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Abstract 
The question “is this system secure?” is 

notoriously difficult to answer. The question implies 

that there is a system-wide property called “security,” 

which we can measure with some meaningful threshold 

of sufficiency. In this concept paper, we discuss the 

difficulty of measuring security sufficiency, either 

directly or through proxy such as the number of known 

vulnerabilities. We propose that the question can be 

better addressed by measuring confidence and risk in 

the decisions that depend on security. A novelty of this 

approach is that it integrates use of both subjective 

information (e.g. expert judgment) and empirical data. 

We investigate how this approach uses well-known 

methods from the discipline of decision-making under 

uncertainty to provide a more rigorous and useable 

measure of security sufficiency.  

 
1. Introduction  

 
Fundamental questions such as “Is the system 

secure [enough]?” and “How much security is 
needed?” have proven notoriously difficult [12]. 
Answering such questions depend heavily on having a 
reliable and meaningful measure of security 

sufficiency. However, these questions regularly assume 
that “security” is a tangible system-wide property that 
can be measured directly or by proxy. This assumption 
has proven problematic on a number of fronts. Security 
is recognized as an emergent property of a system [8] 
[18]. That is, security arises in the complex interaction 
of many factors across the system as a whole, and can’t 
be determined by measuring the security of individual 
components.  

The difficulty of measuring security directly has led 
both researchers and practitioners to try to measure it 
by proxy with properties that hypothetically have a 
strong relationship to security. There have been two 
widely used proxies: the first is degree of compliance 
to security standards, e.g., implementation of the NIST 
controls such as those in NIST SP 800-53 [18]. It is 
now recognized that this is an unreliable proxy. 
“Security does not equal compliance” and the 
correlation between the two is hard to make rigorous 0. 
Another often considered proxy is based on the number 
and severity of known vulnerabilities (or, alternatively, 
weaknesses). Various scoring methods, such as the 

Common Vulnerability Scoring System (CVSS) [5] 
and Common Weakness Scoring System (CWSS) [6] 
have tried to account for the number and severity of 
vulnerabilities/weaknesses in the system to arrive at an 
overall number. However, again, there is no clear 
relationship between this proxy and a useful measure 
of security. 

As with classic software quality attributes (e.g. 
reliability), security seems to suffer the problem that 
tangible and practical-to-measure indicators have 
undeterminable or overly weak relationship to an 
abstract system attribute. But this is not the entire 
problem. Even if we had good indicators for security, 
how would we know how to use them? For example, 
what would the threshold values be for “good enough” 
security?  

In this work we investigate a fundamentally 
different approach. We view security as a decision 
problem, rather than one of measuring a property of the 
system. Security decisions are made relative to what is 
tangibly “at risk” and the cost of mitigating that risk 
within the specific system context.  That is, there is no 
absolute measure of system security and of its 
sufficiency. What may be insecure in one context may 
be secure enough in another. Consider, for example, a 

CubeSat, a small, relatively inexpensive satellite [7]), 

verses a large, complex and expensive earth-science 
orbiter such as the Soil Moisture Active Passive 
(SMAP) satellite. One may be reasonably confident 
that an open source real-time OS, say FreeRTOS, is 
secure enough for use in a CubeSat, yet not be 
confident enough to use it for SMAP. The 
consequences of an OS exploit on SMAP would be 
much greater.   

From the decision perspective, security measures 
are used to decrease uncertainty in the factors used to 
determine the “least risky” decision choice for a given 
situation. Accuracy in measurement is not as important 
as how much uncertainty the measure can reduce, that 
is, how much justified confidence it gives us. 
Measuring confidence and risk from the decision 
perspective takes uncertainty into account, and this 
gives us better insight into the question of sufficiency. 
If the decision is “too uncertain to determine,” the 
uncertainty itself can be considered an insufficiency, 
and the best course of action may be to invest in more 
measurement to “buy down” the uncertainty. One need 
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not have perfect confidence in a decision. Rather 
enough so that the risk of not making the best decision 
is low. This decision process will be discussed in detail 
in a subsequent section. 

This paper is organized as follows. In Section 1 we 
provide some context, background, and prior work 
related to a decision-driven approach to measuring 
security sufficiency.  In Section 2 we review some 
definitions of security and make adjustments to orient 
them to decision making. In Section 3 we investigate a 
decision-driven approach to addressing security 
sufficiency. In conclusion, we describe the research 
contributions from this study. Both theoretical and 
practical implications are discussed. We also discuss 
the limitations of this study and plan for future work, 
building on the results presented here. 
 
1. Background and context 

 
The impetus for this research stems from our work 

on improving the cyber security of earth and space 
mission systems, where we needed to: assess the 
current security level of the systems, select activities to 
improve security in an economic way (i.e., with an 
understanding of cost vs. risk), and evaluating whether 
the results were sufficient.  As such, being able to 
measure security sufficiency is central to our work.  

Security sufficiency decisions are invariably 
fraught with great uncertainties and complexity, with 
risk falling on multiple stakeholders. Because of this, 
important decisions must be made with justified 

confidence. While when this is not fundamentally 
different than many other kinds of systems sufficiency 
decisions (e.g. sufficiency of reliability, safety, or 
quality), the risk profile resulting from security-related 
uncertainty is different and must be taken into 
account.  For example, with security, as with safety, it 
is impossible to be completely confident in the factors 
that determine sufficiency. That is, we may not know 
all potential causes of failure – hazards (in the case of 
safety) or vulnerabilities (in the case of security) – 
along with their impacts. For both safety and security, 
the likelihood of a defect becoming a failure and 
impact of that failure tends to follow a distribution with 
large variability and generally be positively skewed 
[19]. But unlike a failure from a safety hazard, when a 
security vulnerability is exploited, one must assume the 
impact will reach its maximum potential due to the 
presence of a persistent intelligent agent. One must 
also assume that the longer a vulnerability remains in 
place, the greater the risk it will be found, and when 
found, exploited. Hence vulnerabilities have a very 
different risk profile from safety hazards, and this 
affects sufficiency decisions. 

When making a security sufficiency decision, the 
confidence we have in the decision factors is what 
determines sufficiency. Note that high confidence here 
means we can determine, relative to a given level of 
risk tolerance, sufficiency versus insufficiency. Low 
confidence results in indetermination, which implies a 
need for further investment in reducing uncertainty in 
the decision factors. Low decision confidence means 
that if the “best” decision option is chosen, based on 
decision factors that are currently known, there would 
be a high risk that the decision would result in 
unacceptable losses.  

Unfortunately, current security metrics are 
inadequate for addressing these kinds of sufficiency 
decisions. Most software security measures are either 
excessively pragmatic (e.g., they count detected 
vulnerabilities) or excessively rigorous (e.g., they 
exhaustively assess degree of compliance to the NIST 
security standards). But while these may provide 
insights into the effectiveness of whole processes, they 
are not precise enough to measure the effectiveness of 
individual practices and techniques, under specific 
circumstances and in particular environments [16]. 

  Currently, most software security metrics 
focus on counting and comparing vulnerabilities, 
measuring attack surface, measuring complexity, or 
assessing compliance to a standard, and use some form 
of checklist or scoring system. But measures such as 
the average number of vulnerabilities per X lines of 
code or the Microsoft metric, comparing the numbers 
of vulnerabilities in earlier versus later versions of 
software programs, have not proven useful for 
indicating exactly how to reduce the risk of making a 
“bad” decision due to the uncertainty in security 
factors. For example, such metrics wouldn’t help 
predict whether software that appears to be secure in a 
development environment would be not be exploited 
when deployed in the field [16]. When these unreliable 
metrics are combined with limited budgets and 
schedules, and the fundamental inability to provide 
absolute security, they tend to render us unjustifiably 
over-confident in making decisions on security 
sufficiency. Furthermore, when security risk is too 
high, it is difficult to ascertain the most cost-effective 
security areas to address and the effectiveness in 
options for managing this risk. Cost-effectiveness is 
also a security sufficiency question [12].  

The tangible consequence of uncertainty in security 
sufficiency is security decision risk. As we show in 
Section 3, we can measure this decision risk to address 
security sufficiency questions.  
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2. Related work 
 
    Measuring sufficiency of security has been 
investigated in both the information security and the 
software engineering communities. The metrics 
proposed are often based on or analogous to existing 
measurements of quality, reliability, or safety. The 
Department of Homeland Security’s (DHS) Working 
Group on security metrics and measurement seems to 
be focused mainly on metrics adapted from the 
information security community [9]. Others, such as 
SAMATE [13], mainly focus on tools to help measure 
security. The most comprehensive and closely aligned 
work can be found within the Software Engineering 
Institute’s (SEI’s) Cybersecurity and Software 
Assurance Measurement and Analysis (CERT) 
initiative [4]. This initiative is based on several 
fundamental security measurement efforts 
[17][12][16], and it includes the Software Security 
Measurement and Analysis (SSMA) project, whose 
purpose is to aid decision makers with risk-based 
assessment and evaluation methods.  
 The works referenced above, and the security 
literature in general, proposes measures of security as a 
system or process property (“capturing a concrete 
attribute”) [17][16]. At the same time, these works 
often view security as a form of assurance (e.g. 
[11][17][12]). The concept discussed in this paper 
differs in that we view security as a level of confidence 
relative to making a decision rather than as an inherent 
property of the system itself. This is consistent with 
our view of assurance, in general, which we also see 
inextricably tied to decision making [15].  
Additionally, most security measures tend to “presume 
innocence” and assume perfect security until the 
elements being measured show otherwise. Our 
approach is necessarily conservative. We assume 
maximum uncertainty for any decision factor until we 
have measurements that justify how much uncertainty 
can be reduced for that factor. This is our source of 
“justified confidence.” 

2. Defining Security Sufficiency 
 
As discussed above, security sufficiency 

measurement is tricky. Perhaps a contributing factor is 
that it is difficult to construct a meaningful and useful 
definition of security sufficiency. In our review of 
security terms contained in the literature, we noted that 
the concept of sufficiency is frequently used without 
being explicitly specified. For example, in the NIST 
Glossary of Key Information Security Terms [10], one 
definition of security assurance refers to “adequately 
met” and “sufficient” numerous times: 

 

[Security] Assurance - Grounds for confidence that 

the other four security goals (integrity, availability, 

confidentiality, and accountability) have been 

adequately met by a specific implementation. 

“Adequately met” includes (1) functionality that 

performs correctly, (2) sufficient protection against 

unintentional errors (by users or software), and (3) 

sufficient resistance to intentional penetration or by-

pass. 

 
It is difficult to measure something that is poorly 
defined. We propose a definition of security 
sufficiency that represents our interest from the 
decision making perspective. While we accept that 
there is no inherently correct definition, we find 
validation through its utility in addressing security 
sufficiency problems.  

Complicating our effort to define “security 
sufficiency” is that there are a variety of views and 
definitions of security and security risk to which our 
definition tries to maintain consistency. For our 
purposes, we will consider the NIST definition of 
security [10]: 

 
Security - A condition that results from the 

establishment and maintenance of protective measures 

that enable an enterprise to perform its mission or 

critical functions despite risks posed by threats to its 

use of information systems.  Protective measures may 

involve a combination of deterrence, avoidance, 

prevention, detection, recovery, and correction that 

should form part of the enterprise’s risk management 

approach.    

 
 It is important to note that since we can never know all 
the threats or all the potential vulnerabilities, we can 
never obtain a perfectly objective measure of 
security.  We address this by using an operational 
definition of security that measures confidence relative 
to a threshold: 
 

Security sufficiency – the degree of confidence that the 

security controls in place for this system will keep 

losses from system vulnerabilities under an acceptable 

level. 
 

This new definition enables us to focus on a 
measurable outcome of security decisions, namely 
“losses from system vulnerabilities.” Moreover, we can 
compare the expected losses from various decision 
choices and derive the expected opportunity loss – the 
additional cost of not making the “best” choice, the one 
that minimizes the expected loss. 

In this light, the “best” security choice is the 
decision option that has the maximum expected 
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outcome or minimum expected opportunity loss. A 
“bad” security decision is one in which a different 
decision would have been made had there been no 
uncertainty in the assessment of security.  

  If we have perfect information, we could make the 
best decision every time.  Trouble arises when there is 
a large amount of uncertainty in the factors that 
determine security.  Like all humans, decision makers 
have inherent biases, which can lead them to make 
biased and over-confident decisions in the face of 
uncertainty. This is the decision risk we wish to avoid, 
defined as follows: 

 
Security decision risk is the potential loss of making 

a bad decision due to the uncertainty in security 

factors. 
 

In cyber security, uncertainty often comes in the 
form of unknown-unknowns (e.g., zero-day exploits), 
because in a well-tested and managed system, the 
known-knowns may have already been eliminated, and 
the known-unknowns have been addressed through 
analysis.  However, we don’t take this as a given., We 
approach system security decisions by assuming the 
maximum uncertainty and perform investigations and 
interventions to justifiably reduce this uncertainty.  

We also realize that uncertainty cannot be 
completely eliminated. Good decisions can still have 
bad outcomes (through highly improbable “bad 
luck”).  Bad decisions can have good outcomes 
(through “dumb luck”). But even though we cannot 
completely control the outcome, our aim is to enable 
making optimal security decisions, taking into account 
tradeoffs between cost, effectiveness, and 
operability.  What we are maximizing is confidence 
that our decisions have mitigated unacceptable losses. 

The definitions given above enable us to make use 
of a variety of established risk metrics, such as value-
at-risk (VaR), to measure security decision risk to 
determine security sufficiency. We provide a detailed 
example of this in Section Error! Reference source 

not found.. 

 
2.2. The Role of Security Activities  

 
One of the things we want to know is how security 

activities (our actions) can help us achieve security 
sufficiency, as defined above. There are two general 
classes of activity to consider: Security interventions 
and security investigations. Security interventions are 
activities that mitigate security risks by directly 
reducing the likelihood or impact of an unacceptable 
loss from an attack. For example, introducing 2-factor 
authentication for user login will reduce the likelihood 
of an intrusion from account hijacking or brute force 

password attacks. Security investigations are activities 
that increase our knowledge of security: these reduce 
our uncertainty about the likelihood or impact of an 
unacceptable loss from an attack. For example, 
auditing compliance to the ISO 27001 standard or 
performing a credentialed vulnerability scan [20] will 
decrease the uncertainty that a vulnerability exists or 
has been overlooked. 
 

3. Using Decision Risk to measure Security 

Sufficiency  
 

    In this section we will use the concepts developed in 
Section 2 to build an example measurement of security 
sufficiency for making a security sufficiency decision. 
Along the way we will explore consistency with the 
concepts discussed above and validation though 
sensitivity analysis. While this example is 
representative, it is not based on an actual situation. 
Some considerations are necessarily simplified and the 
data and estimates presented are only illustrative. 
 

First, let’s consider some examples of the types of 
security sufficiency encountered during a system’s 
development and operational life cycle: 
1. Approval to Operate (ATO) – Deciding whether 

the system is secure enough to put into operations 
2. Prioritizing Security Mitigations/Controls (which 

mitigations or security controls to implement) 
given a limited budget 

3. Fix/no-fix decisions for individual vulnerabilities 
or weaknesses described by scans 

4. Incident response decisions, such as when to take 
a system off-line in response to an attack 
 
For our example, we will examine a system being 

considered for release to operations and the approval to 
operate (ATO) security decision. We formulate the 
options in terms of security sufficiency as follows: 

 

• “Send” - The system is secure enough for 
operation. Implement security as designed, release 
system and monitor security. 

• “Hold” - The system is not secure enough for 
operation or there is too much uncertainty that it is 
secure enough. Perform security investigations to 
reduce uncertainty or interventions to increase 
security.  

 
Our aim is to determine an optimal decision with 

acceptable decision risk. To evaluate this decision, we 
will need to use some indicator of security sufficiency 
relative to the security controls implemented. While 
there are a variety of indicators we might use, for our 
purposes we will consider a simple Pass/Fail indicator 
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where “Pass” means there will be no unacceptable 
losses from a security breach, and “Fail” is otherwise.  

The Pass/Fail state of the indicator is uncertain at 
the time the decision is made. Indeed, it cannot be 
determined unless an unacceptable loss actually occurs.  
Therefore, we view it as a random variable whose 
expected value is given by p, the probability of Pass. 
This will be a significant factor in determining the 
optimal decision. However, at best we can only 
estimate p, perhaps with some sample data, and so we 
must account for this uncertainty when determining the 
optimal decision. We start by assuming the estimate of 
p is completely uncertain (i.e. no prior information) 
which we represent as a uniform distribution on [0,1] 
i.e. maximum entropy.  

Our technique is to use Bayesian analysis to 
update our estimate of the distribution, based on 
information from estimates of security factors for the 
decision. The factors may be quantitative or qualitative 
values (e.g., it could be based on expert judgment), and 
these factors are also represented as random variables. 
The information needed is how the factors relate to the 
decision, which then can determine how the prior 
distribution is affected.   

The information is incorporated through Bayesian 
updating, which reduces uncertainty in the posterior 
distribution. As discussed in the previous section, the 
information that reduces uncertainty can come from 
either security interventions (directly improving 
security) or security investigations (just learning more 
about the state of security). In practice, we use 
confidence intervals or Bayesian creditability intervals 
[2] to represent ranges for our estimates of the security 
factors.   

What is the optimal decision, Send or Hold, given 
the a-priori security sufficiency distribution? We will 
define the optimal decision as the option (Send or 
Hold) that results in the minimum median expected 
opportunity loss (min EOL) for the decision. This 
minimizes our decision risk. 

To compute this, we consider the potential losses 
given the various decisions and outcomes. For 
convenience we will consider losses in terms of 
dollars. We also assume the release of the system for 
operation is expected to generate significant value. 
That is, the desirable decision or “default decision” is 
to Send unless the security sufficiency is too low.  

TABLE 1 is the decision payoff table. It 
summarizes the potential costs for each decision given 
an outcome. If, for example, the system is put into 
operation and no unacceptable loss occurs from 
vulnerabilities (“Pass”) the table shows loss is $0 
because all has gone as planned, nothing is lost and 
there are no additional unplanned costs or losses. It is 
the “default” or expected decision-outcome, because 

the costs for this situation have already been allocated 
and there are no unexpected costs or losses.     

TABLE 1. POTENTIAL LOSSES FROM RELEASE DECISION 

Payoff  Send Hold 

Pass 0 B 

Fail A C 

 
However, the table shows a cost of $A if the 

system is put into operation and it unexpectedly incurs 
an unacceptable loss from a security breach. In this 
case, in addition to the security breach loss, there will 
be the additional cost of securing the system against 
future attacks, including lost time, while the system is 
non-operational. Furthermore, the table shows a cost of 
$B if the release is held up but subsequently no 
significant security breaches occur. The losses are due 
to schedule stretching and additional security effort 
(unplanned work). Lastly, a cost of $C is incurred if 
the release is held up for rework and it still fails 
through a security breach, though a less severe one 
than the one that caused the $A loss. The $C cost is 
due to both improving the system and the later security 
breach. To summarize the relative magnitude of the 
costs: A < B < 0 and A < C < 0. 

We need to deal with the uncertainty in the values 
of A, B, and C. We do not have their exact values, but 
we are able to reasonably estimate 95% credibility or 
confidence intervals. Accurate and useful credibility 
interval estimates can be obtained empirically from a 
combination of sample historical data and expert 
judgment. One approach is to obtain a triangular 
distribution from worst case, most likely, and best case 
estimates and from prior analogous projects then 
compute the 2.5th and 97.5th percentiles to generate a 
95% credibility interval.  

Finally, we focus on the uncertainty in the value of 
p, the probability of Pass – experiencing no security 
breach in the system. Again, we will express this 
uncertainty as a 95% confidence interval estimate, 
obtained from sample historical data and expert 
judgment. We can now consider the Expected 
Opportunity Loss (EOL) for each decision as the 
expected cost of each outcome for each decision, given 
the parameters A, B, C, and p defined above: 

 
EOLSend = (1-p)*(C - A) 
EOLHold = -p*B 

 
The EOL is summarized for the release decision in 
TABLE 2.  
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   TABLE 2. OPPORTUNITY LOSSES FROM DECISION 

OL Send Hold 

Pass 0 -B 

Fail C - A 0 

 
In order to minimize decision risk, choose the 

decision option with the smallest EOL. This gives the 
rational decision criterion: The decision is to Hold 
when EOLSend > EOLHold , which occurs when p < (A-

C)/(A-C+B), otherwise Send. This criterion is easily 
seen to be consistent with our release judgment 
because 0 < (A-C)/(A-C+B) < 1. If we were certain the 
release would pass (p=1), the criterion indicates Send, 
which is what we would expect.  If we were certain the 
release would fail (p=0), then the criterion indicates 
Hold, again as we would have decided without the 
criterion.  

The important principle is that decision risk is the 
potential loss from making a wrong decision due to 
uncertainty in the decision factors A, B, C, p. If there is 
no uncertainty in the security factors, there will be no 
decision risk, since there is no uncertainty in knowing 
whether EOLSend > EOLHold for the decision criterion. 
However, if there is uncertainty in the security factors, 
then there can be uncertainty in whether EOLSend > 
EOLHold, potentially leading to a wrong decision. The 
decision risk here is the potential loss resulting when a 
decision is based on one EOL being smaller than the 
other when actually it is not.  

This “higher order effect” is not particularly 
straightforward to visualize, but a practical 
approximation is to represent the EOL uncertainties by 
computing their 95% confidence intervals from the OL 
model and the confidence intervals for the security 
factors as described earlier. The decision risk is 
indicated approximately by the amount that these 
confidence intervals “overlap” each other. The more 
they overlap, the more likely we may make a wrong 
decision; the overlap represents an “area of confusion” 
regarding which EOL is greater than the other. To be 
more precise about this, it is worth defining the 
Expected Decision Loss (EDL) as the expected loss 
when we are wrong about the decision criterion 
relative to a given decision, in our example whether 
EOLSend is indeed greater than EOLHold.  

Our goal then is to minimize the EDL, and to do 
this in our example, we must have a rule for 
determining whether EOLSend > EOLHold when there is 
uncertainty. One possible rule is to say EOLSend > 
EOLHold when median(EOLSend) > median(EOLHold) or 
“the middle of the road rule.” We can then express the 
EDL for this rule:  

 

median(EOLSend) < median(EOLHold): 
EDL = P(EOLSend > EOLHold)* EOLSend 

 

median(EOLSend) > median(EOLHold): 
EDL = P(EOLSend < EOLHold)* EOLHold 

 
For the decision risk we need the probability 

distribution of the EDL. This is a bit difficult to 
compute directly, but tractable using Monte Carlo 
methods. In order to make practical use of the decision 
risk, we need to establish a threshold for how much 
decision risk we are willing to assume. Our threshold is 
expressed as the Value at Risk (VaR), the maximum 
loss we are willing to accept within a certain tolerance. 
It is common to select a 5% tolerance, which means 
“we want to be 95% confident that we will not lose 
more than $X (the VaR) from decision risk.”  

What remains, then, is to estimate the decision risk 
and VaR from the decision parameters, A, B, C, and p, 
discussed earlier. We created a Monte Carlo simulation 
for this calculation, whose outputs are shown in 
Appendix A. Let’s walk through the results: 

First, we estimate 95% intervals for the decision 
parameters A=[-$2.5M, -$1M], B=[-$300K, -$100K], 
C=[-$700K, -$200K], and p = [0.75, 1]. After 
generating the distributions for the EMV’s, it isn’t 
obvious which decision will have the best-expected 
outcome. From the EMV’s, the EOL distributions can 
be generated. But again, it’s not clear which decision 
has the lowest EOL. The box plots of the EOL’s, 
shown on the right side of Appendix A, reveal that the 
median for EOL_Send is smaller than the median 
EOL_Hold, hence our reference decision is to Send.  

However, the large inter-quartile ranges in the box 
plot indicate that there is considerable uncertainty in 
this decision. The 95% EOL intervals show a 
significant overlap so we expect a large decision risk. 
The 95% EDL shows a VaR of about $188K, which is 
indeed a large decision risk, and potentially we should 
be willing to pay up to $188K to reduce it.  

Finally, if we apply our decision rule “use the 
lowest median EOL,” simulation shows what the 
potential losses are from this decision for a given 

release (not on average as with EDL). The 95% VaR 
here is about $260K, which as expected is larger than 
the 95% EDL VaR, since the variability for any given 
release is greater than the variability of the average 
over many releases. Because this is the risk for a given 
release, it represents the value of removing all the 
uncertainty, commonly called the expected value of 
perfect information (EVPI) for the decision at hand.  

Is the VaR for EDL consistent with our model 
for decision risk? Let’s say that some investment in the 
release improves our confidence in passing to p = 
[0.95, 1], then the VaR reduces to about $37, or 
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basically zero. This is consistent with decision risk we 
would expect given that we are confident that it is 
better to Send when we are pretty sure of passing. 
Similarly, if p = [0, .5] the VaR is about $150, again 
basically zero. This also makes sense for decision risk, 
since we are less certain the release will pass than fail, 
and the consequence of failure is very large – a 
situation in which we are more confident to Hold.  
Let’s say we are totally uncertain about the likelihood 
of passing, which means the probability of passing 
could be anywhere from zero to one, that is: p = [0, 1]. 
Of course the safest decision is to Hold, but relative to 
the previous example we see that this decision has 
significantly more VaR at about $55K. Here again, this 
matches our expected decision risk, since if we have no 
information, then we certainly should expect that we 
could be wrong in deciding to Hold and will pay some 
potential loss as a consequence. It is interesting to also 
note that the EVPI here is substantially larger at 
$256K. This too makes sense because there is no 
“averaging” over multiple releases. A bad decision 
here cannot be balanced with good (or more accurately, 
“lucky”) decisions later. Hence the VaR for EDL 
appears to be a metric consistent with decision risk.  

The relationship between decision risk and the 
confidence we have in the security parameters is not as 
obvious. Figure 1 shows a sensitivity graph of VaR as 
our uncertainty about p = .5 decreases (i.e. the credible 
interval of p gets smaller) from total uncertainty to 
total confidence. As expected, the VaR decreases as we 
become more confident in the estimated range for p. 
What is notable here is that the decision risk decreases 
non-linearly. This indicates that if there is a lot of 
uncertainty about p then even a small amount of 
increased confidence can result in a significant 
decrease in decision risk. It is also notable that when 
p=[.2 , .8] (i.e. x=.4) is the “confident enough” point 
where there is very little to be gained from increased 
confidence. Indeed, looking the VaR for the EVPI at 
this point is essentially zero indicating that there is 
little risk from making the wrong decision (on this 
given release) due to uncertainty. What is surprising 
here is how large this range is indicating that we don’t 
have to estimate p with great accuracy to determine the 
best decision to make. 

 
 
Figure 2 shows a sensitivity graph of VaR as p 

goes from zero confidence p=[0,1] to certainty 
p=[1,1]. It may seem surprising that smaller credibility 
intervals up to about [.7,1] have increasing VaR. While 
the uncertainty in the interval for p decreases, the 
EOL’s get closer and closer together where a small 
amount of certainty making it more likely to make a 
wrong decision. Averaged over many releases the 
wrong decision will be made and losses will occur. At 
some point we switch the default decision and the 
intervals get very small while simultaneously the 
EOL’s get farther apart making it less likely to make a 
wrong decision. This is another strategically useful 
thing to know. It indicates that increasing security, 
which would decrease the interval for p, is not valuable 
unless p > 0.7. Here again, when it is valuable, a small 
amount of credibility can result in large reduction of 
decision risk. Of course for a given release, the VaR 
EVPI will not suffer this kind of sensitivity and the 
more confident we are the less VaR as indicated in the 
EVPI graph in Figure 2. 

Figure 1: VaR as x ����1, p=[.5x, .5(2-x)] 
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Figure 3: VaR as x����0, p=[0,x] 

  
If we become more confident that the release will 

fail i.e. p � [0,0] then Figure 3 shows that at about 
p=[0, .2] we can be quite confident in our decisions to 
Hold. 

 
As a final sensitivity check, we consider a sliding 

interval of fixed size (in this case, .02). This is to see 
which range of p is the decision most sensitive. 
Looking at Figure 4 we see that sensitivities for p 
between .75 and .95 indicating that the decision switch 
off point is somewhere around .85. That is, any range 
that includes this point will be risky, so if we want high 
confidence in our decision we should aim to obtain a 
range for p of about [0,.75] or about [.95, 1]. Of course, 
it may not always be possible to obtain one of these 
ranges. 

 
We are now ready to address a quantitative indicator of 
security sufficiency. Recall that security increases the 
confidence in the estimates of the decision factors by 
providing evidence about the actual level of security. 

This has the effect of shrinking the credibility intervals 
of the decision factors A, B, C, p. That is, a decision 
factor is more credible with security than without. It is 
important to note that credibility increases (i.e. 
uncertainty decreases) regardless of the outcome of 
security activity. For example, vulnerability testing 
will decrease security uncertainty whether 
vulnerabilities are found or not found.  

 
Figure 4: VaR as x����.99, p=[x-.01, x+.01] 

 
Note that while all the decision factors are 

important, we generally focus on p, since the decision 
risk is more sensitive to this factor. Increased 
confidence in decision factors shrinks the sizes of the 
EOL intervals, narrowing the overlap, and thus 
reducing decision risk.  

This is really just a form of information buying, 
where “perfect information” means no uncertainty (or 
zero length intervals), which is generally impossible or 
impractical to achieve in practice. However, in 
principle this represents the potential value of security, 
which we measure as the VaR discussed previously. 
Given some security, we can obtain VaRcert or the 
revised VaR with the new credibility intervals from 
security. Hence we can define the Value of Partial 
Information, VPI = VaR - VaRcert. as the value of 
partial information resulting from the security 
performed. It is the potential maximum monetary loss 
that is avoided by security and thus is a meaningful 
quantitative representation of its benefit. In practice we 
are usually more interested in VaR/VaRcert for use in 
cost-benefit and effectiveness of security analysis (it 
avoids some issues of accuracy in cost estimation).  

But how can we measure how much a particular 
security activity reduces VaR? For this we look at 
Bayesian updating [3] represent the effect of buying 
security. As a simplified illustration of this, consider 
the question of performing a credentialed vulnerability 
scan (let’s call this CVS). Suppose that historically and 
based on expert judgment for this particular release we 
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Figure 2: VaR as x����1, p=[x,1] 
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estimate p = [0.75, 1.0].  On the one hand this states 
that P[Pass] ≥ 0.75 and we are interested how this 
changes given a CVS was performed. That is, what 
does P[Pass | CVS=“Yes”] do to increases this bound.  
Bayesian updating suggests that   

 
P[Pass | CVS=“Yes”] = P[CVS=“Yes” | 

Pass]*P[Pass]/( P[CVS=“Yes” | Pass]*P[Pass] + 
P[CVS= “Yes” | Fail]*(1-P[Pass])). 

  
Say we have reviewed 50 recent releases where 

CVS= “Yes” and found of these, 30 passed and 20 
failed. So P[CVS= “Yes” | Pass] = 30/50 and P[CVS= 
“Yes” | Fail] = 20/50. Based on this sample data we 
estimate that P[CVS= “Yes” | Pass] ≥ 0.82. The revised 
interval p = [0.82, 1.0] gives a VaRcert of about $87K
 and the VPI is about $100K. Similarly we can 
consider how P[Pass |CVS= “No”] would revise the 
upper interval limit P[Pass] ≤ 1 which would also 
decrease the VaR.  

In practice this example is a bit overly simplified. 
Generally, there is large variability in the sample data, 
which needs to be taken into account. It is also 
common that the answers to the security questions are 
not 100% confident. Typically, the answers are “Yes, 
but…” or “Mostly No” with details on why and how. 

 Another issue is that risk and confidence are 
frequently communicated qualitatively through “fever 
charts” of red (“high risk”), yellow (“moderate risk”), 
and green (“low risk”).  Also a security activity (i.e. an 
intervention or investigation) tends to affect multiple 
decision factors simultaneously and there are not 
independent of each other. Another issue is that the 
likelihood of passing increases after Hold because 
further testing and repair will be performed to decrease 
this uncertainty. Finally, the default decision in 
practice is generally “Partial” and not “Send” as we 
assumed previously. To some degree these issues can 
be addressed in the Monte Carlo simulations. The main 
point of the current investigation is to see that a small 
amount of information obtained through security 
activities, such as answering the questions, can have a 
dramatic effect on the decision risk which results in a 
number of benefits. 
 

3. Conclusion 
 
3.1. Contributions 

 
This study makes both theoretical and practical 

contributions. On the theoretical side, using decision 
risk provides an accessible means to analyze a 
Cybersecurity sufficiency decision.  The insights 
gleaned also open potential avenues for further 
research. 

The practical contribution this work is its potential 
to improve decision-making at NASA and other 
organizations that have to make Cybersecurity 
sufficiency decisions about complex systems.  
 
3.2. Limitations and Future Work 
     
      The study presented above is conceptual in nature. 
It identified the problem of determining security 
sufficiency, of answering the question: “how much 
security is enough?” Reviewing the literature and 
current practice revealed flaws in the approaches taken 
to-date. The study then laid out the definitions and 
strategy required to measure security sufficiency. It’s 
contribution was in changing the focus from abstract 
system properties to risk and uncertainty inherent in 
decision making. 
The primary limitation of this study is that it has yet to 
be put into practice on real-world systems – and this is 
the goal for future work in this area. The strategy 
described above can be applied to any internet-
connected system, which provides value through the 
network, yet faces security threats. The application 
would be especially useful when (as is commonplace), 
there is a limited budget for security controls and 
mitigations, and it is critical to answer know which 
ones and to what degree they should be applied. 
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Appendix A: Decision Risk Monte Carlo Simulation Results 
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