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Abstract 
 

Data visualization provides a means to present 
known information in a format that is easily 
consumable and does not generally require specialized 
training. It is also well-suited to aid an analyst in 
discovering previously unknown information [1].   This 
is possible because visualization techniques can be 
used to highlight internal relationships and structures 
within the data, and present them in a graphical 
manner.  Using visualization during the preliminary 
analysis phase can provide a pathway to enable an 
analyst to discover patterns or anomalies within the 
data that might otherwise go undiscovered as humans 
have an innate ability to visually identify patterns and 
anomalies. 

Even when an analyst has identified a pattern or 
anomaly within the data, creating an algorithm that 
allows for automated detection of other occurrences of 
the same, or similar, patterns is a non-trivial task.  
While humans are innately skilled at pattern 
recognition, computers are not, and patterns that 
might be obvious for a human to identify might be 
difficult for a computer to detect even when assisted by 
a skilled analyst [2]. This paper describes a method of 
taking a complex visualization, and reducing it into 
several smaller components in order to facilitate 
computer analysis of the analyst-identified patterns or 
anomalies in the data.  From there, a detection scheme 
can be generated through an analyst-supervised data 
analysis process in order to find more occurrences in a 
larger dataset. 

 
Keywords:  Data visualization, data analysis, 

visualization techniques 
 
1. Introduction 
 

Data visualization converts data into meaningful 
visual representations for human consumption through 
various techniques.  These techniques can produce 

either static or dynamic (interactive) outputs, and the 
underlying mechanics for generating a graphical 
representation can differ significantly between 
techniques [3].   It is commonly used in cases where 
the volume of data being analyzed is more than can be 
reasonably done manually or without technological 
assistance.  While many visualization techniques 
attempt to be data-agnostic – meaning the technique 
does not require ingest of specialized data – some 
domain-specific techniques do exist.  For the purposes 
of this paper, we will focus on visualization techniques 
that are not domain-specific, and can be applied to 
arbitrary datasets in a general manner. 

For any general text/numerical dataset, there are 
multiple ways it can be visualized with each 
visualization technique potentially capable of featuring 
unique internal structures or relationships within the 
data.  Frequently, these techniques are only used to 
present some observation found through prior analysis.  
However, data visualization is not limited to this 
capacity and can be useful during the preliminary 
analysis phase by providing the analyst with other 
techniques to explore the data, and can often be done at 
lower costs than a traditional data-mining effort might 
require [4, 5]. By representing the data in a visual 
manner, we can enable the analyst to focus on tasks 
that humans are ideally suited for – anomaly and 
context identification, and pattern recognition – while 
allowing the computer to focus on tasks that it is suited 
for – large data processing. 

Automated analysis of a dataset is a non-trivial 
process that can depend greatly on context, because 
what might appear as an anomaly in one case might be 
standard in another.  For instance, the connection 
duration for several DNS queries is expected to be 
short, so a query that takes a long time might be an 
anomaly.  However, a TCP connection to a webserver 
is expected to be long (relatively speaking), so a short 
connection could be an anomaly in this case.  It is often 
easier for a human to utilize context and identify norms 
during the analysis process and use that basis to 

6052

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41894
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


identify expected norms, than it is to program a 
computer to perform the same analysis. 

It is important to note that automated analysis of a 
dataset can be challenging, even after an analyst has 
identified an anomaly using a visualization technique.  
This is not unexpected.  Once an analyst has identified 
an anomaly or pattern within a given visualization, it is 
a non-trivial process to determine what parts of the 
dataset produced this anomaly.  More to the point, 
many visualization techniques are inherently lossy as 
the resolution of data is often reduced or similar data 
points are grouped together to reduce clutter in the 
resulting visualization.  This increases the complexity 
of reversing the process.   Even when the reversal can 
be completed, applying context to determine why this 
subset of the data is anomalous can still be difficult.  
The goal of generating a rule to find more occurrences 
can remain a challenging task to automate.  

This paper will present a data-agnostic visualization 
technique to serve as a case study for several common 
limitations that can restrict a given visualization 
technique, and will identify methods that can be used 
to address these limitations.  The ultimate goal of this 
effort is demonstrate how the process of using an 
analyst to identify patterns and anomalies in a complex 
visualization as a foundational step, and then breaking 
the visualization into smaller components can be 
beneficial.  These smaller components can be analyzed 
with statistical or heuristic-based techniques to identify 
other components in the datasets (or other similar 
datasets).  Analysis can then be conducted to determine 
the characteristics in this visualization technique that 
are important for this type of methodology, so that it 
can be applied to other types of visualization 
techniques. 
 
2. Parallel Coordinates and Radar Charts 
 

Parallel coordinates is a common technique for 
visualizing multivariate data where each dimension is 
orderable and bounded [6]. This technique works by 
drawing an even-width parallel axis for each dimension 
where the order of the axis can be user-defined or 
preset.  Each record in a dataset has its coordinates 
mapped to the appropriate axis and a poly-line is drawn 
to connect them.  See figure 1 for an example of 
parallel coordinates visualization. 

 

 
 
Figure 1:  Parallel Coordinates Visualization [7] 
 
Parallel coordinates are ideally suited for detecting 

anomalous records in large amounts of data as trends 
can be easily identified visually.  For instance, the line 
segments between the columns ax and x+b in figure 1 
are all horizontal and no lines cross.  We as humans 
can easily see this, and if a new record were to be 
added that was not horizontal and crossed another line, 
it would be easy to identify as an anomaly.  Similarly, 
in the last axis of figure 1, 1/x, most records have a 
poly-line that terminates near 0 while only a few 
records do not.  These potentially identify anomalies in 
the data that might merit further investigation.  While it 
can be inferred from the axis headers what data is 
being visualized, it is important to realize that patterns 
and anomalies can be discovered without requiring this 
context, and these observations can serve as a starting 
point for further investigation. 

Radar charts have some similarities with parallel 
coordinates, including the same restrictions on inputs. 
A primary difference is that they are designed to 
handle fewer records at a time.  Radar charts tend to 
draw the parallel coordinate axis as spokes of a wheel 
with the lower bound of each axis generating a circle 
with radius 0 (or near 0), and the upper bound 
encircling the entire diagram.  While it is not required 
to have each axis share the same scale, it is can be 
useful to have this type of sharing.  See figure 2 for an 
example of a radar chart visualization. 

 

 
 
Figure 2:  Radar Chart Visualization [8] 
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Radar charts are ideally suited for comparing a 

smaller number of records side-by-side.  When a scale 
is chosen that places equal (or reasonable) weights on 
each axis, this type of visualization allows for quick 
comparison by approximating the area of the contained 
object as well as comparing relative differences on 
each axis.  In figure 2, each axis indicates the cost of 
an activity with identical scaling (i.e., each step 
increases by $10).  Based on this, it is easy to identify 
several categories where the allocated budget and the 
actual spending for the project differed significantly.  
Similarly, it is easy to estimate the areas encompassed 
by the poly-lines to determine that the total budget and 
spending for the project did not differ significantly. 

 
3. Constraints and Customizations 
 

It is worth noting that in addition to the explicit 
requirements for a given visualization technique there 
may also be implicit requirements to ensure the data 
works well with the visualization.  Parallel coordinates 
works best when each dimension is not only orderable, 
but also when neighbors represent similarities and the 
scale for each axis produces a reasonable density.  For 
instance, two network connections for similar lengths 
of time might indicate some type of similarity, but two 
connections to similar source ports will not have the 
same deeper meaning.  A standard numeric mapping of 
all available destination ports will also tend to show 
most traffic going a very small range of available ports 
making differentiation challenging.  It is often the case 
that preliminary statistical analysis to determine 
characteristics such as the density and distribution of 
the data may be needed to ensure appropriate mappings 
and scaling are chosen for a given visualization. 

Radar charts have the same implicit restrictions on 
the data as well as a few additional ones.  Specifically, 
when there are similarities between the axes, such as 
each axis represents a cost, using similar scaling can be 
useful.  In this model, comparisons can be made on an 
axis-by-axis basis, and also on the area encompassed 
by the poly-lines.  When such similarities don’t exist, it 
can be common to split a radar chart back into a 
parallel coordinates diagram with few records to 
prevent analysts from comparing the areas 
encompassed.  

As with any visualization technique, there are 
common customizations that can be made to make 
each technique work better with the data.  Parallel 
coordinates customizations include: 

 
• Interactivity – Regions on each axis can be 

selected to filter (or exclude) data. 

• Grouping – Similar records can be grouped 
together to reduce clutter.  Grouped records can 
be indicated by increasing the width of lines, 
increasing the color intensity, or by showing a 
distribution around the line by varying the 
alpha channel. [6] 
 

Radar chart customizations include: 
 

• Grouping – Similar records can be grouped in 
a single diagram.  Using a unique color for each 
record can be used to show sets of records.  
Showing a distribution around the line by 
varying the alpha channel can be used to 
indicate grouped records (or uncertainty). [9] 

• Dynamic – By taking a sequence of radar 
charts and sequencing them together, changes 
over time (or over some other field) can also be 
shown. 
 

While there are many more types of common 
customizations that can be applied, this selection is 
sufficient to show the central need:  to ensure the 
visualization technique presents upon a reasonable 
amount of data at any given time.  Too much data and 
the outputs are untenable and too little means there 
may not be enough data to reach any reasonable 
conclusions.  This observation can hold true for both 
human and computer analysts. 

 
4. Complex Visualization Reduction 
 

While a human analyst can identify anomalies 
within a dataset visualized through parallel coordinates 
either by using pattern recognition on the static image 
or through experimenting with interactive capabilities, 
automating this capability to extend it to a computer 
can be challenging.  Fortunately, this process can be 
simplified by reducing a large parallel coordinates 
visualization into a series of radar charts.  This type of 
reduction is beneficial for two reasons: 

 
1. It is often the case that visualization techniques 

can be interactive (i.e., a user can customize 
these visualization in real time).  However, an 
interactive visualization technique may not 
scale well with an arbitrary amount of data.  
Thus, having a technique where an analyst’s 
work can be observed against a small dataset 
and subsequently automated across a larger 
dataset can lead to new insight. 

2. By tying the analyst’s process back to 
computational techniques, we can create 
algorithms for detecting similar patterns in 
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future datasets without requiring active 
involvement of a human analyst. 

 
These observations can be applied to create a new 

analysis workflow such as the one described below for 
parallel coordinates and radar graphs: 

 
1. An analyst unfamiliar with the dataset being 

analyzed examines a parallel coordinates 
visualization of the dataset. 

2. Through interaction with the graph (such as 
selecting bounds on the axis or the resulting 
reduced radar charts), the analyst identifies 
sections of the data that are similar and that 
merit additional evaluation. 

3. These identified sections are then used in a 
participatory training operation using 
traditional analysis techniques such as those 
discussed in the next section. 

4. The techniques used (with weights and 
configurations identified during the training) 
are then applied to another similar dataset.   

5. The results are used in a feedback loop to tune 
process with a goal of automated analysis 
without input from a human-analyst. 

 
 
5. Computational Analysis Techniques 
 

There are many types of standard analysis 
techniques and the appropriateness of each can vary 
depending on the type of analysis being conducted and 
the associated objectives.  Data mining efforts 
commonly use clustering techniques in an attempt to 
identify structures within the data [10, 11, 12].  While 
analyzing specific techniques is not the purpose of this 
paper, we will briefly discuss tools and techniques that 
can be used to analyze multivariate data. 

The scikit-learn Python library [13] provides easy 
access to several commonly used classification and 
clustering techniques, and served as the basis for the 
computation for this effort. The library works by 
taking a training dataset to learn how to classify the 
data through statistical or machine learning techniques, 
then can analyze new data to predict classifications.  
Since scikit-learn provides a common interface for 
each technique, it is trivial to switch between them to 
identify techniques that work well for a particular 
dataset and analysis objective.  For the purposes of this 
effort, we selected the Naïve-Bayes classifier, which 
classifies the data based on probabilistic likelihood and 
is generally well-suited for supervised learning [16].  

Supervised learning uses an oracle to answer a few 
questions, and then attempts to determine the 

motivation behind the oracle responses in order to 
predict the answer to future questions without 
additional input from the oracle.  For the purposes of 
this project, the oracle is the human analyst and the 
question being answered is “which records are of 
interest?”  Once an analysis technique has been trained 
based on these answers, it can then continue answering 
– or classifying – future records as interesting or 
uninteresting without the need for additional analyst 
involvement. 
 
 
6. Empirical Results 

 
From 1998 to 2000, DARPA released several 

datasets that could be used to train and test Intrusion 
Detection Systems [14]. These datasets consist of 
periodic process listings that could be used in a host-
based system, as well as summaries of network 
connections for network-based systems.  A network of 
hosts was subjected to various types of attacks over the 
course of several weeks, while standard business 
operations were conducted alongside these attacks.  
The data collected is broken up into several days, some 
of which could be used as training data (i.e., each 
network connection that was part of an attack is 
flagged as such and specifies the type of attack), and 
others as testing data. 

The 1998 data set consists of nine weeks of data 
taken on Monday through Friday each week for a total 
of 45 days.  For our test, we selected a single day – 
June 22, 1998 – from the testing set for our starting 
analysis.  This singular day has over 10,000 recorded 
network connections as shown in the parallel 
coordinates visualization generated by D3.js in figure 3 
[15]. While the data collected in a single day can be 
visualized in interactive parallel coordinates 
visualization through a standard browser on modern 
hardware, attempting to do the same for the full 45 
days of data becomes challenging.  When the dataset 
size is increased significantly, the browser will quickly 
become unresponsive, thus reemphasizing the need 
automating analyst-supervised analysis. 
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Figure 3:  Parallel Coordinates – June 22, 1998 
 
As discussed, parallel coordinates can be reduced to 

discrete radar charts.  When these radar charts are 
flagged as interesting, they can be fed into an analysis 
technique to simplify automated analysis.  For this 
analyst-supervised analysis, we selected and flagged a 
few radar charts, which demonstrated an easily 
identifiable anomalistic feature.  Consider the example 
shown in figure 4.  The radar charts show great 
similarity, but there are some anomalous characteristics 
that the human analyst is likely to identify.  In figure 4, 
the analyst is likely to identify image C (and similar 
images) as anomalous.   

 
 

 
 

Figure 4:  Radar chart anomalies 
 

 
In our tests, about 20 radar charts with similar 

anomalies were selected during analyst-supervised 
identification phase (it is worth noting that the analyst 
is not required or expected to flag all occurrences 
within the testing data).  Note that the analyst does not 
need to understand the data nor “why” the data is 
anomalous in all cases.  The analyst with no 
knowledge of the datasets can identify anomalous 
images and then investigate the data to determine root 
cause.  If the analyst has some information about the 

dataset, the process of understanding the “why” behind 
the anomalies will likely be less challenging.  

A close-up an example radar chart from this phase 
with labeled axes is shown in figure 5.  Close 
examination shows that the selected anomalous figure 
corresponds to connections that were 
uncharacteristically short for the given type of 
protocol.  (Note that in the radar chart, string values are 
being mapped to integer values in order to utilize the 
same logarithmic scale as the numerical data.)  While 
uncharacteristically short connections were chosen as 
the criteria, any other type of anomaly within the 
images could also have been selected. 

It is also important to note that while the dataset 
flags connections involved in an attack as such, this 
information was not used during our analysis as it is 
would not be available in a realistic scenario since it 
would require a significant amount of human effort to 
classify the same number of records.  The ultimate goal 
of this effort is to demonstrate how a small amount of 
human-lead analysis can be magnified through 
automation.   

 
 

 
 
Figure 5:  Radar Chart – June 22, 1998 
 
The resulting data was then fed through a Naïve 

Bayes classifier for training, then tested against several 
days worth of data as shown in figures 6, 7 and 8.  
From these results, we can easily identify the criteria 
used during the analyst-supervised analysis phase:  
telnet sessions with a short duration.  While there are 
many other techniques that could have been applied to 
find such occurrences, it should be noted that this 
process does not require any amount of technical skills 
from the analyst, as the classifier will attempt to 
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determine the criteria automatically.  Figures 6, 7 and 8 
clearly show that we were successfully able to 
determine the criteria used by the analysts during the 
supervision phase through use of the Naïve-Bayes 
classifier, and then automate this analysis across a 
larger set of data without need for additional analyst 
involvement. 

 

 
 
Figure 6:  Parallel Coordinates – June 23, 1998 
 

 
 
Figure 7:  Parallel Coordinates – June 24, 1998 
 

 
 
Figure 8:  Parallel Coordinates – June 26, 1998 

 
7. Conclusions 
 

 

The overall objective of this effort was to determine 
if this method can improve the analysis process by 
reducing complex visualizations into a sequence of less 
computationally-intensive components.  The analyst 
can identify anomalies.  From there, a detection 
scheme can be generated through an analyst-supervised 
data analysis process in order to find similar 
occurrences in a larger dataset. 

When discussing the efficacy of an analysis 
technique, there are two primary questions that need to 
be addressed: 

 
• Are there interesting relationships in the 

dataset?  (For instance, parallel coordinates will 
not always make it easy to identify interesting 
relationships.  This can be seen in figure 1 
where the relationships are simply 
mathematical operations.) 

• Is it possible for this technique to identify these 
interesting relationships?  (Similarly, using 
parallel coordinates to analyze a heap structure 
may not be useful either as the nature of the 
relationships cannot be adequately described 
with this technique.) 
 

As this was a proof-of-concept research effort, 
these limitations were addressed in this limited scope 
by placing certain restrictions on the dataset, and 
ensuring that interesting information did exist in the 
datasets through prior analysis an screening.  The 
choice of computational algorithm – Naïve Bayes 
classifier – used during this effort was made as the 
technique is commonly used in research as well as in 
practical applications. 

This effort was able to successfully show how 
complex parallel coordinates visualization could be 
reduced to radar charts, thus allowing analyst-
supervised learning techniques to be applied to 
automate analysis on future datasets.  This required no 
specialized knowledge from the analyst to generate a 
classification technique, and only required the selection 
of 20 records of interest.  While this workflow focused 
on parallel coordinates and used radar charts as the 
target reduction, this process could be extended to 
other visualization techniques that allow for such a 
reduction to be made. 
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