
Present but unreachable: Reducing persistent latent secrets in HotSpot JVM
Adam Pridgen
Rice University
dso@rice.edu

Simson L. Garfinkel
George Mason University

simsong@acm.org

Dan S. Wallach
Rice University

dwallach@cs.rice.edu

Abstract
Applications that manage sensitive secrets, includ-

ing cryptographic keys, are typically engineered to over-
write the secrets in memory once they’re no longer nec-
essary, offering an important defense against forensic
attacks against the computer. In a modern garbage-
collected memory system, however, live objects will be
copied and compacted into new memory pages, with the
user program being unable to reach and zero out ob-
solete copies in old memory pages that have not yet
been reused. This paper considers this problem in the
HotSpot JVM, the default JVM used by the Oracle and
OpenJDK Java platforms. We analyze the SerialGC
and Garbage First Garbage Collector (G1GC) imple-
mentations, showing that sensitive data such as TLS
keys are easily extracted from the garbage. To mitigate
this issue, we implemented techniques to sanitize older
heap pages and we measure the performance impact–
sometimes good, sometimes unacceptable. We also dis-
cuss how future garbage collectors might be designed
from scratch with efficient heap sanitation in mind.

1. Introduction

Managed memory runtime environments like Java
eliminate many kinds of programming errors that can
become security vulnerabilities. For example, Java pro-
grams are not vulnerable to buffer overflow attacks,
making Java (and other “safe” languages) attractive for
building security-critical software. Meanwhile, tech-
niques such as just-in-time compilation, hot-spot opti-
mization, and parallel garbage collection, have largely
eliminated the performance penalty of using managed
runtime environments. These features and a rich set of
standard libraries have led to a broad adoption of Java
and other such languages.

However, the HotSpot JVM introduces risk when
dealing with sensitive data [1]. Our research shows that
the HotSpot JVM allows session identifiers, passwords,
and TLS 1.2 session keys to remain in the JVM process
memory after the corresponding Java objects have been
garbage collected. Furthermore, because Java provides
no direct access to the underlying memory, developers

cannot explicitly sanitize their sensitive data once it is
no longer needed. An attacker, on the other hand, might
still be able to gain access to the raw memory through
many means, such as a hypervisor bypass attack, access
to a swap or hibernation file, or from another process
running on the same physical machine. Of course, we
hope that traditional system security mechanisms can
keep an attacker away from this data, but for the cases in
which an attacker can gain access to the JVM’s process
memory, limiting the time that sensitive data remains in
memory provides defense-in-depth security coverage.

Automated memory management falls into two cate-
gories: reference counting, which is used in Python and
Swift, and tracing garbage collection, which is used by
Java and many other language systems. Tracing garbage
collection measures reachability from a set of root ob-
jects to every object in memory. Objects that can no
longer be reached are considered garbage. Garbage col-
lectors are typically lazy; there is a gap between when an
object becomes unreachable and when the garbage col-
lector reuses that memory. GC can also re-arrange the
managed heap to help improve collector performance
and reduce pause times. This rearrangement inherently
involves copying objects, which can leave behind multi-
ple “old” copies.

In this paper we demonstrate confidentiality failures
due to a semantic gap between the language that pro-
grammers use, the language implementation, and the
underlying execution environment, echoing similar find-
ings in other areas (e.g. [2, 3]). Specifically, we estab-
lish the volume of secrets that an unsanitized heap can
expose, using a TLS web client atop Oracle’s HotSpot
JVM, driven by a synthetic load under different levels of
memory contention. We capture whole system memory
images and then use binary string searches to find TLS
keys and other sensitive data. We then make changes
to the TLS code and the garbage collector in attempt to
eliminate most of these secrets. We find that zeroiza-
tion adds a significant workload to the JVM; Section 6
provides future direction on how to design JVM systems
that do not sacrifice performance for improved confiden-
tiality.

5998

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41887
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dso@rice.edu
mailto:simsong@acm.org
mailto:dwallach@cs.rice.edu


(a). Typical SerialGC Generational Heap

(b). Typical G1GC Generational Heap

Figure 1. Heap memory layouts used by the HotSpot JVM.

2. HotSpot Memory Background

The HotSpot JVM uses generational copying to im-
prove memory management performance. This scheme
allocates new objects to a young generation and later
promotes them to a tenured generation if they are still
reachable. HotSpot implements several garbage collec-
tors, all of which follow variations of this strategy.

The young generation is partitioned into an Eden
space where objects are created (and where most die),
and two survivor spaces that hold objects that are
copied out of the Eden space. The Eden space is
further partitioned into thread local allocation buffers
(TLAB), where allocation is performed using a “bump-
the-pointer” technique to minimize the number of locks
required for multi-threaded applications. As objects age
and survive GC, they are migrated from Eden to the
survivor spaces and tenured if the objects surpass an
age threshold. Because of its focus on performance, the
JVM does not clear the contents of memory when an
object is moved from one space to another [5]. Stale
data may be overwritten as memory is reused, but these
overwrites may never happen. Figure 1a shows a typical
Java heap memory layout for this implementation.

HotSpot’s Garbage First Garbage Collector (G1GC)
uses a partitioned heap space (Figure 1b), allowing par-
allel garbage collection during incremental collection
prior to the full stop-the-world garbage collection. Fur-
thermore, G1GC does not need to collect an entire gen-
eration before a collection cycle completes. During an
incremental collection, G1GC identifies regions with the
most garbage so that a collection cycle reclaims the
most optimal regions to achieve its soft real-time goals.

G1GC tries to collect regions with the most garbage,
which is done by copying objects into a new region and
reclaiming the previous one [6].

Most garbage collectors can take advantage of addi-
tional RAM, gaining additional performance when faced
with less pressure to compact live objects and reuse
memory. We find that JVMs configured with larger
heaps generally allow latent secrets to remain longer
in RAM, improving their chance of recovery. It might
seem tempting to solve the problem of latent secrets by
limiting the heap size to compel more memory reuse,
but this tactic decreases performance.

Below the garbage collector are HotSpot’s memory
regions: large blocks of memory which might be used
by the garbage collector or might be otherwise used by
native libraries. This creates the additional possibility
that a garbage collector, finished with a region, might
release it to the region allocator, which could then reuse
it without first zeroing it.

3. Prior Work

In 2001 Viega identified that memory is not securly
deallocated in C, C++, Java, and Python runtimes [1].
Chow et al. showed that Unix operating systems and
standard libraries failed to sanitize deallocated memory;
attackers could exploit this issue to recover latent secrets
from common applications like Apache and OpenSSH.
The authors implemented proper sanitization in the Unix
operating systems with roughly a 1% impact on perfor-
mance [2, 7]. However, Chow et al.’s techniques cannot
address the latent secrets found in the HotSpot, because
the JVM uses it’s own memory management primitives.
Additional work has been done to help reduce latent se-
crets due to shared program variables with static anal-
ysis [8]; Anikeev et al. [9] proposed introducing key-
words into managed languages hinting at how to se-
curely manage object instances.

Anikeev et al. [10] study the problem of latent se-
crets in an Android runtime that uses the Dalvik VM
(DVM) and attempt to solve this problem by altering the
GC implementation. Their work mentions negative per-
formance impacts due to sanitization, but they do not
demonstrate how well latent secrets are eliminated from
the DVM heap. We investigate similar questions with
two different GC implementations and measure both the
performance impact and the effectiveness of eliminating
latent secrets.

CleanOS [11] is the most effective solution for elim-
inating the clear-text presence of latent secrets in a VM
runtime (the DVM). The researchers extended the An-
droid SDK to allow programmers to explicitly tag some
objects as sensitive data objects (SDOs) and developed

2

5999



a new GC, the evict-idle GC (eiGC), that properly sani-
tizes SDOs. Beyond programmer tagging, SDOs can be
implicitly tagged as the result of taint analysis. CleanOS
uses TaintDroid [12] to help identify sensitive data that
are sourced from SDOs (e.g. data from TLS sockets).
The eiGC protects these objects by encrypting idle ob-
ject data with an escrowed cloud application key. When
the object is idle long enough, this key is securely deal-
located. If the object is still in use by the application, the
eiGC can fetch the key from the cloud application and
decrypt the data. This approach relies on a third party
or an additional application server to manage keys in a
secure manner, which is not ideal in certain situations.

The process of extracting latent secrets from dump
files or system memory seems challenging, but many
researchers have found the task to be quite surmount-
able. For example, Harrison and Xu identified RSA
cryptosystem parameters in unallocated memory that
had been inadvertently written to untrusted external stor-
age as the result of a Linux kernel bug [13]. Halderman
et al. showed that AES encryption keys can be readily
detected in RAM from their key schedule [14]. Case
presented an approach for analyzing the contents of the
Dalvik virtual machine [15]. Similar attacks are possible
against Android smartphones, allowing for the recovery
of disk encryption keys [16] and Dalvik VM memory
structures [17]. Jin et al. used symbolic execution and
intra-procedural analysis to accurately extract the com-
position of type data generated by C++ programs [18].

Finally, there are a variety of memory disclosure at-
tacks and techniques. The most straightforward tech-
nique uses one process to read the memory of another
process utilizing a suitable device driver or kernel mod-
ule (e.g. /dev/mem or the /proc/nnn/mem devices). Be-
cause such devices are commonly exploited by mal-
ware, many operating systems no longer include devices
for reading the memory of other processes. However,
Stüttgen and Cohen developing an approach for safely
loading a pre-compiled kernel modules into memory on
running Linux systems [19]; their approach is now used
by the Rekall Memory Forensics Framework [20].

Halderman et al. developed the “cold-boot attack”
in which the DRAM memory from the target computer
is physically chilled and then transferred to a computer
that is known not to wipe memory on boot [14]. It is also
possible to physically read the contents of a computer’s
memory using hardware that provides direct memory ac-
cess (DMA). Consumer firewire interfaces, JTAG inter-
faces, and specially constructed interface cards can per-
form DMA; VöMel and Freiling survey such techniques
for acquiring main memory in computers running Mi-
crosoft Windows [21]. Consequently, the threat of an
attacker conducting a memory disclosure attack is sig-

nificant, justifying efforts to mitigate these attacks.
We note that this class of attack may apply in a va-

riety of different devices. Smartphones and laptops may
be physically stolen or otherwise captured, giving a mo-
tivated attacker physical access to the device. Cloud ser-
vices may migrate virtual machines from physical sys-
tem to system, allowing for a variety of attacks while
the VM is migrating, or accessing the system’s memory
from a potentially compromised hypervisor.

This article is predicated on the assumption that an
attacker has somehow found a way to capture an unen-
crypted system memory image; based on our survey and
direct experience, we believe that this threat is credible.

4. Measuring Latent Secrets

Here we discuss the infrastructure and software used
to measure latent secrets in the HotSpot JVM. For sim-
plicity, we used black-box analysis. Our Java client ap-
plication repeatedly made TLS connections to our in-
strumented web server, creating an abundance of latent
secrets in the heap. On the web server, our modified
OpenSSL library recorded each session’s pre-master se-
cret (PMS) and master secret (MKB). We then searched
a memory dump of our Java client’s Linux virtual ma-
chine for all of the previously logged secrets from every
TLS session.

We ran these experiments on a small cluster of PCs
running Linux KVM; the number of simultaneous vir-
tual machines were limited to avoid resource contention
and prevent measurement discrepancies. Each experi-
ment consisted of a pair of x64 Ubuntu 14.04 LTS VMs:
our synthetic client and a TLS webserver using a mod-
ified OpenSSL library. The web server used NGINX
and TLS 1.2 to serve several static web pages. The
web server VMs utilized four logical cores and 2 GiB
of RAM—enough to ensure that server performance
wasn’t the bottleneck during the experiments. The VMs
that ran the Java clients were configured with 20 GiB
of RAM and 4-CPUs when using the SerialGC and 8-
CPUs when using G1GC. VMs running the synthetic
client were rebooted at the conclusion of each experi-
ment, allowing us to restart each run from a similar start-
ing point.

4.1. Synthetic Client Functionality

Our synthetic Java client is a multi-threaded, config-
urable TLS web client. The client implements several
parameters that manipulate the memory pressure exerted
on the heap, the number of concurrent threads, the max-
imum number of HTTPS requests, and the lifetime of
a thread sending the web requests. These parameters

3

6000



Figure 2. Functional overview of our synthetic web client.

provide the ability to model basic transactions for appli-
cations such as a thick- or web-service client.

For this paper we choose two specific configurations.
Both configurations allowed up to 192 concurrent TLS
connections that were active for at least 96 seconds.
They differed in amount of heap memory allowed (e.g.
memory allocated from the JVM in the form of objects)
and by the number of requests allowed per thread. The
high memory pressure (HMP) experiment allowed allo-
cations to consume up to 80% of the JVM’s managed
memory, and the low memory pressure (LMP) experi-
ments allowed a maximum allocation of 20% from the
JVM’s managed memory.

Figure 2 shows the two main components of the syn-
thetic client. The Java Experiment Manager (JEM) man-
aged all experimental sessions (threads). The Java Ex-
perimental Sessions (JES) implemented the web client
functionality in a Java thread. A Python script started
the experiment with parameters that defined the behav-
ior of the synthetic client, the IP address of the server,
and where to store log files containing events and other
data.

The JEM was responsible for managing the num-
ber of JESs and enforcing the experimental behavior
and garbage collection parameters. The JEM controlled
the number of concurrent JESs, JES allocation behavior,
JES HTTPS requests, and the overall lifetime of the JES
thread. Parameters controlling the garbage collection
defined the frequency of collection, when to start col-
lecting, and whether or not to pause JESs after the first
GC. Our experiments also allowed us to vary the TLS
library in use (Oracle vs. BouncyCastle) and whether to
use the Apache HttpClient or a TLS on top of a basic
Java socket.

We implemented and use three different TLS web
clients in the JES. The most basic TLS client was the
“Socket TLS Client”. This type of client opened a
TLS socket to the remote server, sent a raw HTTP re-
quest as a formatted string, received data, and closed

the socket. The second client (“Apache TLS Client”)
used the Apache “HTTPComponents” library to create
an HttpClient, which then connected to the remote
host. Most of the internal HTTP mechanics were ab-
stracted away, simplifying the entire retrieval task; this
abstraction removed sensitive data like usernames and
passwords from our control. The final client (“Boucy-
Castle TLS Client”) was a variant of the Apache TLS
Client that uses the BouncyCastle cryptography library
instead of Oracle’s cryptography library. This option al-
lowed us to measure whether the TLS implementation,
itself, can contribute to the volume of latent secrets.

Each implementation made every effort to remove
excess references and prepare the connecting object for
a future collection. In the Socket TLS Client, we close
the Socket and set our references to it to null as soon
as possible. The Apache HttpClient does not have an
explicit close or shutdown API, so only references to the
Apache TLS Client and BouncyCastle TLS Client be set
to null, and we hoped its internals don’t maintain ref-
erences to sensitive data. We also note that the Apache
HttpClient uses an HttpClientConnectionManager
to manage client connections. This manager may choose
to maintain open connections to the remote hosts. Such
socket reuse makes reconnecting to an old peer much
faster, avoiding the overhead of rebuilding a TLS con-
nection, but may also contribute to the build-up of key
material in memory longer.

4.2. Memory and data analysis

Data analysis and extraction happened in three dis-
tinct phases. After an experiment, the resulting memory,
TLS session data, and web client logs containing sensi-
tive HTTP parameters such as the username and pass-
word are queued for analysis. First the analysis process
scans the memory dump for latent secrets (e.g. PMS and
MKBs) using jbgrep. This scan is conducted using two
perspectives of the memory dump. The first perspective
is the raw memory dump, which reveals all the latent se-
crets along with a count for each one found. The second
reconstructs the process memory using virtual memory
mapping, which details where the latent secret exists in
the Java process (e.g., which generational heap and the
address in the Java process).

After the latent secrets are identified and counted,
a post-processing step enumerates every HTTP request
for each JES and pairs these requests using the TLS ses-
sion data and a monotonically increasing timestamp. Al-
though we are unable to pair the exact TLS session to the
corresponding web request, such granular knowledge is
not necessary to create an approximate timeline show-
ing live objects versus latent garbage in the heap. All

4

6001



Heap # of TLS Socket TLS Client Apache TLS Client
Size Sessions Recovered Keys Recovered Keys

(MiB) # % # %
512 5000 489 9% 286 5%

1024 5000 1059 21% 499 9%
2048 10000 1845 18% 929 9%
4096 10000 3177 31% 1608 16%
8192 15000 4786 31% 3008 20%

16384 30000 9058 30% 5354 17%

Table 1. The average percentage of recoverable TLS ses-
sions from HMP clients using the SerialGC on the Oracle
HotSpot JVM.

the dead PMS and MKB data are identified, and the re-
sults are stored.

5. Removing Latent Secrets

Figure 3 combines the results of several experiments.
The preliminary experiments (shown in black) use the
Oracle HotSpot JVM to examine the retention of latent
secrets in the heap. These experiments use the selected
GC and run with a varied heap size between 512MiB –
16GiB. The number of TLS session also vary to estab-
lish a reasonable baseline of retained latent secrets in
each heap size. We collected 20 samples per memory
collection (Figures 3a – 3d) to help us identify any po-
tential variance in our measuremnts. We see the obvious
outcome where the number of recoverable TLS keys in-
creases with heap size, doubly in some cases.

Table 1 shows a sample of recoverable unique keys
from two control experiments. Specifically, the table fo-
cuses on the Socket and Apache TLS Clients using HMP
parameters using SerialGC. The Apache TLS Client has
fewer recoverable keys than Socket TLS Client, ap-
parently attributable to the larger memory footprint of
each HttpClient. The Socket TLS Client requires less
heap memory per connection because it only requires
IO buffers and a reference to the OS socket. This means
the Socket TLS Client client can make more connections
before GC happens.

Thus, the JVM process is a viable target for mem-
ory disclosure attacks. For each TLS key recovered in
our control experiments, there are roughly 1-2 copies of
the pre-master secret (PMS) data and 3-4 copies of fully
intact master key blocks (MKB), i.e., TLS session keys.
Multiple copies of key data are the result of extraneous
copies and excessive references to these copies. When
our results refer to “unique keys,” we note that an MKB
can be derived from a PMS, so if we find both, we’ll
only count them as one “unique key.”

Where are these key copies coming from? Inspec-
tion of the OpenJDK Java JDK source code reveals that

Keys recovered after GC
Bouncy Apache Sockets

Castle TLS TLS Client TLS Client
JVM Version Client

Low Memory Pressure (LMP) Results
Oracle JVM 1542 ± 92 2972 ± 81 1084 ± 84
Modified JVM 341 ± 55 827 ± 30 304 ± 117
Modified JVM/JCE 364 ± 102 848 ± 44 371 ± 89

High Memory Pressure (HMP) Results
Oracle JVM 1671 ± 86 3052 ± 60 1202 ± 86
Modified JVM 406 ± 87 944 ± 78 371 ± 94
Modified JVM/JCE 375 ± 103 1010 ± 55 387 ± 56

Table 2. The number of unique TLS keys that are recover-
able after garbage collection.

local variable references are not zeroed then set to null
and cloned byte[] values are not zeroed when they are
no longer needed, so the latent data stays in memory
until the memory gets reused. And, because of the gen-
erational structure of the GC, there may be additional
copies of older keys.

It is clear that latent secrets are a concern. When key
material from thousands of closed connections sticks
around in memory, it significantly increases the risk that
encryption keys might be compromised.

Consequently, we devised two approaches to ad-
dress this issue, both requiring changes to the OpenJDK
source code. First, we attempted to patch the Java Cryp-
tography Engine (JCE) and Java Secure Sockets Exten-
sions (JSSE). After manually auditing the code, we took
steps to ensure classes perform explicit sanitization on
local variables containing secrets, and explicit calls are
added to ensure key data is overwritten when TLS ses-
sions and sockets close. Our second approach focused
on modifying the JVM internals. Specifically, we added
code to zero memory as it was de-allocated, and to zero
all unused heap spaces after each GC-cycle.

5.1. Adding Sanitization to the JVM

We modified the OpenJDK HotSpot JVM source
code to implement a global sanitization solution in the
heap. For simplicity, we choose to modify the SerialGC
and G1GC implementations—the current and future de-
fault server garbage collectors for the HotSpot JVM.
First, we focused our efforts on cleansing the young gen-
eration in the SerialGC, and then we tackled the prob-
lem in the tenured generation. The following approach
generalizes nicely to both collectors. The emphasis of
the approach forces sanitization on the internal memory
structures of the JVM and managed heap during and af-
ter the garbage collection cycle happens.

Since generational GC partitions the heap, the algo-

5

6002



(a). Socket TLS Client with HMP parameters (b). Socket TLS Client with LMP parameters

(c). Apache TLS Client with HMP parameters (d). Apache TLS Client with LMP parameters

(e). Socket TLS Client with HMP parameters (G1GC) (f). Apache TLS Client with HMP parameters (G1GC)

Figure 3. These plots compare the results for the Socket TLS Client the Apache TLS Client. The lines show how many
latent secrets can be removed from memory by sanitizing the heap space after garbage collection. High- and Low-pressure
applications are also shown. Figures 3a-3a use the modified SerialGC and Figures 3e and 3f use the modified G1GC.

rithms and policies used to collect each generation can
vary. For example, the SerialGC young generation uses
copy-collection while the tenured generation generally
relies on mark-and-sweep followed by compaction. The
G1GC employs similar techniques to decide how and
when incremental or full collection happen. In both
cases, we tagged along with the sweep or incremental
phases, zeroing out regions of the memory correspond-
ing to dead objects. When compaction happens, we sim-
ilarly zero out the original objects, one by one, after
they’re relocated. (Unfortunately, Hotspot’s SerialGC
doesn’t ever do a giant copy-compaction during collec-
tion in the tenured space with a from-space and a to-
space, so there’s never a huge block of memory we can

blindly zero out.)
Zeroing individual objects, or arrays, as the sweep

phase or copy phase figures out that they’re garbage,
seemed like a relatively efficient change to make to the
garage collection, since the memory in question was just
recently touched, so it should already be in the CPU’s
cache. Unfortunately, this strategy required us to under-
stand all of the specific tricks that the garbage collector
uses, so we know when it’s truly safe to write zeros into
memory.

Notably, we encountered cases where invalid
dummy objects were placed in the heap. Without know-
ing this fact, we would check pointers and class types us-
ing internal APIs, and these checks caused segmentation

6

6003



faults in the JVM. After some investigation, we discov-
ered that this issue was the result of a hack to make the
heap appear to be contiguous during collection, which is
a precondition to make GC work correctly. Recall, each
TLAB is a small partition of the eden space, so the JVM
fills the empty spaces with dummy objects during GC or
when a TLAB is invalidated. We resolved this issue by
ensuring Klass pointers (i.e., pointers to the C++ repre-
sentation of a Java class) fall inside the Java metaspace,
where all Java meta-objects (e.g. classes, methods, etc.)
reside, prior to overwriting.

We also had a variety of other minor issues. For ex-
ample, dealing with primitive Java types (like byte ar-
rays) versus class types (like Byte arrays) required spe-
cific logic.

After modifying the garbage collector, we still found
latent secrets that survived, and they were outside of the
managed heap. Recall that the JVM maintains memory
blocks that are explicitly allocated and freed. Latent se-
crets were getting copied there as well. We addressed
the problem by sanitizing all internal memory deallo-
cations (similar to [2]). Leveraging the JVM’s native
memory tracking (NMT) for this task. Typically, NMT
is used to track internal memory allocations to help with
profiling, diagnostics, and debugging. For our purposes,
we used NMT to identify the size of each allocation, and
then we zero the buffer before the memory is returned to
allocation pool.

5.2. Sanitization Effectiveness

Our second set of experiments focus on assess-
ing our JCE/JSSE modifications, and we also explore
whether Oracle’s cryptography library might be respon-
sible for retaining additional latent secrets. Three differ-
ent Java runtime configurations use the SerialGC: Or-
acle HotSpot JVM, modified OpenJDK HotSpot JVM
and modified OpenJDK HotSpot JVM cryptography li-
braries; our three different TLS clients run in these en-
vironments. The JVM heap size is fixed at 4GiB, and 10
memory dumps are collected for each experimental con-
figuration. To ensure that sanitization is working prop-
erly, the JEM pauses the JES threads and performs an
explicit GC to invoke the added sanitization steps be-
fore dumping the VM’s system memory. The Socket
TLS Client experiment averages 11.9K TLS sessions,
and the Apache TLS Client and Apache TLS Client with
BouncyCastle experiments average 16.6K and 16.8K re-
spectively.

Table 2 shows the average results from this set of ex-
periments. The modified JVMs exhibit a significant drop
in the number of latent secrets present. However, this
massive reduction is mostly attributable to the sanitiza-

tion added after collecting the young generation. Since
sanitization of the heap generations depends largely on
allocation failures, the tenured generation needs more
collection activity to trigger the removal of latent se-
crets, which we realized after analyzing the GC logs.

We also see that the JCE and JSSE modifications
modestly increased the number of latent secrets in the
heap. We’re not entirely sure why this occurred. It’s
possible that our code modifications created side-effects
on the JIT compiler. For example, compiler could have
optimized out our zeroing code or perhaps the result-
ing code maintains unnecessary references to otherwise
dead objects. These negative findings reinforce the im-
portance of support from not only the garbage collector
but also the underlying JVM. Pure application-level ze-
roing of data will never adequately address the problem.

Both the “BouncyCastle” configuration and the
“Apache” configuration use the same Apache HTTP
client library, so the only significant difference is that
the “Apache” configuration is using the Oracle TLS li-
brary. Why is the BouncyCastle version so much bet-
ter? A manual inspection of the BouncyCastle code
shows that the authors make fewer copies of key ma-
terial. That said, the “Socket TLS Client” experiment
drops the Apache HTTP client library and directly drives
the Oracle TLS libraries. This gives up the performance
and concurrency features of the Apache library, but has
the fewest latent secrets. These results suggest that com-
plex interactions between libraries and networking lay-
ers can have unforeseen increases in the volume of latent
secrets.

The third and fourth experiments recreate the condi-
tions from the initial assessments to evalutate the over-
all reduction of latent secrets. The JVM heap size varies
from 512 MiB – 16 GiB, the number of sessions vary
between 5K – 30K, and the host system uses 4-CPUs
(SerialGC) or 8-CPUs (G1GC). In the third experiment,
the focus is on both the HMP and LMP configurations
of the Apache and Socket TLS Client, and the fourth
experiment only looks at HMP configurations.

Figures 3a-3d presents a progression towards elimi-
nating latent secrets in the heap using the SerialGC. In
some circumstances the volume of latent secrets stays
small regardless of heap size, while in other circum-
stances the volume of latent secrets starts small, but with
very large heaps it grows significantly. We believe this
is a consequence of the tenuring process. The GC may
not collect seemingly dead objects in the tenured gener-
ation because extraneous references to those objects are
not dead yet. Additionally, if memory pressure is inade-
quate then this generation may never be collected.

Figures 3a and 3c demonstrate that this tenuring ef-
fect on objects is mitigated, and most, if not all, of the la-

7

6004



tent secrets are eliminated. The G1GC offers improved
performance and sanitization because it uses smaller
heap regions to store objects. These partitions help facil-
itate parallel GC, and the smaller regions can lessen the
amount of memory that needs to be zeroed during each
GC, especially in the tenured generation. After some
initial experiments, we found that two explicit GC calls
are necessary to achieve full heap sanitization; the Seri-
alGC required four explicit calls to fully zero the heap.
The first explicit GC triggers an incremental collection,
and the second forces a full collection because it inter-
rupts the incremental collection.

(a). tradebeans - DayTrader Benchmarks

(b). lusearch - Text Searching Benchmark

Figure 4. The benchmarks show that our modifications
have significant effects on the GC performance. The un-
modified OpenJDK (black) benchmarks are the baseline.

5.3. Benchmarking

Overall, the findings from each of the experiments
demonstrate the difficulty of eliminating sensitive data
in a managed runtime. Now, we want to determine how
our modifications affect the JVM’s performance. We
use the Dacapo benchmark suite, version 9.12 [22] to
measure these impacts. This benchmark framework uses

several real world applications to measure runtime per-
formance, but we only show two for brevity: lusearch
and tradebeans. The lusearch benchmark performs a
number of searches over a textual corpus using lucene,
a text searching engine. The tradebeans benchmark is
a DayTrader application that interacts with an Apache
Geronimo backend and h2.

Each benchmark executes 50 times with the default
workload parameter, pre-iteration GC disabled and four
workload threads. The benchmarks run on an unmod-
ified OpenJDK HotSpot JVM and the modified JVM
with variable heap sizes (e.g. 1 GiB–16 GiB) and CPUS
(either 4 or 8). The unmodified JVM is built on the
same machine using the same build settings of our mod-
ified JVM; we take this precaution to eliminate any build
or code optimization variables that might influence the
benchmark results, which cannot otherwise be done with
Oracle’s HotSpot JVM.

Figure 4 shows the benchmark results, which are not
surprisrising. The G1GC with 8-CPUs incurred perfor-
mance penalties from sanitization: 200% in lusearch
and 21% in tradebeans. We discuss how future GC
implementations can address the performance issue in
§6.

6. Discussion and Future Work

Cleansing latent secrets from managed memory is
a challenging problem, and application or runtime de-
mands are going to dictate how these challenges are ad-
dressed. We have seen that parallel collectors like the
G1GC offer some relief for these issues, but redesigning
the JVM to provide for proper sanitization seems to be a
better alternative in terms of performance. CleanOS ex-
emplifies how these modifications to both the managed
heap and the software VM imprpove security [11]. This
extension to Android encrypts sensitive data objects in
place, and then when the object is no longer needed
or it’s idle, the key is securely deallocated. However,
when considering server-side changes, re-engineering
the JVM should also consider dealing with sensitive na-
tive IO operations, shared variables in applications [8],
and incorporating explicit data lifetimes into the pro-
gramming language [7, 9].

A feasible strategy explicitly segregates sensitive
data into its own monitored space that identifies and re-
moves latent secrets promptly. Developers need the abil-
ity to define data lifetimes when writing their code. Java
currently has meta-data tags, known as annotations, that
help with the compile-, build-, and runtime operations.
Data lifetime annotations could help the JVM handle,
store, and sanitize these data items without impacting
other code.

8

6005



Figure 5. A generational heap layout concept that uses a
monitored space where sensitive data is stored and main-
tained.

Figure 5 shows a hypothetical heap with an addi-
tional monitored space. In the monitored space, memory
might be explicitly reference counted, allowing for im-
mediate sanitization when an object dies. Furthermore,
these objects could have explicit “destroy” APIs, so ap-
plications can explicitly kill them or an executive task
can reclaim the object. Functionally, references from the
main heap to the monitored space would act like weak
references, making it clear to the application author that
sensitive, monitored data could disappear at any time,
and must be checked explicitly before each use. Such
a strategy sounds straightforward, but it would have a
variety of problems. For example, sensitive data can
touch multiple layers of the protocol stack. Zero-copy
IO techniques (e.g., IO-Lite [23]) could help with this,
but require the entire stack to be engineered around a
particular buffer management strategy. Changes like this
would break existing APIs and require re-engineering of
libraries.

7. Conclusion

Java and the HotSpot JVM will likely be around for
decades to come. This runtime offers a rich set of devel-
opment tools and libraries that help engineers construct
and deploy useful software. However, servers and ser-
vices are susceptible to a number of attacks through a
variety of vectors, so there is no guarantee that the sys-
tem where the software executes will remain free from
compromise. Attackers evolve quickly, and they will re-
alize that the JVM does not effectively sanitize internal
or Java heap memory. This lack of sanitization can com-
promise sensitive data and lead to unforeseen impacts
and consequences. We have taken a proactive approach
to this problem by measuring its existence and develop-
ing several strategies to help mitigate the problem.

Problems with managed runtime environments like
Java and the JVM are well known, but they are not well

understood. Our research provides several fundamen-
tal elements. We establish the heaps capacity to re-
tain latent secrets. Furthermore, we show that as heaps
increase in size the number of latent secrets also in-
creases. Cryptographic libraries should protect sensitive
data such as keys, but we find that Oracle’s JCE imple-
mentation of TLS 1.2 does not attempt to eliminate key
data.

Given the lack of sanitization in the Java heap, we
demonstrate several approaches that reduce the accumu-
lation of sensitive data. Used together, the number of
TLS keys are reduced dramatically. To accomplish this
feat, we first modify the JVM to zero unused heap space
in the young generation. Second, the tenured genera-
tion is also wiped when the dead objects or live objects
are encountered during the mark-sweep-compact collec-
tion algorithm. We also zero unused heap space after the
garbage collection, showed these approaches work for
both the SerialGC and the G1GC.

We define how to improve performance of garbage
collection implementations while keeping data security
in mind. Our proposed design modifies the overall struc-
ture of the heap, carving out a segment specifically for
sensitive data. The design also exploits Java annotations,
which can be used to inform the runtime about how to
properly handle specific types of data. This design keeps
execution and runtime efficiency in mind while allowing
for the timely and effective sanitization of data.

8. Acknowledgments

Special thanks to the The Cover of Night, LLC for
providing hardware and infrastructure. This research
was supported in part by NSF grants CNS-1409401 and
CNS-1314492 and the National Physical Science Con-
sortium Fellowship.

9. References

[1] J. Viega, “Protecting sensitive data in memory,”
2001.

[2] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum, “Understanding data lifetime via
whole system simulation,” in Proceedings of the
13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, (Berkeley, CA, USA),
pp. 22–22, USENIX Association, 2004.

[3] V. DSilva, M. Payer, and D. Song, “The
correctness-security gap in compiler optimiza-
tion,” in IEEE CS Security and Privacy Workshop,
(San Jose, CA), 2015.

[4] P. Stirparo, I. N. Fovino, and I. Kounelis, “Data-

9

6006



in-use leakages from android memory - test and
analysis,” in Wireless and Mobile Computing,
Networking and Communications (WiMob), 2013
IEEE 9th International Conference on, pp. 701–
708, IEEE, 2013.

[5] Sun Microsystems, “Memory management in the
java hotspottm virtual machine,” Apr. 2006.

[6] D. Detlefs, C. Flood, S. Heller, and T. Printezis,
“Garbage-first garbage collection,” in Proceedings
of the 4th international symposium on Memory
management, pp. 37–48, ACM, 2004.

[7] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum,
“Shredding your garbage: Reducing data lifetime
through secure deallocation,” in Proceedings of the
14th Conference on USENIX Security Symposium
- Volume 14, SSYM’05, (Berkeley, CA, USA),
pp. 22–22, USENIX Association, 2005.

[8] K. Gondi, A. P. Sistla, and V. Venkatakrishnan,
“Deics: Data erasure in concurrent software,” in
Secure IT Systems, pp. 42–58, Springer, 2014.

[9] M. Anikeev and F. Freiling, “Preventing malicious
data harvesting from deallocated memory areas,”
in Proceedings of the 6th International Conference
on Security of Information and Networks, pp. 448–
449, ACM, 2013.

[10] M. Anikeev, F. C. Freiling, J. Götzfried, and
T. Müller, “Secure garbage collection: Preventing
malicious data harvesting from deallocated java
objects inside the dalvik vm,” Journal of Informa-
tion Security and Applications, vol. 22, pp. 81–86,
2015.

[11] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda, “Cleanos: limiting
mobile data exposure with idle eviction,” in Pre-
sented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 12), pp. 77–91, 2012.

[12] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smart-
phones, osdi vancouver,” 2010.

[13] K. Harrison and S. Xu, “Protecting cryptographic
keys from memory disclosure attacks,” in Depend-
able Systems and Networks, 2007. DSN’07. 37th
Annual IEEE/IFIP International Conference on,
pp. 137–143, IEEE, 2007.

[14] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-
man, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold-boot attacks on encryption keys,”
Commun. ACM, vol. 52, pp. 91–98, May 2009.

[15] A. Case, “Memory analysis of the dalvik (android)

virtual machine,” in Source Seattle, Dec. 2011.
[16] T. Müller and M. Spreitzenbarth, “Frost: Foren-

sic recovery of scrambled telephones,” in Pro-
ceedings of the 11th International Conference
on Applied Cryptography and Network Security,
ACNS’13, (Berlin, Heidelberg), pp. 373–388,
Springer-Verlag, 2013.

[17] C. Hilgers, H. Macht, T. Müller, and M. Spreitzen-
barth, “Post-mortem memory analysis of cold-
booted android devices,” in Proceedings of the
2014 Eighth International Conference on IT Se-
curity Incident Management & IT Forensics, IMF
’14, (Washington, DC, USA), pp. 62–75, IEEE
Computer Society, 2014.

[18] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki,
A. Gurfinkel, J. Havrilla, and P. Narasimhan, “Re-
covering c++ objects from binaries using inter-
procedural data-flow analysis,” in Proceedings of
ACM SIGPLAN on Program Protection and Re-
verse Engineering Workshop 2014, p. 1, ACM,
2014.

[19] J. Stttgen and M. Cohen, “Robust linux memory
acquisition with minimal target impact,” Digital
Investigation, vol. 11, Supplement 1, pp. S112
– S119, 2014. Proceedings of the First Annual
DFRWS Europe.

[20] M. Cohen, “Rekall memory forensics framework,”
in DFIR Prague 2014, SANS DFIR, 2014.

[21] S. VöMel and F. C. Freiling, “A survey of main
memory acquisition and analysis techniques for
the windows operating system,” Digit. Investig.,
vol. 8, pp. 3–22, July 2011.

[22] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, et al.,
“The dacapo benchmarks: Java benchmarking de-
velopment and analysis,” in ACM Sigplan Notices,
vol. 41, pp. 169–190, ACM, 2006.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-
lite: A unified i/o buffering and caching system,”
in Third Symposium on Operating Systems De-
sign and Implementation (OSDI’99), (New Or-
leans, LA), Feb. 1999.

10

6007


