were triggered. In addition, none of the 

engines were able to detect malware in the repackaged 

Snapchat. Table 4 provides a summary of the results. 

 

Table 4. Combination of Static and Dynamic 
Analysis Engines Summary  

 
 

4.3 Residual data analysis 

 
The results for case three indicates that static 

analyzers can trace and detect the actual service 

registration and sensitive API calls. Figure 5 shows an 

example of a static analysis tool indicating sensitive 

API calls made by our malware sample with the threat 

level associated with the call. Furthermore, the static 

analysis tool was able to determine services started by 

the application, including our hidden service. 

SandDroid, specifically, was able to link permission 

requests with API calls in order to produce threat level 

evaluations. Furthermore, SandDroid was able to 

display the receivers, services and remote server 

address from AndroidTracker. NVISO ApkScan was 

able to provide the same information as SandDroid, 

but it was not able to provide the API call mapping that 

SandDroid provided. Visual threat was only able to 

provide residual data for services and remote server 

address. NVISO ApkScan’s main advantages lies in its 

ability to provide adb logcat dump from the dynamic 

analysis run. However, no residual data was found in 

the logcat file. The remaining static and dynamic 

analysis tools were not able to provide any residual 

data in their results.   

Dynamic analysis did not produce actionable 

results from any of the tools we tested. More than 

likely, this was because conditions were not triggered 

at runtime that executed maliciously inserted code. 

Most sophisticated malware will trigger only when 

correct timing conditions are met in order to avoid 

detection.  

While residual data are useful, they are very time 

consuming to manually find. The experiments rely on 

the fact that the services and receivers’ names were 

known prior to injection. Thus, it was easy to manually 

analyze the results to find the residual data. 

 

 
Figure 5. Static Analysis Trace of 

Repackaged Malware 
 

However, more sophisticated malware can blend 

its name with the application into which it is injecting. 

Additionally, obfuscation and packing of the Android 

application by using the Dex class loader leads to 

perplexing strings and function names. Thus, residual 

data becomes increasingly hard to find. Table 5 

provides a summary of the residual data that was 

obtained in the experiment. 
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Table 5: Residual Data Obtained  

 
 

5. Conclusions and future work  

 
The popularity of mobile devices and the Android 

operating system coupled with the continued 

integration of these devices into all aspects of society 

is generating an environment that is attractive to 

attackers. For the purposes of this research, the 

Snapchat application was chosen for modification due 

to excessive use of permissions and services along 

with its popularity.  

A repackaged malicious Snapchat was produced in 

order to stimulate sophisticated zero-day malware. 

Using a controlled experiment, we assessed the 

effectiveness of current commercial anti-virus 

products for Android against a repackaged application 

that uses piggybacked API permissions. In addition, 

static analysis, dynamic analysis, and combination of 

static and dynamic analysis tool analysis were 

assessed in their detection ability on zero-day 

repackaged malware. 

Detecting new repackaged zero-day malware 

remains a hard problem in today’s environment. 

Security, to a large extent, relies on the detection 

abilities provided by markets to monitor published 

apps. The initial investigation indicates that 

commercial anti-virus software obtained from Google 

Play Store may not provide additional protection for 

such new threats as our contrived malware example. 

In addition, online detection suites were not able to 

detect the malware in the repackaged Snapchat.  

Static analysis, dynamic analysis, and combination 

of static and dynamic analysis engines were able to 

provide better results and warnings for end-users. 

SandDroid, NVISO ApkScan, and Visual Threat were 

able to provide residual data that indicated that part or 

all of our hidden service was initialized. Furthermore, 

MobiSec Eacus was able to indicate that the apk was 

repackaged. However, many of the static and dynamic 

analysis engines were unable to provide any result due 

to its file size limit. Thus, larger, popular applications 

are not able to be processed through their engines for 

results.  

The initial research results indicate that the static, 

dynamic, or combination analysis solutions used in 

this experiment do not detect malware in repackaged 

applications. They also indicate that analysis tools 

used in this experiment provided minimal to no 

indication of malicious code activity. These results 

support the hypothesis that commercial and open 

source tools will not detect a repackaged application 

with excessive permissions that contain malicious 

code. They also indicate that there are opportunities 

for developing improvements in commercial anti-

virus, static, and dynamic analysis tools in order to 

provide better support for sophisticated zero-day 

malware. 

While the scope of this research focuses on the 

identification of a reverse engineering methodology 

that utilized dynamic and static analysis tools in 

conjunction with zero day malware. Hence, future 

research will focus on expanding the implementation 

of the methodology to include injection non-zero day 

malware into popular applications. This research will 

also investigate the performance of market antivirus 

and analysis solutions to determine practical malware 

recognition. In addition, future research will 

investigate effective obfuscation techniques along 

with how these techniques perform when analyzed 

with real-world detection tools. This effort will also 

examine the development of effective algorithms that 

detect obfuscated malware. A related stream of 

research will investigate malware that utilizes the 

cloud as a propagation mechanism along with 

effective and efficient mitigation strategies. 
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