
Comprehensive Analysis of Innovative
Cross-Platform App Development Frameworks

Tim A. Majchrzak
University of Agder, Kristiansand, Norway

Email: timam@uia.no

Andreas Biørn-Hansen
Westerdals, Oslo, Norway

Email: andreasb.nor@gmail.com

Tor-Morten Grønli
Westerdals, Oslo, Norway

Email: tmg@westerdals.no

Abstract

Mobile apps are increasingly realized by using a cross-
platform development framework. Using such frameworks,
code is written once but the app can be deployed to multiple
platforms. Despite progress in research on cross-platform
techniques, results (i.e. apps) are not always satisfactory.
They are subject to tedious tailoring and the development
effort tends to be notable. In these cases, either pure
web apps (realized through web browsers) or native apps
(realized for each platform separately) are chosen. Recent
activities have led to new approaches. In this paper, we have
a closer look at three of these, namely React Native, the Ionic
Framework, and Fuse. We present a comprehensive analysis
of the three approaches. Our work is based on a real-world
use case, which allows us to provide generalizable advice.
Our findings suggest that there is no clear winner; the
frameworks incorporate notable ideas and general progress
in the field can be asserted.

Index Terms

Mobile, App, Mobile App, Cross-Platform, Mobile
Frameworks, React Native, Ionic, Fuse, Evaluation

1. Introduction

The market for mobile platforms is mainly divided
between Google’s Android and Apple’s iOS [1]. These
two remain incompatible (cf. e.g. [2]), both in terms of
user mobility between device vendors and of apps. When
developing apps that should run on Android and iOS – and
possible on further platforms such as Windows Phone –
there are three choices [3]: First, a pure web app based
on HTML5, CSS and JavaScript can be used. Second,
native apps can be developed, commonly multiplying the
effort by the number of targeted platforms. Third, cross-
platform development frameworks can be employed: An app
is developed once but deployed to multiple platforms [4].

There is a variety of options for cross-platform
development. Frameworks follow different paradigms [4][3]

and there are many to choose from (see Section 2.1).
However, only few approaches have found widespread
adoption. Most notably, the Web-technology based
PhoneGap is used. While results are appealing in general
[4][5], approaches such as PhoneGap arguably are not the
cure to cross-platform problems. Approaches that originate
in the scientific community and are theoretically sound have
provided manifold insights (cf. e.g. [6]). They typically are
not easily adopted by industry, though (cf. [7][8]). Without
question, more research is needed [7] and the field will
benefit from work on further approaches.

To deepen the understanding of state-of-the-art cross-
platform development and to contribute to the knowledge
on existing approaches, we have assessed three frameworks.
React Native [9], Ionic Framework [10], and Fuse [11]
are rather new and have not undergone extensive study.
While practitioners and hobbyists discuss these frameworks
actively, virtually no scientific papers on them or their
underlying ideas exist to the best of our knowledge. With this
paper, we set out to close this gap. In particular, we strive to
give business-oriented advice by assessing the frameworks
experimentally with a real-world scenario focusing on User
Experience (UX) [12]. While analyses of other cross-
platform frameworks are not scarce, few papers follow
a practice-oriented assessment and even fewer analyze
next generation frameworks. These three frameworks are
particularly interesting for study since they mark a new step
of approaches that also introduces paradigmatic shifts. While
our approach is design-oriented, we have combined it with
an informal survey to enrich our findings.

This paper makes several contributions. First, it provides
an assessment of three innovative cross-platform frameworks
that have not yet been extensively studied. Second, it
introduces work on a prototype app, which should prove
useful for evaluation beyond our work. Third, it generalizes
findings and summarizes advice. The remainder is structured
as follows. We introduce the background of our work in
Section 2. In Section 3 we describe the prototype that is used
for the evaluation of frameworks in Section 4 along with
implementation details. We discuss our findings in Section 5
before drawing a conclusion in Section 6.

6162

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41909
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Background

In the following, we describe the background of this paper.
Starting with related work, we move on to our research
method and the choice of frameworks.

2.1. Related Work

A myriad of papers and also textbooks cover topics of
app development. Cross-platform development is addressed
by at least some of these, although not necessarily as the
main topic. To shed light on related literature, we take a
look on such work in the following that compares several
cross-platform app development frameworks. We do not
include papers here that discuss techniques and technology
for building web apps.

Web technology provides one means to develop apps
that span platforms (cf. [13][14]); however, developing
web apps can be seen as an alternative to using a cross-
platform framework [15] and web apps can be used as
a benchmark for assessment [4]. Likewise, we do not
include papers here that tackle native app development
for more than one platform. Native apps are also useful
for benchmarking cross-platform approaches, particularly
concerning their look & feel and their performance.

An overview of papers that have compared cross-platform
development framework is given in Table 1. Quite notable
is the first peak in 2012 and 2013. After proposals to
understand the proliferation of cross-platform development
frameworks had been made, several teams of authors set
out to describe the field as a whole. That efforts were not
sustained in 2014 is unfortunate, even though publications
from 2015 show that the topic did not lose relevance.

Besides comparison papers, several others works can be
seen as preconditions to our evaluation, including such on
the challenges of app development in general (e.g. [16]).
Where applicable, works directly related to aspects of our
assessment are cited in the remainder of this paper.

It is also notable that specialized papers have emerged.
An example is a particular focus on the energy consumption
of apps created with cross-platform development
frameworks [17]. Moreover, general assessments of
the various platforms [18] need to be taken into account. In
addition, Huy and van Thanh [19] have proposed criteria
for evaluation of apps. They do not provide an actual
assessment but rather propose “how to do it”. Their idea
is to take different viewpoints, namely that of developers,
users, and service respectively content providers.

2.2. Research Method

The choice of method is not in the focus of this article
due to its technical nature. We briefly highlight our approach

Paper Year Evaluated
Frameworks

Particularities

[20] 2015 WebWorks, PhoneGap,
Titanium; native
Android and iOS for
comparison

Extensive work including a
performance evaluation and
GUI considerations

[21] 2015 AngularJS, jQuery
Mobile, HTML5/JS,
RhoMobile, PhoneGap,
Sencha Touch

Criteria definition and qualitative
comparison

[22] 2015 PhoneGap, Smartface
App Studio Titanium,
Xamarin

Rather short paper; does not cite
prior work on the topic

[17] 2015 PhoneGap, Titanium Special focus on energy
consumption

[23] 2014 Intel XDK, PhoneGap,
Titanium

Evaluation by two independent
teams; focus on User Experience

[12] 2014 jQuery Mobile,
MoSync, PhoneGap,
Titanium

Focus on animations

[24] 2013 (PhoneGap, Titanium) The paper has a more
general focus; proposing
much fundamental work

[25] 2013 PhoneGap, Sencha
Touch, Titanium

Assessment criteria; apps
developed for performance
evaluation

[26] 2013 PhoneGap (and Sencha
Touch), Rhodes,
Titanium

Comparison based on a sample
application

[27], [4] 2012 PhoneGap, Titanium;
Webapps and native
apps for comparison

Proposing criteria for evaluation;
widely cited paper

[28] 2012 DragonRad, MoSync,
PhoneGap, Rhodes

One of the first comprehensive
studies

[29] 2012 (none) Theoretical assessment of cross-
platform possibilities in general

Table 1. Cross-Platform App Framework Comparisons

nonetheless to provide a better understanding and underline
the rigor of our research.

Design-Science Research (DSR) [30], a methodology
aided by artefactual design and development, was adopted. It
helps to combine the information systems research focus on
the topic with an experimental approach typical for computer
science. We deem this a reasonable compromise between
entirely technical work and a purely empirical assessment.

We conducted a short survey to enhance the backbone and
decision basis of our experimental work. This online survey,
informed by [31], was used to gather data on framework
popularity, issues related to cross-platform development, and
to identify key decision points from practitioners and the
industry. A total of ten questions were asked and they
were all scored using a five-point Likert scale. After first
running a pilot test on the questionnaire, the finished version
was distributed and gained 101 responses. These responses
helped form the initial stage of the requirements analysis
and the first round of evaluation.

Three technical instantiations were developed iteratively
and incrementally. For each iteration the evaluation results
where fed back into a new planning, development and
evaluation loop. The initial set of requirements were
informed by both industry needs and through the literature
review, thereby considering both academic and industry
challenges. In particularly, we have been working with an
industry partner who provided us with a real-world case.

6163

The results gained from evaluation were fed back to
artefact development and given to the stakeholder groups,
closing the loop of information to industry and academia.

2.3. Choice of Frameworks

To ensure that the comparison and evaluation of the
frameworks were as objective as possible, only frameworks
leveraging JavaScript as their main programming language
were chosen. Our study thereby is deliberately different to
some other works that explicitly compared such approaches
that were paradigmatically different. Arguably, this has been
done quite extensively (see Section 2.1) and provided rather
general insights. For industrial application, typically some
if not all but one paradigm is ruled out due to a host
of preconditions. With the emergence of new frameworks,
technology choice is not easy. Due to the possibility of
underlying differences in frameworks using other languages,
those using anything but JavaScript were excluded.

Three frameworks for cross-platform development were
chosen due to their novelty, recentness, and (perceived)
developer interest. Identified academic research on the
topic mainly consisted of prototype development using
frameworks such as jQuery Mobile, Appcelerator Titanium
and PhoneGap. In an effort to push for the inclusion of new
technologies, the choice of frameworks was partially based
on

1) the literature search and review process,
2) a non-scientific – industry-view driven – analysis of

the market through following developer hype and
community contributions, and

3) partially on a survey conducted targeting mainly
mobile developers (as explained in Section 2.2).

The initial analysis was conducted by following
the JavaScript and cross-platform mobile developer
communities. This, together with the literature review, was
the foundation for the questionnaire survey conducted to
gain additional and up-to-date insights from active mobile
developers. The survey questions were formed based on
existing literature and identified patterns in the practitioner
communities.

In conclusion, React Native 0.22 [9], the Ionic
Framework 2.0.0-beta.3 [10], and Fuse 0.11.1 [11] were
chosen for assessment.

3. Prototype Design and Implementation

In the following, the implementation of an evaluation
prototype is described. The prototype instantiates an industry
case for an app. For ease of reading, when naming
the frameworks, we use bold font in this and in the
following section; this is not repeated if it is named again
within the same paragraph unless weighted against another

Figure 1. Proposed Design and Flow in Prototypes

framework there. Typewriter denotes libraries, functions,
and technical assets.

3.1. Design and Feature Requirements

The case application provided a basis upon which
we designed a proposal for the prototype. The proposal
contained some of the core aspects of the case app, such
as user navigation patterns and flow. This was in turn
used as the foundation throughout the implementation of
features and requirements. Figure 1 depicts the design and
application flow proposal. We give code examples were
appropriate.

A use-case diagram was developed, including a set of
core features from the case application (Figure 2). The use
case, being informed by literature review, industry survey
and real world use case from the case company highlights
the three important areas that features were related to:
UI element navigation, multimedia (Gallery and Camera),
CRUD manipulation (Contact list and phone book). These
elements will highlight ease or difficulty of use/access
across frameworks and there by test elements crucial in any
business application.

The desired outcome of the feature diagram was to have
requirements for evaluation of the comprehensiveness and
state of the chosen technical frameworks.

3.2. Implementation

The use-case diagram in figure 2 was the foundation
for the technical implementations. Using each of the three

6164

Figure 2. Functional Requirements

aforementioned frameworks (Section 2.3), three prototypes
were (separately) implemented for evaluation purposes.
Being based on a real-world case application, the features
were of a complexity to achieve relevance and applicability.
Implementation details are given in the following.

3.2.1. Side Menu and Navigation. The side menu and
navigation from the case application were closely coupled,
while still being separate technical entities. The side menu
was the main navigation pattern, accessible both through a
swipe-to-right gesture and a hamburger icon button.

In React Native, navigation was solved using a third-
party library called react-native-router-flux [32].
The library allowed for easy implementation of navigation,
defining all routes (pages and views) inside a router,
and then programmatically calling the router with a
defined route to conduct a navigation. The library exposed
a simple API for integration of side menu together
with react-native-drawer [33], another third-party
community library.

In Ionic Framework, the Ionic 2 beta followed a page
stack-based approach to navigation, much like an actual
native app ([34]). Views would be pushed and popped
instead of basing navigation on URLs, regardless of Ionic’s
WebView and Hybrid approach to cross-platform. The root
JavaScript file in the Ionic project declared the launch
view of the app by defining a component presenting the
view. Ionic had standardized built-in support for side menu
integration. An array held the different views the users could
navigate to from the side menu. The array was traversed in a
corresponding view file, generating a list of <button />
components navigating to the different views.

In Fuse due to lack of proper navigation examples
and documentation of the feature, the implementation
may not be representative of the actual navigation

feature. Fuse exposed three different navigation
types, LinearNavigation, DirectNavigation
and HierarchicalNavigation [34]. Upon
implementation, both LinearNavigation and
HierarchicalNavigation had unexpected behavior, where
at one point the navigation depended on the order of
<Page /> components in the code base. This resulted
in behaviour where the Go Back button would navigate
to another Page instead of popping the navigation stack
and go to the previous page. The final implementation
used DirectNavigation which replaced the navigation stack
at each navigation, causing the Go Back functionality
to require a custom implementation. Additionally,
no transition animation would run while navigating.
Fuse had a component declared <EdgeNavigator
ux:Name="EdgeNavigator">, which wrapped
around the entire root main view, making the side
menu available from anywhere in the app. Using
the ux:Name="EdgeNavigator" identifier of the
navigator, components could be assigned to the left of
the view as expected. The regular swipe-to-reveal gesture
pattern did not work as expected while implementing the
menu, so a standard “hamburger” button in the navigation
bar was added to replace the gesture.

3.2.2. HTTP Requests and Network Communication.
Fetching remote data from RESTful API endpoints was at
the core of the case application. The endpoint used to fetch
data in the prototypes was a publicly exposed mocking API
with the sole purpose of aiding with prototyping. Regardless
of the structure of the data exposed, the method for fetching
data would be the same within the respective frameworks.

In both React Native and Fuse, the standard
implementation of data fetching over HTTP was based on
Chrome’s fetch method. A simple request using fetch
may have the following form:

1 fetch("http://demo0242870.mockable.io/ ←↩
employees")

In Ionic Framework, an HTTP module was provided by
the AngularJS framework, which Ionic built upon, to be used
when fetching remote data. The HTTP module was imported
and made available through Angular’s Dependency Injection
system:

1 this.http.get("http://demo0242870.mockable.io ←↩
/employees")

3.2.3. Developing User Interfaces. As React Native
embraced the interpreted paradigm, all user interfaces
generated and displayed in the app were actual native UI
components. There are no WebViews or HTML5 solutions.
User interfaces in React Native were declarative and
component-based by design, as was React.js by itself. The
React JSX syntax for view components was written inside of

6165

JavaScript classes, uniting view and functionality into one
file. Styling components was done in a CSS-like fashion
using JavaScript objects, with web-like Flexbox support
available. The React Native framework exposed different
UI components which were retrievable by import from the
react-native node.js module.

User interfaces in Ionic Framework were developed in
HTML and CSS with JavaScript for logic using Angular.js.
Logic and the view was separated into .js and .html
files, and linked together by a templateUrl property in
the JavaScript file. The different components provided by
Ionic for developing interfaces were in reality Angular.js’
directives, enabling non-standard HTML tags to be rendered
as native-looking interface components.

As Fuse embraces the interpreted paradigm, all user
interfaces generated and displayed in the app were actual
native UI components. There are no WebViews or HTML5
solutions, similar to React Native. User interfaces in
Fuse were powered by an X(A)ML-like syntax named UX
Markup [34], a proprietary markup language developed by
Fuse. When running on device, the markup was compiled
to native code and then native components were rendered
on the screen. JavaScript was executed in either the V8 or
JavaScriptCore engines depending on platform.

3.2.4. Using the Geolocation. For React Native, the
framework documentation explained [35] that the framework
followed the same implementation specification for the
Geolocation interface as a Webapp would use in the browser.
Without having to import anything, the navigator
interface was available from anywhere in the code base:

1 navigator.geolocation.getCurrentPosition(←↩
options, callback);

In Ionic Framework, an importable package for
accessing the Geolocation API was available through
the Cordova [36] abstraction library Ionic Native. It
exposed a simple API with a JavaScript promise to retrieve
the current location coordinates of the device:

1 Geolocation.getCurrentPosition();

Geolocation in Fuse involved importing the
GeoLocation module from the Fuse module library.
When called, the module returned the device location
coordinates through a JavaScript promise:

1 GeoLocation.getLocation();

3.2.5. Using the Camera. For React Native, a community-
made package named react-native-image-picker
[37] exposed a simple API abstraction to consume and work
with both the camera and the device photo gallery:

1 ImagePickerManager.launchCamera(options, ←↩
callback/promise);

For Ionic Framework, an importable package for
accessing the camera was available through the Cordova

abstraction library Ionic Native. It exposed a simple
API with a JavaScript promise to open a camera view
and return the file data after taking the picture. The
Camera.getPicture() method accepted an options
object as an argument, where options.mediaType
defined whether to set the camera to video or photo mode:

1 Camera.getPicture(options, callback/promise)

For Fuse, accessing the camera involved importing the
Camera module from the Fuse module library. The method
accepted an options argument. After successfully taking
a photo, the module returned the file through a JavaScript
promise:

1 Camera.takePicture(options, callback/promise)

3.2.6. Using the Image Gallery. For React
Native, a community-made package named
react-native-image-picker [37] exposed a
simple API abstraction to consume and work with both the
camera and the device photo gallery:

1 ImagePickerManager.launchImageLibrary(options ←↩
, callback/promise)

For Ionic Framework, an importable package for
accessing the image gallery was available through the
Cordova abstraction library Ionic Native. It exposed a
simple API with a JavaScript promise to retrieve the URI of
the selected image(s):

1 ImagePicker.getPictures(callback/promise)

For Fuse, at the time of prototype development, no
component for accessing the image gallery was identified.

3.2.7. Using the Contact List. For React
Native, a community-made package named
react-native-contacts [38] had a partial cross-
platform implementation for working with the device
contact list. An addContact() method was available
matching the requirement specification of the case app:

1 Contacts.addContact({dataStructure})

In Ionic Framework, due to problems with the versioning
of the installed Cordova Command Line Interface
tool in combination with the Ionic-Native library, the
contacts feature was not fully implemented.

For Fuse, at the time of development, only a skeleton
for accessing the contacts list was available through
a community-made package named fuse-contacts
available through GitHub [39]. No API for creating and
adding new contacts was available, thus eliminating the
reason to implement the package for the prototype according
to the use case diagram in Figure 2.

3.2.8. Using Call, Email and SMS. For React
Native, leveraging the community-made package
react-native-communications [40], a set of

6166

exposed methods made use of communication protocols
accessible from the React Native app. An example is given
in Listing 1.

Listing 1. Implementation of communication protocols
in React Native

1 Communications.phonecall(phoneNumber, true)
2 Communications.text(phoneNumber)
3 Communications.email(email, ...null)

For Ionic Framework, implementation of phone call,
email, and SMS depended on WebView URI schemes.
The schemes were implemented into the WebView to
communicate with the respective device communication
APIs [41]. An example is given in Listing 2.

Listing 2. Implementation of communication protocols
in Ionic

1 call() {
2 window.location = ‘tel:${this.person. ←↩

phoneNumber}‘;
3 }
4

5 mail() {
6 window.location = ‘mailto:${this.person. ←↩

email}‘;
7 }
8

9 sms() {
10 window.location = ‘sms:${this.person. ←↩

phoneNumber}‘;
11 }

For Fuse, at the time of development, the only API for
communication was phone.call(number) [34]. Thus,
it lacked methods for email and sending short messages.

3.2.9. Summary of Design and Implementation.
Table 2 displays a high-level summary of the design and
implementation. The different subsections are summarized
into a simple table for easy comparison between frameworks.
The table allows comparing the features of the frameworks.

React Native Ionic Fuse
Paradigm Interpreted Hybrid Interpreted
Framework Version 0.22 2.0.0-beta.3 0.11.1
JavaScript Version ES2015 ES2015 ES5
View Engine JSX Angular.js UX Markup
Camera Access Yes Yes Yes
GPS Access Yes Yes Yes
Image Gallery Access Yes Yes No
Contacts Access Yes Yes (Untested) No
Navigation Implementation Intermediate Simple Complex
Sidebar/Drawer Impl. Simple Simple Simple
Remote Data Fetching Simple Simple Simple
Debugging Simple Simple Simple
Framework Setup Simple Simple Simple

Table 2. Summary of Information About the
Frameworks

4. Evaluation

In the following section, we present the evaluation of the
frameworks. This is done step-wise in subsections, reflecting
on a variety of aspects of framework utilization.

4.1. Information on Framework & Developer

React Native is developed and maintained by Facebook,
and was launched with iOS-only support in January 2015
[42]; Android support was released later that year [43]. React
Native, leveraging the view-rendering library React.js, is
built and used activly in production by Facebook, Facebook
Ads Manager, Facebook Groups, and Instagram to name a
few [44].

Ionic Framework is an extensive open-source hybrid
app development suite maintained by Drifty Co. The
app development framework is only one piece of their
ecosystem; in addition to the framework, they also provide
services such as prototyping tools, analytical tools, and a
push notification service through their platform Ionic.io.

Fuse is developed by Fusetools, a company based in
Norway and Palo Alto, USA. The framework belongs
to the interpreted paradigm, meaning user interfaces are
actual native components. Apps are written mainly in
JavaScript and by using their XML-like markup language,
UX Markup for layout, design and animations [34]. Fuse
also proposes a new programming language called Uno, a
C# dialect working as a compilable abstraction over native
code [34]. In addition to Uno, Fuse includes a concept called
Foreign Code where Java and Objective-C can be written
directly into Uno code and executed on the targeted mobile
platforms.

4.2. IDEs and Text Editors

While React Native has no official IDE or text editor,
Facebook previously released Nuclide, an extension to the
Atom editor.

Ionic Framework does not enforce any IDEs or text
editors. No official recommendations of such could be
identified, either.

Fuse has no official IDEs or text editors. However, it
provides plug-ins and add-ons to existing text editors such
as Sublime and Atom.

4.3. Developer Experience

For React Native, possessing prior knowledge of React.js
was a clear productivity boost while developing in React
Native. As most of the basic knowledge from React.js could
be transferred to the React Native framework, any developer
starting out making apps should possess some degree of
knowledge of React by itself. An important feature was Live
Reload, made possible by how JavaScript was interpreted
in the JavaScriptCore (or V8 while debugging). When new
code was produced and saved in the text editor, React
Native would bundle the code and files together, and serve
it to the device. The latter only had to re-interpret the new
JavaScript and display the updated app. React Native made

6167

the developer experience encouraging, limiting time spent
by developers and enhancing the phase of rapid prototyping
in the development. The prototype was built during two full
work days.

As the Ionic Framework follows the WebView-based or
Hybrid paradigm, the developer experience was similar to
what one would expect in regular web development. The
main differences in terms of developer experience compared
to regular web development was the Ionic CLI, ready-
made interface components, and dependency on Cordova for
hardware and device API access. The ready-made interface
components available in Ionic’s component library made
development of standard-looking user interfaces a matter of
copy-paste of code. Their component library [45] provided
Ionic-specific HTML code necessary to create a wide range
of interfaces, from complex lists to segment controls, grids
and modals. Most of the prototype developed in Ionic got
its user interface from the library. Another time-saving
feature in Ionic was the --livereload flag available in
the CLI when running the project in development mode.
Whenever saving the project in the text editor or IDE, the
emulator or web browser window should refresh the app to
reflect the latest changes. This feature remained unstable
during implementation. Overall, the developer experience
using Ionic was encouraging. The prototype was finished
in approximately three 7-hour days of work. This included
installing the Ionic CLI, getting familiar with the Angular 2
framework, and searching for components.

For Fuse, accommodating developers in creating native
apps was advertised as a true goal. Increased developer
satisfaction through real-time device and emulator preview
of apps, OpenGL support, and facilitation of collaboration
between developers and designers were all focussed by
framework [34]. In terms of the development phase, the Live
Reload feature in Fuse allowed for quick iterations when
developing logic and interfaces. Not having to compile,
build and re-deploy the application on every change was a
time-saver, especially compared to native app development.
The live reload functionality was, however, unreliable
and occasionally slow. The prototype was developed
in approximately four 7-hour days, including installing
necessary software. Despite the lack of prior in-depth
framework knowledge, Fuse made the developer experience
encouraging.

4.4. Developing User Interfaces

The React Native framework is packed with components
out of the box. There are 31 components documented by
Facebook [46], some of which are platform-specific and
named <Component><Platform>. The rationale behind
this is the differences in implementation between Android
and iOS. React Native does not rely on WebViews for user
interfaces. Instead, the framework communicates through

native bridges with the device APIs, resulting in actual
native user interfaces. The result of this were 60 FPS (frames
per second) high-performing interfaces [47]. Writing JSX
syntax with predefined components would render native user
interface components to the screen.

In Ionic, being a WebView-based hybrid app framework,
user interfaces are developed in HTML, CSS and JavaScript.
Ionic’s additional CSS styling resulted in the user interfaces
becoming native-looking, in other words the prototype
app developed looked like a regular native app. The
framework delivered a comprehensive set of ready-made
components. Thus, complex interfaces could to some degree
be developed simply by copy-pasting example code from
the documentation. Logic was written in JavaScript using
Angular.js which enabled an MVC design pattern.

In Fuse, user experience and interface development are
core features. A custom XML-like language, UX Markup, is
provided by the framework, giving easy access to a range of
view components, event handlers, animation handlers, and
such. An ever-expanding Examples web page filled with
official examples and associated code was freely available
through their website [48].

4.5. Code Reusability

All the prototype apps had 100% shared code bases
for iOS and Android, with Ionic as the exception for
additionally supporting the Universal Windows Platform.
Code reusability is an important factor when choosing the
cross-platform approach over native development, where the
same app would require a separate code base for each
targeted mobile operating system – allowing for a more rapid
time-to-market. All tested frameworks provided excellent
opportunities for reuse. However, an important factor to
consider is maintenance over time as this must be evaluated
over a significantly longer period due to API evolution and
framework maturement.

4.6. Communicating with Device and Hardware
APIs

React Native uses bridges to expose native hardware
and device APIs to JavaScript. Such bridges were interpreted
by the JavaScript interpreter on the device, JavaScriptCore.
This allowed for native user interfaces and simple
asynchronous hardware communication.

As Ionic Framework is a hybrid-approach framework,
all the markup and logic was executed within a WebView.
The WebView was able to communicate with hardware and
device APIs through Cordova.

For Fuse, JavaScript is executed in JavaScriptCore on
iOS and V8 on Android, allowing JavaScript to be used for
writing logic on the client. Additionally, UX Markup-made
user interfaces are compiled to native code ([34]). Because

6168

the communication with hardware APIs was abstracted
through such bridges, the implementation of native features
in JavaScript is handled by callbacks or promises, making
the communication strategy simple to follow.

4.7. Community and Popularity

At the time of assessment, React Native was the 20th
most popular repository overall on GitHub, and the 9th
most popular within the JavaScript category. In Facebook’s
”A Year in Review” blog post from 13 April 2016, the
React Native team explained that ”In February 2016, for the
first time, more than 50 percent of the commits came from
external contributors” and ”With so many people from the
community contributing to React Native, we’ve seen as many
as 266 new pull requests per month (up to 10 pull requests
per day)” [49]. Examples of pull requests to the React
Native GitHub repository were documenting enhancements,
performance improvements, bridged native components, and
additional UI components.

The Ionic Framework is actively maintained. New
features are delivered and fixes are provided on a regular
basis [50]. According to Ionic.io, more than 2 200 000
mobile apps have been developed using the Ionic framework
[10] as of 06 May 2016. This number might be so high
due to including variants of apps; it demonstrates popularity
nonetheless. The official Ionic websites also features a job
listing [51] for external companies seeking Ionic developers.
On the community side, Ionic maintained an highly active
official forum board [52] boasting more than 105 000 users
as of 06 May 2016.

The Fuse community forum and Slack channel are
the predominant communication hubs for enthusiasts and
developers using the framework. Both channels are actively
used, mainly for support and development help. Due to the
then closed-source nature of the project, no GitHub statistics
were possible to present. This makes it impossible to assess
statistics regarding community involvement. A search for
Fusetools on GitHub returned 21 matching repositories
containing sample apps and community-made modules.
Searching for Fuse by itself returned more than 3 000
results, where no repositories were immediately identified
as relevant to the framework.

4.8. Development Operating System Support

Operating system support is heavily influenced by target
platform. Android apps can be developed on both Windows,
OS X and Linux. IOS apps require OS X due to Apple
restrictions. Furthermore, Windows Phone/Universal apps
require a Windows machine to deploy and run the respective
applications. A summary is given in Table 4.8.

All of the major mobile operating systems are supported,
but their implementations vary in feature completeness in

Framework Windows OS X Linux
React Native Yes Yes Yes
Ionic Framework Yes Yes Yes
Fuse Yes Yes No

Table 3. Supported Development Platforms

implementations of the different frameworks. This support
must constantly be monitored, as constantly features are
added and removed through the evolvement of the mobile
frameworks. A summary is given in Table 4.8.

Framework iOS Android Windows (UWP)
React Native Yes Yes Yes
Ionic Framework Yes Yes Yes
Fuse Yes Yes No

Table 4. Supported Mobile Platform

5. Discussion

To provide a generalization, we discuss the evaluation,
insights, and limitations gained from open questions.

The frameworks compared in this research were
fundamentally different in some ways (paradigm,
developer focus, or end-product focus). Where Ionic made
development of interfaces and app flow easy through their
component library, React Native left more architectural
choices to the developer. Both ended up being well-suited
for the prototype, with its views and interactive components.

While all the frameworks had good options and solutions
for creating interfaces, there were clear distinctions between
the approaches. While React Native mostly delivered un-
styled and ”not native-looking” interface components with
the option of styling the components to fit the app, Ionic
provided a massive library of ready-made and pre-styled
components making the development of standard native-
looking interfaces a breeze. Fuse mostly provided pre-styled
components as well, but limited compared to Ionic.

While employing additional features such as GPS,
contacts and camera access, the design and interface
implemented in the prototypes were mainly based on lists
and detail views, thus possibly making more hardcore UX
and animation frameworks like Fuse less suitable.

The importance of open source as a factor for decision
making should not be neglected as it may lead to technical
debt if not accounted for since one are using libraries
maintained by third parties. This is not uncommonly
seen as a factor for increasingly challenging maintenance,
increased costs and ultimately requiring rewrites of
hardest infected code bases. The amount of third-party
developed components and packages varied between the
frameworks. Consequently, the prototypes complied with the
requirements to a varying degree.

Maintenance and potential technical administration is also
increasingly made more complex by several releases and
new versions of the frameworks each year. The frameworks

6169

in the cross-platform app development landscape are
impacted by this by becoming a victim of limited
compatibility, deprecation of APIs, and demands of new
hardware to support additional features. All the frameworks
analyzed suffer from this, but it is easier to handle
for frameworks with large community user bases, rapid
maintenance cycles, and mature architecture.

Scientific work typically has limitations. These can either
be fundamental boundaries, or borders that could not yet be
crossed. Despite the increasing literature footprint of cross-
platform development, our paper still tackles a novel topic.
This makes it particularly bound to limitations.

First, our work is limited by the choice of assessed
frameworks. This choice is deliberate, as we attempt to
complement the existing literature. However, we can only
present a partial picture.

Second, the assessment is a snapshot due to the
rapid proliferation of the field. Several updates of the
frameworks were released in the meantime. This illustrates
the impossibility to provide work that includes the latest
developments while demanding rigor in assessments.

Third, our assessment focuses on technology. This allows
for a deep insight into working with the frameworks, as
e.g. illustrated by the code examples in Section 3. A
qualitative and possibly also a quantitative assessment of
the frameworks would need to be added. Admittedly, due
to the complexity of the matter no papers exist so far that
combine experimental, quantitative, and qualitative work and
are broad in scope. This is a current boundary of the field
as a whole. While these limitations are considerable, they
do not impede the value of the presented work. In fact,
our assessment is rigorous yet industry-relevant. Thus, the
limitations can be seen as the foundation of future work.

It was interesting that the issues identified in previous
literature were still very much relevant according to the
survey results. Developers seemed cautious about adoption
of cross-platform development tools mainly due to believed
performance hits and potential loss in terms of end-user
experience. Without rigorously testing apps developed using
different approaches and paradigms on end-users, those are
only speculations until future research has been conducted.

The main open questions still revolve around paradigm
and framework choice. While the field matures, future
research needs to keep on investigating for even more
developer-friendly frameworks that sustain performance and
user friendliness of apps, if not surpassing them.

Despite the expected high effort, research that takes
into account a higher number of existing frameworks
for comparison would be very valuable. As illustrated in
Section 2.1 such work is yet to be seen. Moreover, we deem
more research necessary that combines technical evaluations
(i.e. experimental work), and developer and user impressions
(i.e. qualitative work). Moreover, an extensive quantitative
study would make a main contribution to the field.

6. Conclusion

We have presented a study and discussed issues related
to success factors for cross-platform development. Our
work includes an in-depth assessment of three novel
cross-platform app development frameworks with industry-
anchored research goals. Based on this real world
industry case, our research started with an online survey
questionnaire, receiving over 100 responses. The survey
together with academic literature and discussions with the
case company formed the basis for the requirements and the
technical implementations. Findings from both prototypic
development and survey were discussed and elaborated upon
in the context of previous research and industry relevance.
The three instantiations produced are novel artifacts used to
compare the maturity and functionality of the frameworks.
Moreover, they provide insights for practitioners through
mapping survey findings to common issues identified in
cross-platform app development.

We confirmed user experience, technical implementation,
app performance, and testability to be the most common
issues related to cross-platform app development.
Furthermore, our combined knowledge from survey
and artefact development highlights concerns related to
user interface development (UI), remote data fetching,
navigation, and developer experience as major success
factors when comparing and selecting a cross-platform app
development framework.

There are still many problems to tackle, such as the human
side particularly in the form of end-user experience. Future
work will include a longitudinal research study to investigate
framework maturity, as well as an in-depth perspective on
user interface design and interaction.

Acknowledgements

This work is based on the (not published) Master thesis
of Andreas Biørn-Hansen, written at Westerdals Oslo ACT.
Findings have first been condensed before we extended and
revised the work. We would like to acknowledge our industry
partner Acando AS. We have been provided with ample
feedback that helped us to provide applied, relevant research
and in general improve the paper.

References

[1] V. Woods and R. van der Meulen, “Gartner says worldwide
smartphone sales grew 9.7 percent in fourth quarter of 2015,”
2016, http://www.gartner.com/newsroom/id/3215217.

[2] H. Heitkötter, H. Kuchen, and T. A. Majchrzak, “Extending
a model-driven cross-platform development approach for
business apps,” SCP, vol. 97, Part 1, pp. 31–36, 2015.

[3] T. A. Majchrzak, J. Ernsting, and H. Kuchen, “Achieving
business practicability of model-driven cross-platform apps,”
OJIS, vol. 2, no. 2, pp. 3–14, 2015.

6170

[4] H. Heitkötter, S. Hanschke, and T. A. Majchrzak,
“Evaluating cross-platform development approaches for
mobile applications,” in LNBIP. Springer, 2013, vol. 140,
pp. 120–138.

[5] J. Ohrt and V. Turau, “Cross-platform development tools for
smartphone applications,” Computer, vol. 45, no. 9, pp. 72–
79, 2012.

[6] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-
platform model-driven development of mobile applications
with MD2,” in Proc. SAC ’13. ACM, 2013, pp. 526–533.

[7] T. A. Majchrzak and J. Ernsting, “Reengineering an approach
to model-driven development of business apps,” in LNBIP,
vol. 232. Springer, 2015.

[8] J. C. Dageförde, T. Reischmann, T. A. Majchrzak, and
J. Ernsting, “Generating app product lines in a model-driven
cross-platform development approach,” in Proc. 49th HICSS.
IEEE Computer Society, 2016, pp. 5803–5812.

[9] “React Native,” 2016, http://nuclide.io/docs/platforms/react-
native/.

[10] “Ionic,” 2016, http://ionic.io/.
[11] “fuse,” 2016, https://github.com/fusetools/.
[12] M. Ciman, O. Gaggi, and N. Gonzo, “Cross-platform mobile

development: A study on apps with animations,” in Proc. 29th
Annual ACM SAC. ACM, 2014, pp. 757–759.

[13] A. Connors and B. Sullivan, “Mobile web
application best practices,” W3C, Tech. Rep., 2010,
http://www.w3.org/TR/mwabp/.

[14] H. Heitkötter, T. A. Majchrzak, B. Ruland, and T. Weber,
“Comparison of Mobile Web Frameworks,” in LNBIP, vol.
189. Springer, 2014, pp. 119–137.

[15] A. Charland and B. Leroux, “Mobile application
development: web vs. native,” Commun. ACM, vol. 54,
pp. 49–53, 2011.

[16] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real
challenges in mobile app development,” in IEEE ESEM, 2013,
pp. 15–24.

[17] M. Ciman and O. Gagg, “Measuring energy consumption of
cross-platform frameworks for mobile applications,” LNBIP,
vol. 226, pp. 331–346, 2015.

[18] T. M. Grønli, J. Hansen, G. Ghinea, and M. Younas, “Mobile
application platform heterogeneity: Android vs Windows
Phone vs iOS vs Firefox OS,” in 28th Int. Conf. on Advanced
Inf. Networking and Applications, 2014, pp. 635–641.

[19] N. P. Huy and D. vanThanh, “Evaluation of mobile app
paradigms,” in Proc. 10th MoMM. ACM, 2012, pp. 25–30.

[20] S. Dhillon and Q. H. Mahmoud, “An evaluation framework
for cross-platform mobile application development tools,”
Software – Practice and Experience, vol. 45, no. 10, pp.
1331–1357, 2015.

[21] A. Hudli, S. Hudli, and R. Hudli, “An evaluation framework
for selection of mobile app development platform,” in Proc.
3rd MobileDeLi, 2015.

[22] T. Volkan and c. Z. Erdoğan, “Comparison of popular Cross-
Platform mobile application development tools,” in 2. Ulusal
Yönetim Bilişim Sistemleri Kongresi (YBS2015), 2015.

[23] E. Angulo and X. Ferre, “A case study on cross-platform
development frameworks for mobile applications and ux,” in
Proc. XV Int. Conf. on HCI. ACM, 2014, pp. 27:1–27:8.

[24] S. Xanthopoulos and S. Xinogalos, “A comparative analysis
of cross-platform development approaches for mobile
applications,” in Proc. 6th BCI. ACM, 2013, pp. 213–220.

[25] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein,
“Survey, comparison and evaluation of cross platform mobile

application development tools,” in Proc. 9th IWCMC, 2013,
pp. 323–328.

[26] A. Sommer and S. Krusche, “Evaluation of cross-platform
frameworks for mobile applications,” LNI, vol. P-215, 2013.

[27] H. Heitkötter, S. Hanschke, and T. A. Majchrzak,
“Comparing Cross-platform Development Approaches for
Mobile Applications,” in Proc. 8th WEBIST. SciTePress,
2012, pp. 299–311.

[28] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison of cross-
platform mobile development tools,” in Proc. 16th Int. Conf.
Int. in Next Gen. Networks (ICIN), 2012, pp. 179–186.

[29] C. P. R. Raj and S. B. Tolety, “A study on approaches to
build cross-platform mobile applications and criteria to select
appropriate approach,” in INDICON, 2012, pp. 625–629.

[30] V. K. Vaishnavi and W. Kuechler, Design Science Research
Methods and Patterns, 2nd ed. CRC Press, 2015.

[31] E. Taylor-Powell, Wording for rating scales. University of
Wisconsin, 2008.

[32] “React Native Router,” 2016,
https://github.com/aksonov/react-native-router-flux.

[33] “React Native Drawer,” 2016, https://github.com/root-
two/react-native-drawer.

[34] “Learn fuse,” 2016, https://www.fusetools.com/learn/fuse.
[35] “React Native: Geolocation,” 2016,

https://facebook.github.io/react-native/docs/geolocation.html.
[36] “Apache Cordova,” 2016, https://cordova.apache.org/.
[37] “react-native-image-picker,” 2016,

https://github.com/marcshilling/react-native-image-picker.
[38] “React Native Contacts,” 2016, https://github.com/rt2zz/react-

native-contacts.
[39] “fuse-contacts,” 2016, https://github.com/bolav/fuse-

contacts/.
[40] “react-native-communications,” 2016,

https://github.com/anarchicknight/react-native-
communications.

[41] “WebView,” 2016, http://developer.android.com/reference/
android/webkit/WebView.html.

[42] “React.js conf 2015 keynote – introducing react native,” 2015,
https://www.youtube.com/watch?v=KVZ-P-ZI6W4.

[43] P. von Weitershausen and D. White, “React native for android:
How we built the first cross-platform react native app,” 2015,
https://code.facebook.com/posts/1189117404435352.

[44] T. Occhino, “React native: Bringing
modern web techniques to mobile,” 2015,
https://code.facebook.com/posts/1014532261909640/react-
native-bringing-modern-web-techniques-to-mobile/.

[45] “Ionic Components,” 2016,
http://ionicframework.com/docs/v2/components.

[46] “React Native: Getting Started,” 2016,
https://facebook.github.io/react-native/docs/.

[47] “React Native Performance,” 2016, https://facebook.github.io/
react-native/docs/performance.html.

[48] “fuse: Examples,” 2016, https://www.fusetools.com/examples.
[49] M. Konicek, “React native: A year in review,” 2016,

https://code.facebook.com/posts/597378980427792/react-
native-a-year-in-review/.

[50] “driftyco/ionic,” 2016, https://github.com/driftyco/ionic.
[51] “Ionic: Latest Jobs,” 2016, http://jobs.ionic.io/.
[52] “Ionic: Forum,” 2016, https://forum.ionicframework.com.

6171

