
Exploitation and Detection of a Malicious Mobile Application

Thanh Nguyen

University of South Alabama

tnguye001@gmail.com

J. Todd McDonald

University of South Alabama

 jtmcdonald@southalabama.edu

William Bradley Glisson

University of South Alabama

 bglisson@southalabama.edu

Abstract
Mobile devices are increasingly being embraced

by both organizations and individuals in today’s

society. Specifically, Android devices have been the

prominent mobile device OS for several years. This

continued amalgamation creates an environment that

is an attractive attack target. The heightened

integration of these devices prompts an investigation

into the viability of maintaining non-compromised

devices. Hence, this research presents a preliminary

investigation into the effectiveness of current

commercial anti-virus, static code analysis and

dynamic code analysis engines in detecting unknown

repackaged malware piggybacking on popular

applications with excessive permissions. The

contribution of this paper is two-fold. First, it provides

an initial assessment of the effectiveness of anti-virus

and analysis tools in detecting malicious applications

and behavior in Android devices. Secondly, it provides

process for inserting code injection attacks to

stimulate a zero-day repackaged malware that can be

used in future research efforts.

1. Introduction

Mobile devices are rapidly becoming the dominant

mode for voice and data communications in today’s

globally networked environment. Market reports

indicate smartphone sales reached 1.4 billion in 2015,

they predict that the number of connected devices will

expand to 6.4 billion in 2016 and that application

downloads will hit 268 billion by 2017 [4, 11, 15]. The

Android Operating System (OS) has been, by far, the

dominant mobile device OS for several years making

up 86.2% of the world mobile market in quarter 2 of

2016 [6]. Hence, it is reasonable that attackers are not

only refocusing targeting efforts from computers to

mobile devices, they are focusing specifically on the

Android OS.

The proliferation of the Android OS makes it a

natural target for the distribution of malicious code

that has the potential to impact individuals along with

public and private sector organizations. A number of

recent articles highlight the fact that malicious code

has successfully bypassed market vendor security [1-

3]. According to one article, recent adware/malware,

referenced as Android/Clicker.G, that was available

on the Play Store, targeted Russian speakers,

implemented a six-hour delay prior to behaving badly

and then proceeded to bombard the user with requests

every two minutes [2]. Another article discusses

phishing applications that pose as interface

applications for online payment systems that were

available on the Play Store [3]. Coupling this type of

activity with the growth of the Internet of Things (IoT)

introduces new opportunities for remote code

execution, Distributed Denial of Service (DDoS)

attacks and acquisition of personal information [8].

The impact of an increased attack surface escalates

reoccurrence issues by stifling malicious software

detection and eradication efforts.

Complicating matters, increases in sophisticated

stealth techniques such as code virtualization,

encryption, and transformation have made it even

harder to detect malware. As noted by Zhou and Jiang

[24], a popular approach in the distribution of malware

is the injection of seemingly innocuous code into

trusted android applications. They go on to state that

out of 1260 malware samples that they collected, 86%

were repackaged applications. This indicates that

repacking popular applications with malicious code

and distributing them through market vendors is a

viable attack vector. Hence, it is advantageous for both

individuals and industry professionals alike to acquire

an understanding of the effectiveness of anti-virus,

static and dynamic software solutions in detecting

repackaged applications that contain malicious code.

This environment prompted the hypothesis that

commercial and open source tools will not detect a

repackaged application with excessive permissions

that contain malicious code. In order to address this

hypothesis the following research questions were

identified:

1. Do software solutions detect repackaged

applications?

2. Do analysis tools detect malicious code activity?

6181

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41911
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

The contribution of our work is two-fold. First, we

demonstrate that detecting repacked applications with

malicious code is a significant issue with current

commercial and open source software solutions that

are currently available from the market. We developed

new malware, inserted it into a reverse engineered

application (app) that already contained extensive

permissions and is currently available in the market.

Once the malware had been successfully inserted into

the application, the app was re-packaged and tested

against 12 anti-virus solutions, three static analysis

engines, two dynamic analysis engines and four

engines that implement a combination of static and

dynamic solutions. Second, we present a reverse

engineering methodology that can be replicated to test

detection solutions and used as a guide for future code

investigations and research efforts.

The balance of the paper is structured in the

following manner. Section two presents relevant back

ground research. Section three presents the research

methodology along with a detailed experimental

design. Section four discusses the research results

along with providing relevant analysis. Section five

draws conclusions from the analysis and presents areas

of future work.

2. Background

The continued amalgamation of mobile devices

into businesses environments and personal activities

raises concerns about risk [16, 27]. Coupling this

concern with the growing impact that mobile device

residual data appears to be having in legal

environments escalates interest in understanding how

to mitigate this risk [10, 18]. Hence, the popularity of

the Android mobile platform has prompted increased

research interest in detecting malicious Android

applications. Existing research can be grouped into

three broad categories: static analysis, dynamic

analysis and Risk Analysis.

2.1 Static analysis

Static analysis, in the context of android operating

systems, is typically based on source code, manifest,

or binary analysis that searches for strings and patterns

that may match known malicious behaviors. These

techniques are not limited to analyzing manifest

permission requests from applications, but also control

flow, signature-based detection, and static taint-

analysis.

Felt, et.al., [26] developed Stowaway, a static

analysis tool, that extracts manifest files and detects

over-privilege requests during install. Stowaway’s

main concern is detecting whether developers

followed a least privilege guideline when setting up

their permission requests. Stowaway analyzes the

applications and determines the set of API calls that it

uses. It then maps those API calls to permissions in

order to detect overly privileged applications.

A severe limitation of current static analysis

techniques is the reliance on permission-based

requests in the Android manifest. Although

permissions are a key factor in characterizing and

detecting malware, the manifest contains much more

information that might help detect malware. Feldman

et al. [12] proposed Manilyzer, a tool that uses

additional information found in the manifest file. It

employs a machine learning algorithm that classifies

an application as malicious or benign. Specifically,

Manilyzer considers the following characteristics in

the manifest file to be significant: 1) permission

requests, 2) high priority receivers, 3) low version

number, and 4) abused services. Based on profiling

617 applications, they reported that the accuracy

detection rate of the tool was at 90% with a false

positive and false negative rate of only 10%.

Sanz et al. [13] proposed a method for malware

detection using extracted strings from application files

as a way to detect anomalies. The researcher’s

methodology relies on readable string extraction from

applications. The process involves the following steps:

disassembly, tokenization of symbols, and term

frequency. Disassembly involves using Android

disassembler smali in order to extract the disassembly.

The researchers search for const-string operational

code within the disassembled code in order to obtain

the strings. The tokenizer utilizes dot, comma, colon,

semi-colon, and blank space in order to conform the

string. Finally, the string is tested with a point in

feature space for anomalies detection. The researchers,

however, stated that their detection systems produced

high error rates because of false positives, but they

state that with more normalization the error rates will

decrease. Furthermore, the authors state that this is

only from a static stand-point and not a dynamic one

where strings can be generated at run-time.

2.2 Dynamic Analysis

Dynamic analysis studies the run-time behavior of

programs to classify them as malicious. Min et al. [19]

propose a run time-based, behavioral analysis method

for detecting malicious applications. They employ a

customized emulator by applying API hook

technology to the loadable kernel module. Thus, when

an app is running through a customized emulator, all

sensitive information is logged and sent to the analyzer

via Logcat. Their log parser categorizes behavior into

6182

the following categories: 1) application use of intent

permission, 2) third part advertisement, 3) leakage of

private data, and 4) sending SMS signatures. Based on

the amount of information leakage, an application is

classified as malicious or benign.

Burguera, et. al., [25] present a behavior-based

malware detection system that uses similar dynamic

analysis techniques. Their Crowdroid implements a

monitor that invokes system calls in order to create a

frequency table of system calls on the client side. They

employ a K-means algorithm to detect malicious

behavior on the server side.

Mahmood et al. [22] presented a scalable dynamic

analysis framework for evaluating Android

application by utilizing the cloud. The platform

utilizes robotium test automation in order to perform

fuzz and dynamic analysis on android applications.

Specifically, the paper describes a program analysis

technique capable of fuzzing an Android application

using a large set of test cases. The downside to this

project is that black-box testing by robotium requires

that applications are signed; thus, resigned

applications that are automatically generated may

show a decrease in functionality or failure.

Reina et al. [20] presents CopperDroid a dynamic

analysis tool that characterizes low-level OS-Specific

and high-level Android specific behaviors.

CopperDroid utilizes QEMU [29] to automatically

perform black-box dynamic analysis on Android

applications. The VM-based centric system utilizes

dynamic system call analysis in order to determine

Android behaviors. CopperDroid also has the ability

to determine whether a malware was initiated using

Java, JNI, or native code. Results showed that from

1,600 samples of malware, CopperDroid was able to

differentiate different behaviors.

In [23], Yan and Yin present DroidScope, an

analysis tool that utilizes a virtual-based system in

order to detect malware. Specifically, DroidScope

reconstructs both the kernel and system level

semantics in order to facilitate malware analysis.

Furthermore, DroidScope utilizes three tiers of APIs

to emulate an Android device. These three tiers

included: the hardware, OS, and Dalvik Virtal

Machine. Results indicates that the tool was affective

in assessing malware samples with low overhead.

2.3 Risk Analysis

Grace, et. al., [21] put forth a system called

RiskRanker which is designed to analyze apps for

dangerous behaviors. Specifically, RiskRanker

provides a proactive scheme in order to detect zero-

day malware without relying on signature based

algorithms for detection. RiskRanker provides

scalability by automating behavior detection of

applications. The aim of the research was to reduce the

search space needed to detect malware. Thus, the

system was designed for scalability, efficiency, and

accuracy. The system uses a first-order and second-

order analysis to assess potentially dangerous behavior

in applications. First-order analysis is mainly designed

to quickly evaluate untrusted apps for high and

medium risk behaviors. High-risk behaviors exploit

the kernel for vulnerabilities. This includes any apps

that try to perform privilege escalation. Medium level

exploits are classified as application that attempts to

charge user money surreptitiously, upload sensitive

data, or send SMS messages. Second-order analysis

consisted of searching for encrypted native code in

application and unsafe bytecode loading. Results for

first-order analysis shows that out of 9877 applications

that contained native code, 24 was found to have

embedded rootkits ranging from 6 different malware

family. Medium level risk results indicate that 2374

applications exhibit SMS sending behaviors in the

background. Second-order results indicate that 315

samples were found to have encrypted native code

execution causing malware installation. Furthermore,

184 unsafe dalvik code loading applications were

found. In total, out of 118,318 applications from the

Android markets analyzed, 718 malware samples from

29 different families were found.

Crussell, et. al. [14] proposed AnDarwin, a

scalable framework that analyzes Android

applications for plagiarism. Specifically, semantic

information was used in order to detect repackaged

applications. Results indicate that out of 265,359

applications, AnDarwin was able to identify 36,106

repackaged or rebranded applications. Furthermore,

88 new variants of malware were found.

While there has been substantial work conducted

examining the detection of malicious code from static

and dynamic perspectives, there is minimal

substantive research that specifically investigates the

effectiveness of these solutions in a re-packaged zero-

day app that already contains excessive permissions.

3. Methodology

To support the hypothesis proposed in the

introduction, the overall research was separated into

two high-level stages. The first stage utilizes an initial

iteration of a design science methodology as defined

by Peffers, et. al, [28] to develop and implement the

malicious code into an application. Any over-

privileged application could have been chosen for this

experiment. As a matter of convenience, excessive

permission practice, large user base, and application

6183

size, Snapchat was chosen as the target application.

The second stage of this research utilizes the

modifications in the first part to conduct a controlled

experiment as defined by Sadish, et. al. [30]. The high-

level problem statement examines the effectiveness of

commercial and open source tools at detecting

malicious code that has been injected and repackaged

in a legitimate application.

3.1 Malicious Code

The first step in the design and development stage

investigated what could be achieved with existing

Snapchat permissions. Analysis of the

AndroidManifest.xml file reveals that Snapchat

requests 19 permissions from the user. The next step

ran the Quick Android Review Kit [9], a static

analyzer tool designed to look for security flaws and

vulnerabilities. The application found components that

were not protected by a permission. Specifically, the

following components in ‘com.snapchat.android.’

were identified as not being protected:

 AppInstallBroadcastReceiver;

 notification.GcmMessageReceiver;

 LandingPageActivity;

 deeplink.DeepLinkActivity

The malicious application we developed as a result

of the analysis is called AndroidTracker. It consists of

implanting a hidden service in the form of a botnet that

utilizes identified Snapchat permissions in order to

steal sensitive data. Furthermore, the application

utilizes a standard API to obtain sensitive data without

requiring root access. Remote commands are

communicated over WiFi, 3G, and/or 4G. It should be

noted that for the purposes of this experiment, the

malicious service was not obfuscated or packed when

injected.

Command and control is created based on Google

Cloud Messaging (GCM) by broadcasting messages to

the hidden service. One of the main reasons for this

choice is due to the amount of services and

applications that take advantage of GCM in order to

communicate notification and updates for products.

Snapchat is a prime example of this. GCM service is

embedded into the application easily by leveraging

Snapchat’s built-in GCM libraries. The GCM enables

the device to utilize common APIs and libraries that

normal applications would use in order to act as a

benign service. Additionally, GCM does not quickly

drain the battery of the device as normal sockets do.

The android devices selected for this experiment

are detailed in Table 1-Smartphone Attributes. The

devices were initialized in an attempt to remove

previous data interaction on the device. The

initialization process was repeated prior to the

execution of each experiment.

The following steps were conducted to initialize

the Android devices: First the device is turned off so

that it can be booted into recovery mode. Second, the

volume-down button is held down while holding the

power button in order to boot into advance startup.

Third, the volume-down button is used to scroll down

to recovery mode. The power button is used to select

this option. Fourth, the power button is held down

while pressing the volume up button once. The power

button is then released. Fifth, the wipe data/factory

reset option is selected similar to step three. The final

step is to reboot the system.

Table 1. Smart Mobile Device Attributes
Trait Asus

Nexus 4

Phone

Asus

Memo

Pad 7

Asus

Nexus 5

Tablet

LG Leon

H345

O.S. Android

KitKat

4.4

Android

Kitkat

4.4.2

Android

Lollipo

p 5.1

Android

Lollipop

5.0

Internal

Memory

16 GB 16 GB 16 GB 8GB

Memory

Card

Yes Yes Yes No

The device must then be configured to allow USB

debugging in order to use ADB to extract and install

applications. USB debugging is enabled by going to

the ‘Developer Options’ in the system menu of the

settings page.

3.2 Reverse Engineering & Injection Process

The AndroidTracker malware is coded as a service

intent. Our service intent has the ability to listen to

commands from an outside service in order to execute

commands. The commands include: 1) taking a

picture, 2) sending live GPS feed, 3) displaying

messages on the phone, and 4) sending notifications.

Figure 1 – Repackaging malware illustrates the attack

vector we implemented to modify the application.

Figure 1. Repackaging malware

6184

The injection process follows a structural

procedure. The specific steps implemented to inject

the code are as follows:

1. Initially, the latest Snapchat apk is pulled from the

phone using adb. The following command

identifies the exact location of the snapchat apk:

“adb shell pm list packages -f |grep snapchat”

2. Once the location of the apk was identified, the

apk was pulled using the following adb command:

“adb pull /data/app/com.snapchat.android-

1/base.apk”

3. Using apktool [7], we decompiled the current

version of Snapchat into smali byte code using the

following command:

 “apktool d Snapchat.apk”

4. In addition, the apktool was used to decompile our

malicious service to obtain the malicious payload.

The main purpose of this step is to obtain the

actual payload in smali format. Furthermore, the

main activity onCreate function can be utilized

and copied into Snapchat’s function to startup the

activity. This step helps the reverse engineering

process since the smali bytecode does not have to

be completely coded by hand.

5. The manifest file, extracted from the disassembly

of Snapchat with the apktool, was utilized in order

to identify the startup activity payload injection

site:

com.snapchat.android.LandingPageActivity.

Notice that this was one of the components that

was listed as vulnerable based on the static

analysis tool. The payload utilizes the main

startup event from the startup activity.

6. Next, the service intent and broadcast receivers

that the hidden service used was injected into the

AndroidManifest. The Google Cloud Messaging

system’s receivers and services were utilized

using the original Snapchat’s permission.

7. The smali code obtained from AndroidTracker

was copied and extracted into the Snapchat smali

folder.

8. The main service activity from AndroidTracker’s

onCreate function was copied and pasted into the

main activity of Snapchat’s onCreate function.

The function was altered to utilize Snapchat’s

class to correctly initialize the service without the

application crashing. The placement is visible in

Figure 3-Injection Code to Start AndroidTracker.

9. Snapchat is recompiled using the following

command: “apktool b Snapchat”

10. Java’s keytool was used to generate a signature

with the following command: “keytool -genkey -

v -keystore apk-key.keystore -alias apk-key -

keyalg RSA -keysize 2048 -validity 10000”

11. Java’s jarsigner was used to sign the generated

apk from step nine using the following command:

“jarsigner -verbose -sigalg SHA1withRSA -

digestalg SHA1 -keystore apk-key.keystore

'Snapchat.apk’ apk-key”

12. Finally, the apk was deployed onto the Android

device using the following command: “adb install

‘Snapchat.apk’ -r”

new-instance v0, Landroid/content/Intent;

const-class v1, Lexample/com/trackerservice/MyService;

invoke-direct {v0, p0, v1}, Landroid/content/Intent;->
<init>{Landroid/content/Context;Ljava/lang/Class;)

.local v0, “intent”:Landroid/content/Intent;

Invoke-virtual {p0, v0},
Lcom/example/com/trackerservice/TrackerService;->
startService(Landroid/content/Intent;)Landroid/content/ComponentName
;

Figure 3. Injection Code to Start
AndroidTracker

3.3 Controlled Experiments

With the growth of malware, an influx of anti-virus

solution can now be downloaded from the Android

Play Store. For this test, we chose a sample of the top

rated anti-virus apps by user from the store.

Furthermore, we evaluated popular anti-virus

solutions that currently have over one million

downloads. Based on these two criteria, we chose a list

of 12 anti-virus apps for our experiment. Furthermore,

case one studies anti-virus engines that are publicly

available online. Anti-virus engines are classified as

any scalable online detection engine utilizing multiple

suites of security tools.

Research tools were chosen with a web-based

interface from a list of scanners acquired from

research projects or papers. For online tools, we chose

those that had at least one of these criteria: 1) static

analysis, 2) dynamic analysis, or 3) combination of

static and dynamic analysis. Tools that are limited in

size are listed as well. For instance, Andrubis only

allows for scanning files under 8 MB. Based on the

tools selected, two experiments were conducted.

3.3.1 Experiment One. The first controlled

experiment utilizes a structured methodology to test

effectiveness of locally installed anti-virus and online

antivirus scanning engines. The following provides

overview for analysis of commercial anti-virus that

have been locally installed. First, the Android device

is initialized to the default states based on the steps in

the initialization process presented previously.

6185

Second, the commercial anti-virus is installed from the

Play Store. Third, the settings are configured to real

time monitoring where possible in the commercial

anti-virus software. Fourth, the repackaged snapchat is

installed with adb using the following command: “adb

install ‘Snapchat.apk’ -r”. The fifth step initiates a full

system scan. The sixth step initializes Snapchat to

ensure functionality of AndroidTracker. The final step

records the results and any warnings.

The online anti-virus engine suite follows a similar

methodology as the commercial anti-virus

applications. However, the online anti-virus engine

requires the user to upload the apk onto the server first.

The process then follows step six.

3.2.2 Experiment Two. The second controlled

experiment runs the repackaged application through

online scanner tools that are either static analyzer,

dynamic analyzer, or a combination of both. Risk

ranking scores are recorded based on the tool’s scoring

system. Thus, the risk ranking system can be either

numeric or descriptive. Furthermore, file size limits

are recorded to assess the scope of the scanner. Since

the modified version of Snapchat is 29 MB, if the

online engine cannot support the file size, then the tool

is deemed unsuccessful. Evidence of residual data is

marked successful if any sign of the hidden service

name is picked up from the results by manual analysis.

Repackage detection assesses whether or not the tool

was successfully able to identify a modified version of

Snapchat. Finally, the tool was deemed successful if it

was able to classify the malware.

4. Results and analysis

Injection of the repackaged app was successful in

all four different Android devices that were tested.

Each device was tested for functionality of Snapchat

and AndroidTracker to ensure successful code

injection. Snapchat was able to operate as normal on

all four devices. When the user started the modified

application, AndroidTracker was initialized in the

background as well. The background service

communicated with the central http command server

using Google Cloud Messaging in order to register

devices. In addition, the background service was

successful in storing the device data and information

in a remote SQL database. Querying of the commands

utilized GCM in order to send messages to the device.

Figure 4 displays the result of querying our Nexus 4

device for a live picture feed and GPS data. The live

picture feed accurately displayed the front camera

taking a screenshot of the desktop screen. The GPS

data was accurate in displaying the tablet current

location as well.

Furthermore, the hidden service was able to listen

to query commands including: message notification,

message toast, and turn off phone. This was conducted

to verify that the botnet was successfully built and

deployed using a common API to tests the

effectiveness of anti-viruses at differentiating between

benign and malicious API calls.

Figure 4. AndroidTracker http command

server

The installation and successful communication with

the HTTP remote server demonstrates that even

though common API calls and libraries were used, a

botnet was able to be created. Thus, signature based

algorithms have trouble determining if a function’s

signature is malicious or a false positive.

4.1 Experiment one

Results from experiment one indicate that current

anti-virus applications are not detecting the newly

repackaged malware. However, CM Security did give

a warning indicating that the application may be

leaking data. The data leakage warning was not

surprising as the Quick Android Review Tool pointed

out potential data leakage from components during the

development process. Our results show that all 12

popular anti-viruses did not properly detect our

sample. Table 1 - Anti-Virus Detection provides a

summary of the test results.

Similar results were displayed from the online apk

anti-virus scanners. No scanners were able to detect

the presence of malware in the modified Snapchat. It

6186

should be noted that each of the locally installed and

on-line anti-virus suites utilize a signature based

algorithm to check for malware. It is known that

signature based algorithms are prone to not being able

to affectively distinguish code variants [17]; the results

indicate that they also have problems detecting new

vulnerabilities in repackaged applications.

Table 1: Anti-Virus Detection

While there is no holistic or heuritstic checks for

malware, it is interesting that no warnings were

displayed for any online anti-virus engine. Table 2

summarizes the results for online engines.

Table 2. Online Anti-Virus Engines Detection

4.2 Experiment two

The results from the second controlled experiment

were more promising in terms of overall detection.

The online tools that use anti-virus engines did not

classify our sample as malware. However, tools that

use either static analysis, dynamic analysis, or a

combination of both did give high risk scores or alerts

that the application may be malicious, although no

engine declared our sample to be malware. The tools

did provide risk scores which appear to be based

primarily on use of sensitive API calls and

permissions. Scores range from numerical values to

descriptive ratings. Furthermore, one of the main

constraints with some of the static, dynamic, and

combinational analysis tools was the file intake size.

Since the repackaged Snapchat was 29MB, some of

the tools were not able to handle a file that large.

The second controlled experiment was subdivided

into two separate experiments. The first looked at

Static analysis and the second looked at tools that

utilize a combination of static and dynamic analysis.

Dynamic analysis by itself was not included due to

limited information given and file size constraint.

Some dynamic results showed recording of the

applications simply just opening and closing without

any data generated while others simply displayed IP

address and Geolocations. Thus, work towards a better

scalable, automated dynamic engine for malware

analysis is needed. Android Static analysis provided

the most useful information compared to dynamic

analysis. One of the problems with dynamic analysis

is being unable to trigger the correct event for data

analysis. Since AndroidTracker required Google Play

Store to be installed, dynamic analysis utilizing

sandbox environments were not able to activate the

malicious conditions.

4.2.1 Static Analysis. The fully functional static

analysis tools included AVC UnDroid, MobiSec

Eacus, and Visual Threat. AVC UnDroid had a file

size limit of 7 MB; thus, it was insufficient for

dedicating malware. Static analysis results displayed

the following types of features such as permission

listing, website access strings, geolocation of

networks that the application is talking too, sensitive

API calls display, component analysis, and

certification analysis MobiSec showed unique

features since it was able to give a risk ranking score

in combination with detecting that the apk was

repackaged. Visual Threat gave a risk score of 55 out

of 100 due to the permission usage and type of

services associated with the application. None of the

three static analysis engines were able to detect

malware in the repackaged Snapchat. Table 3

summarizes the engines that we used and the results.

Overall, static analysis did provide useful information

for reverse engineering the malware.

Table 3: Static Analysis Engines Summary

6187

4.2.2 Combinational analysis. Like static and

dynamic analysis, combinational analysis faced issues

with file size limit as well. Andrubis and APK

Analyzer were not tested due to their 8 MB and 20 MB

limit respectively. SandDroid was able to display a

risk ranking score of 100. SandDroid defines 1)

connecting to the internet, 2) executing shell code, 3)

having unused permission, 4) getting GPS info, 5)

opening the camera, 6) recording audio, 7) getting

unique device id and IMEI, and 8) executing internal

requests as all risky behaviors [5]. The normal

application that we piggybacked off of uses all of these

permissions and behaviors non-maliciously and is

flagged as risky: thus, SandDroid also considered our

repackaged version risky. The dynamic analysis

portion simply displays a gif of the application starting

up and closing. No further details were provided for

dynamic analysis.
NVISO ApkScan file size limited was unlisted, but

it was able to successfully scan the repackaged

Snapchat. Results show that the application only

shows a medium level of risk since it marked the

application as suspicious out of the three options: no

malicious behavior, suspicious behavior, and

confirmed malicious. Dynamic analysis was

unsuccessful at providing any useful information.

Combinational analysis provided as much

information as static analysis. The dynamic analysis

did not provide useful information since no malicious

behaviors were triggered. In addition, none of the

engines were able to detect malware in the repackaged

Snapchat. Table 4 provides a summary of the results.

Table 4. Combination of Static and Dynamic
Analysis Engines Summary

4.3 Residual data analysis

The results for case three indicates that static

analyzers can trace and detect the actual service

registration and sensitive API calls. Figure 5 shows an

example of a static analysis tool indicating sensitive

API calls made by our malware sample with the threat

level associated with the call. Furthermore, the static

analysis tool was able to determine services started by

the application, including our hidden service.

SandDroid, specifically, was able to link permission

requests with API calls in order to produce threat level

evaluations. Furthermore, SandDroid was able to

display the receivers, services and remote server

address from AndroidTracker. NVISO ApkScan was

able to provide the same information as SandDroid,

but it was not able to provide the API call mapping that

SandDroid provided. Visual threat was only able to

provide residual data for services and remote server

address. NVISO ApkScan’s main advantages lies in its

ability to provide adb logcat dump from the dynamic

analysis run. However, no residual data was found in

the logcat file. The remaining static and dynamic

analysis tools were not able to provide any residual

data in their results.

Dynamic analysis did not produce actionable

results from any of the tools we tested. More than

likely, this was because conditions were not triggered

at runtime that executed maliciously inserted code.

Most sophisticated malware will trigger only when

correct timing conditions are met in order to avoid

detection.

While residual data are useful, they are very time

consuming to manually find. The experiments rely on

the fact that the services and receivers’ names were

known prior to injection. Thus, it was easy to manually

analyze the results to find the residual data.

Figure 5. Static Analysis Trace of

Repackaged Malware

However, more sophisticated malware can blend

its name with the application into which it is injecting.

Additionally, obfuscation and packing of the Android

application by using the Dex class loader leads to

perplexing strings and function names. Thus, residual

data becomes increasingly hard to find. Table 5

provides a summary of the residual data that was

obtained in the experiment.

6188

Table 5: Residual Data Obtained

5. Conclusions and future work

The popularity of mobile devices and the Android

operating system coupled with the continued

integration of these devices into all aspects of society

is generating an environment that is attractive to

attackers. For the purposes of this research, the

Snapchat application was chosen for modification due

to excessive use of permissions and services along

with its popularity.

A repackaged malicious Snapchat was produced in

order to stimulate sophisticated zero-day malware.

Using a controlled experiment, we assessed the

effectiveness of current commercial anti-virus

products for Android against a repackaged application

that uses piggybacked API permissions. In addition,

static analysis, dynamic analysis, and combination of

static and dynamic analysis tool analysis were

assessed in their detection ability on zero-day

repackaged malware.

Detecting new repackaged zero-day malware

remains a hard problem in today’s environment.

Security, to a large extent, relies on the detection

abilities provided by markets to monitor published

apps. The initial investigation indicates that

commercial anti-virus software obtained from Google

Play Store may not provide additional protection for

such new threats as our contrived malware example.

In addition, online detection suites were not able to

detect the malware in the repackaged Snapchat.

Static analysis, dynamic analysis, and combination

of static and dynamic analysis engines were able to

provide better results and warnings for end-users.

SandDroid, NVISO ApkScan, and Visual Threat were

able to provide residual data that indicated that part or

all of our hidden service was initialized. Furthermore,

MobiSec Eacus was able to indicate that the apk was

repackaged. However, many of the static and dynamic

analysis engines were unable to provide any result due

to its file size limit. Thus, larger, popular applications

are not able to be processed through their engines for

results.

The initial research results indicate that the static,

dynamic, or combination analysis solutions used in

this experiment do not detect malware in repackaged

applications. They also indicate that analysis tools

used in this experiment provided minimal to no

indication of malicious code activity. These results

support the hypothesis that commercial and open

source tools will not detect a repackaged application

with excessive permissions that contain malicious

code. They also indicate that there are opportunities

for developing improvements in commercial anti-

virus, static, and dynamic analysis tools in order to

provide better support for sophisticated zero-day

malware.

While the scope of this research focuses on the

identification of a reverse engineering methodology

that utilized dynamic and static analysis tools in

conjunction with zero day malware. Hence, future

research will focus on expanding the implementation

of the methodology to include injection non-zero day

malware into popular applications. This research will

also investigate the performance of market antivirus

and analysis solutions to determine practical malware

recognition. In addition, future research will

investigate effective obfuscation techniques along

with how these techniques perform when analyzed

with real-world detection tools. This effort will also

examine the development of effective algorithms that

detect obfuscated malware. A related stream of

research will investigate malware that utilizes the

cloud as a propagation mechanism along with

effective and efficient mitigation strategies.

6. References

[1] Mobile Security: Why App Stores Don’t Keep Users

Safe, http://www.darkreading.com/vulnerabilities---

threats/mobile-security-why-app-stores-dont-keep-users-

safe/a/d-id/1324829, accessed 05/23/, 2016.

[2] Sneaky Android Malware Makes Its Way on the Google

Play Store, Again, http://news.softpedia.com/news/sneaky-

malware-makes-its-way-on-the-google-play-store-again-

503691.shtml, accessed 05/23/, 2016.

[3] Phishing Apps Posing as Popular Payment Services

Infiltrate Google Play,

http://www.pcworld.com/article/3063474/security/phishing

-apps-posing-as-popular-payment-services-infiltrate-

google-play.html, accessed 05/23, 2016.

[4] Press Release: Gartner Says Worldwide Smartphone

Sales Grew 9.7 Percent in Fourth Quarter of 2015,

http://www.gartner.com/newsroom/, accessed 05/19, 2016.

[5] Sanddroid - an Automatic Android Application Analysis

System, http://sanddroid.xjtu.edu.cn

6189

http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.gartner.com/newsroom/
http://sanddroid.xjtu.edu.cn/

[6] Global Market Share Held by the Leading Smartphone

Operating Systems in Sales to End Users from 1st Quarter

2009 to 1st Quarter 2016,

http://www.statista.com/statistics/266136/global-market-

share-held-by-smartphone-operating-systems/, accessed

05/23, 2016.

[7] Apktool, http://ibotpeaches.github.io/Apktool/

[8] Keep the Iot in Check with Penetration Testing,

http://www.iotevolutionworld.com/iot/articles/421263-

keep-iot-check-with-penetration-testing.htm, accessed

05/19, 2016.

[9] Quick Android Review Kit (Qark),

https://github.com/linkedin/qark

[10] Berman, K., W. B. Glisson, and L. M. Glisson,

"Investigating the Impact of Global Positioning System

(Gps) Evidence in Court Cases", Hawaii International

Conference on System Sciences (HICSS-48), 2015

[11] Press Release: Gartner Says 6.4 Billion Connected

"Things" Will Be in Use in 2016, up 30 Percent from 2015,

http://www.gartner.com/newsroom/, accessed 05/19, 2016.

[12] Feldman, S., D. Stadther, and B. Wang, "Manilyzer:

Automated Android Malware Detection through Manifest

Analysis", IEEE, 2014, pp. 767-772.

[13] Sanz, B., I. Santos, X. Ugarte-Pedrero, C. Laorden, J.

Nieves, and P. G. Bringas, "Anomaly Detection Using String

Analysis for Android Malware Detection", Springer, 2014,

pp. 469-478.

[14] Crussell, J., C. Gibler, and H. Chen, "Andarwin:

Scalable Detection of Semantically Similar Android

Applications": Computer Security–Esorics 2013, Springer,

2013, pp. 182-199.

[15] Press Release: Gartner Says Mobile App Stores Will

See Annual Downloads Reach 102 Billion in 2013,

http://www.gartner.com/newsroom/, accessed 05/19, 2016.

[16] Glisson, W. B., and T. Storer, "Investigating

Information Security Risks of Mobile Device Use within

Organizations ", Americas Conference on Information

Systems (AMCIS), 2013

[17] Kamarudin, I. E., S. a. M. Sharif, and T. Herawan, "On

Analysis and Effectiveness of Signature Based in Detecting

Metamorphic Virus", International Journal of Security and

Its Applications, 7(4), 2013, pp. 375-384.

[18] Mcmillan, J., W. B. Glisson, and M. Bromby,

"Investigating the Increase in Mobile Phone Evidence in

Criminal Activities", Hawaii International Conference on

System Sciences (HICSS-46), 2013

[19] Min, L. X., and Q. H. Cao, "Runtime-Based Behavior

Dynamic Analysis System for Android Malware Detection",

Trans Tech Publ, 2013, pp. 2220-2225.

[20] Reina, A., A. Fattori, and L. Cavallaro, "A System Call-

Centric Analysis and Stimulation Technique to

Automatically Reconstruct Android Malware Behaviors",

EuroSec, April, 2013,

[21] Grace, M., Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,

"Riskranker: Scalable and Accurate Zero-Day Android

Malware Detection", ACM, 2012, pp. 281-294.

[22] Mahmood, R., N. Esfahani, T. Kacem, N. Mirzaei, S.

Malek, and A. Stavrou, "A Whitebox Approach for

Automated Security Testing of Android Applications on the

Cloud", IEEE, 2012, pp. 22-28.

[23] Yan, L. K., and H. Yin, "Droidscope: Seamlessly

Reconstructing the Os and Dalvik Semantic Views for

Dynamic Android Malware Analysis", 2012, pp. 569-584.

[24] Zhou, Y., and X. Jiang, "Dissecting Android Malware:

Characterization and Evolution", IEEE, 2012, pp. 95-109.

[25] Burguera, I., U. Zurutuza, and S. Nadjm-Tehrani,

"Crowdroid: Behavior-Based Malware Detection System for

Android", ACM, 2011, pp. 15-26.

[26] Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wagner,

"Android Permissions Demystified", ACM, 2011, pp. 627-

638.

[27] Glisson, W. B., T. Storer, G. Mayall, I. Moug, and G.

Grispos, "Electronic Retention: What Does Your Mobile

Phone Reveal About You?", International Journal of

Information Security, 10(6), 2011, pp. 337-349.

[28] Peffers, K., T. Tuunanen, M. Rothenberger, and S.

Chatterjee, "A Design Science Research Methodology for

Information Systems Research", J. Manage. Inf. Syst., 24(3),

2007, pp. 45-77.

[29] Bellard, F., "Qemu, a Fast and Portable Dynamic

Translator", 2005, pp. 41-46.

[30] Shadish, W. R., T. D. Cook, and D. T. Campbell,

Experimental and Quasi-Experimental Designs for

Generalized Causal Inference, Wadsworth Publishing,

2001.

6190

http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://ibotpeaches.github.io/Apktool/
http://www.iotevolutionworld.com/iot/articles/421263-keep-iot-check-with-penetration-testing.htm
http://www.iotevolutionworld.com/iot/articles/421263-keep-iot-check-with-penetration-testing.htm
https://github.com/linkedin/qark
http://www.gartner.com/newsroom/
http://www.gartner.com/newsroom/

