

Understanding the Relations Between Iterative Cycles

in Software Engineering

Henri Terho, Sampo Suonsyrjä, Kari Systä and Tommi Mikkonen

Tampere University of Technology, Tampere, Finland

{henri.terho, sampo.suonsyrja, kari.systa, tommi.mikkonen}@tut.fi

Abstract

Iterations are one of the most successful

mechanisms in software development to ensure that the

resulting system is satisfactory. Due to its strengths,

various kinds of iterations have been integrated to

software development with varying goals. In this

paper, we consider different types of iterations related

to software development, including prototyping,

incremental development, sprints as in e.g. Scrum, and

iterations as defined in Lean Startup. The goal is to

understand the relations between the types of

iterations, and to find out what kind of similarities and

differences they have with each other. As a result, we

find that while the goals are different, it is possible for

the iterations to coexist, so that one form of iteration is

used as a tool to complete the goals of another.

1. Introduction

While often considered as a modern approach

compared to plan-driven, waterfall-style approaches,

iterative development has a long history – the

application of iterative and incremental development

dates as far back as the mid-1950s [1]. While no single

iterative approach was dominant and numerous

differences between methods existed, they all shared

the view to avoid a single-pass, sequential, document-

driven, gated-step process [1].

Different iterative methods and techniques for

different phases of software development have been

proposed by the software engineering community. For

example, prototyping [2], Scrum [3] and, more

recently, Lean Startup [4] share an iterative way of

working. However, these techniques have born from

different viewpoints, and they are to be used at

different stages and for different purposes in the

development process. For instance, while sprints are

used to manage weekly tasks [3], Lean Startup is used

to test initial product viability [4].

Since the term iteration is used in so many

contexts and meanings, ranging from a minimum

viable product that can be used to test business

hypothesis to full-blown new versions of software

products, it is not surprising that the overlapping use of

methods can cause confusion in the process. The

situation is further complicated by the fact that

numerous stakeholders, with different terminology but

partly the same terms, often participate in software

development activities in different roles, such as

customer, domain specialist, project and product

manager and developer, to name some common ones.

The communication problems between the

stakeholders of the software development process are a

major issue in software development. The different

goals of different stakeholders can result in conflicts

between priorities even though all are in their own

opinion speaking the same language. These problems

are exacerbated in large organizations, where

communication between stakeholders is already a

larger issue in its own. If the knowledge of the

different types of iterations and their targets, attributes,

and stakeholders would be improved, the strengths of

all the cycles could be better utilized. This in turn

would lead to more integral working between projects

and organizations, and creating common tools and

vocabulary to the whole development team.

Some authors claim that in the end, the cycles

culminate in running code that is continuously

maintained [5], but we assume a wider view. We claim

that iterations also serve other purposes, and that

iterations proposed by different approaches are inter-

related but not the same. We believe that when

understood properly, these different cycles could

actually result in better overall view of the product

development and communication between the different

stakeholders in software development. This better view

can be utilized to optimize the usage of resources,

understand feedback better and make better decisions

on the development track of the project as a whole,

resulting in higher quality products.

5900

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41874
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

In this paper we analyze similarities, differences,

and other relations between the different forms of

iterations used in software development. The paper has

been inspired by earlier work regarding how software

startups handled product development [6]. Extending

this work to cover the different types of iterations

instead of simply product strategy introduces more

possibilities to apply the results in practice.

The rest of this paper is structured as follows. In

Section 2 we introduce the iterations in the selected

approaches together with a brief comparison of their

characteristics, goals, and motivations. In Section 3, we

shift the focus to the various targets of software

development cycles. In Section 4, we discuss the

stakeholders of software development, and in Section 5

we address the attributes of the various cycles. In

Section 6, we provide a synthesis of the results. In

Section 7 we draw some final conclusions.

2. Background and Related work

The researchers and practitioners of software

engineering have introduced several ways to iterate in

software development. These different types of

iterations are used in different context but have several

similarities. Managing these iterations takes work and

specific attention, as well as balancing between time to

market [7].

As also discussed by Berente and Lyytinen,

iteration is actually a multi-dimensional issue where

different levels of iteration always happens in a

software project, be it cognitive or guided by the

process [8]. In this paper, however, we focus more on

the different forms of iterations as methods and on

their various characteristics as such. More precisely,

we analyze similarities, differences and other relations

between the different forms of iteration in four

different setups. The analyzed iteration types are the

following:

 Prototyping. Prototypes enable a high degree of

user evaluation and initiates a learning process for

the end users and developers of the system [2].

 Incremental development. The features of the

software are grouped so that the most important

features are implemented first, and the subsequent

iterations complement the software [9].

 Sprint. Popularized by Scrum [3], sprints contain

time-boxed sets of features selected for

implementation.

 Lean Startup. Popularized by Eric Ries, Lean

Startup is an iterative development method for

creating products that users actually want and are

ready to pay for [4].

As the starting point of our study, we next briefly

review the different iteration types together with the

drivers behind these approaches.

2.1. Prototyping

Software development approaches that are based on

prototyping have been developed for situations where

the work steps of a project cannot be clearly detailed

before execution [10]. Prototyping incorporates many

styles, including iterative, rapid, evolutionary,

throwaway incremental, and mock up prototyping [11].

Stephen and Bates [2] define the prototype through two

common characteristics:

1. The prototype enables a high degree of user

evaluation, which then substantially affects

requirements, specifications, or design.

2. The prototype initiates a learning process for users

and developers of the system.

Hierarchically, prototypes can be divided into

throwaway and evolutionary prototypes. Throwaway

prototypes are discarded after their initial use, but

evolutionary prototypes are used as a basis for further

development. Thus, development based on

evolutionary prototypes goes through sequences of re-

design, re-implementation and re-evaluation without

knowing the complete set of requirements beforehand

[11]. Although the exact requirements for further

development might be unclear, the implementation

choice still matters as large parts of the code will be

reused. In contrast, the intended further use of

throwaway prototypes is clear from the beginning – its

code will not be used.

2.2. Incremental Development

The Guide to the Software Engineering Body of

Knowledge defines incremental development as

“An incremental model produces successive

increments of working, deliverable software based on

partitioning of the software requirements to be

implemented in each of the increments. The software

requirements may be rigorously controlled, as in a

linear model, or there may be some flexibility in

revising the software requirements as the software

product evolves.” [12].

While incremental development is often considered

a somewhat modern technique, Craig Larman and

Victor Basili argue that its application dates as far back

as the mid-1950s [1]. In incremental development,

completed increments are deployed and taken into use.

A particular feature of incremental development is that

all increments are planned according to the needs of

the users and the development gets feedback from the

5901

real usage for designing and deploying later

increments. Still, a plan over multiple increments to

come is commonly made, so that each increment can

be used to drive the design towards future

requirements. In terms of concrete realizations, RUP

introduces four distinct project life cycle phases:

 Inception: Scope the system so that there is a

valid baseline initial budgeting.

 Elaboration: Mitigate the key risks; execute

problem domain analysis; define baseline

architecture.

 Construction: Build the system.

 Transition: Take the system to production.

While it is possible to advance in iterative cycles

within each phase, the above phases, when repeated,

form the incremental development cycle as defined by

RUP. Consequently, each cycle is planned almost to

the extent as a one-off product would be planned, thus

resembling the waterfall model. However, it is

common that some of the features are pushed to

subsequent releases, in particular if they do not contain

near-term value for end users.

2.3. Sprints in Agile Methods

Two core values in the Agile manifesto are

"Customer collaboration over contract negotiation" and

"Responding to change over following a plan" [13].

For obvious reasons, these values conflict with

rigorous control and up-front definition of the

requirements that are often associated with

development methods where a longer-term view is

used, or, in general, with any precise interpretation of a

pre-made project plan.

Many concrete incarnations of agile methods, for

instance XP and Scrum, include time-boxed sprints

where technical activities take place. The primary

purpose of these sprints is coordination and

management of work. Furthermore, Scrum proposes

the production of potentially deliverable products in all

sprints, where the content of each sprint is usually

defined according to development and customer

collaboration aspects – not based on the incremental

needs of a user.

2.4. Lean Startup

Lean Startup is a methodology for building

enterprises, not software [4,13]. The methodology has

been crafted in software context and it shares the idea

of frequent iterations with many software engineering

methods. In a nutshell, building a successful product

for a software startup consists of multiple short

iterations each of which surveys systematically the

context of the conceptualized product.

The iteration in Lean Startup starts with an idea that

includes hypotheses about the customer behavior or the

context of usage. When the first hypotheses have been

validated, the first minimum viable product (MVP) can

be built. This product is a version that enables a full

turn of the build measure learn loop with minimum

effort. For each loop the main goal is to learn if the

business and product hypothesis is valid – in other

words, whether the product is actually something that

someone needs or wants and can it create a scalable

business.

Based on the above, the goal of the process is to

evaluate the business validity of the proposition.

However, technological development is required in

most cases to do such evaluation, in particular in the

context of software development [15].

3. The Changing Targets of Software

Development Cycles

Many challenges in software development have led

to different kinds of iterations. Firstly, there are many

unknowns related to technologies, requirements and

business. This means that iterations are needed to

manage risks and learn from feedback. For complex

systems, these challenges exist even if the context of

the project is stable. However, the context – customer

needs, technologies, and so on. – usually change. Thus

iterative approaches are used to effectively respond to

changes. The fact that the challenges vary in their

nature means that we must use iterations for several

purposes. In the following, we formulate the types of

problems that match the types of iterations addressed

in this paper. In addition, the role of iterations within

the larger scope of development is addressed.

3.1. Prototyping

The goal of prototyping is probably the most

straightforward, when considering the different types

of iterations – build a prototype simply to figure out

what is doable and what is not. Prototyping is often

needed to get started with something new, be it

implementation technique or domain. In addition to

testing or trying a technology, prototyping is used to

communicate ideas to stakeholders.

The value of a prototype is not primarily in the

developed software or its use. The value is in the

learnings and communication. The developer

organization learns from the issues in development,

benchmarks and stakeholder feedback. In addition, the

prototype helps in communicating the idea or product.

Prototyping methods have a long-standing tradition

also in the field of human-computer-interaction (HCI)

5902

[16]. In general, prototypes range from high to low

fidelity, i.e. from low-cost methods such as paper

sketches to more detailed propositions like interactive

web applications. Low-fidelity methods have proven to

be highly efficient in validating designs and predicting

large problems. On the other hand, high-fidelity

methods have been used for example for assuring

management and other stakeholders.

While often considered as small experiments,

prototypes of considerable size also exist. For instance,

the Cloudberry project [17] – obviously beyond a

simple, single-developer experiment of a particular

detail – can be regarded as a prototype for

demonstrating the feasibility of web technologies in the

development of a mobile device. In fact, although

seldom mentioned explicitly, many totally new

software systems can be traced back to prototypes

created to test technology, which, when deemed mature

and applicable, are eventually refined to products.

Clearly, organizing such complex prototypes needs

different kinds of iterations to help the development.

3.2. Incremental Development

Almost any computing system we are accustomed

to is a result of several evolutionary steps. These steps,

reflecting the understanding of user needs at a

particular moment, as well as development capabilities

available at the time, are used to create a product in

such a way that changing technology during the

development can be integrated into the process to

create simpler, better results which are easier to

maintain and develop further.

While often associated with new features

introduced in each iteration, it is sometimes in the eye

of the beholder how much iterations have in common.

For instance, while one can consider the different

Microsoft Windows versions as increments, it is

questionable to what extent the different iterations

share their code base. Thus, incremental development

can be considered from various angles, one angle

considers the technical origins, and others focus on the

development organization and end users of the system.

While the last angle is often overlooked, keeping

customer happy with new and improved features is an

important part of incremental development – indeed, if

no new versions emerge, the users may think that the

development has ended and there is no maintenance

left, encouraging them to start using another,

competing system.

3.3. Sprints

Sprints as understood in Scrum [18] most likely

have the most concrete, unambiguous definition of any

cycle in software engineering. Simply put, sprints are

time-boxed, repeated cycles during which software

development takes place. Each cycle contains a

number of events, such as Daily Scrum and

retrospective, which help in execution and coordination

of the work, as well as enable improving the ways of

working. Thus, sprints can first and foremost be

considered as a way to organize software development,

and to associate the work with fixed starting and

ending points. What happens during the sprint is up to

the Scrum team that can independently decide how to

meet the targets of the sprint. Since the focus and

commitment is on one sprint at a time, the team can

respond to change only in the next sprint. However,

since the sprints are usually short, between 2-4 weeks,

it is usually enough to shift the focus to next tasks only

in the next sprint.

Based on the above, sprints can be regarded as a

project management mechanism for the development.

Advancing in increments enables frequent evaluations

as well as forces the developers to verify and validate

the system each time a sprint terminates, making it a

solid starting point for the development.

3.4. Lean Startup

In Lean Startup, iterations consist of three phases –

build, measure, and learn as illustrated in Figure 1.

Each phase plays a role in gathering justifiable

evidence if profitable, scalable user needs exist – and

what is a feasible business model or a product to fit to

the model. The goals of the phases are presented in the

following:

 Build: Create the simplest possible version of the

system that fulfills the intended mission of the

system, based on hypothesis of the users need.

 Measure: Collect data from the use of the system,

preferably so that it gives statistically significant

evidence that either validates or rejects the

hypothesis.

 Figure 1 Build Measure Learn Cycle

5903

 Learn: Based on measurements, determine

whether or not the mission was accomplished in

accordance to the hypothesis. If the mission was

not accomplished, redefine the hypothesis and

initiate a new build measure learn cycle.

It is important to notice that while software may be

built as a part of executing the Lean Startup process, its

goal is to validate a business hypothesis, not to be a

full-fledged product. Hence, the notion of Minimum

Viable Product (MVP) is used to denote a version of

the system that includes enough elements to judge its

business potential, but which by no means is a

complete product.

3.5. Summary

The targets of the different cycles are presented in

Table 1 and briefly summarized in the following.

 For prototyping, the main focus lies in turning

ideas, thoughts, and intuitive designs into something

concrete. The target is communication: either to get

feedback or to communicate the idea to external

stakeholders. This is achieved by turning ideas,

thoughts, and intuitive designs into something

concrete. Although the produced solutions can be small

and cover only one perspective, prototyping is a great

way to take the first steps towards the final product.

The main target of Lean Startup’s build measure

learn loop is to learn by creating something concrete

and validating the learning with a specified audience.

In contrast to prototyping, the context of learning is

business driven although metrics such as amount of

new users can be seen software driven as well.

However, both incremental development and

sprints emphasize the software and its production. In

the incremental development new version are delivered

to users one after another and in extreme cases the

software development is seen as a continuous flow of

new software versions. With such premise, the

software team can take advantage of new emerging

technologies that become available during the software

development. On the other hand, the team can also

respond to the changing user needs faster and easier

than with more traditional methods.

Although sprints might guide the software teams

into the same kind of benefits as incremental

development, one of their core targets is to freeze at

least some parts of the user needs and requirements. In

this sense, sprints help the teams in execution and

coordination of the work by providing time-boxed

Table 1 Targets and Attributes of the Cycles

Cycle Targets Attributes

Prototyping Figuring out what is technically doable

 Validating designs and predicting large

problems

 Communication, assuring management

and other stakeholders

 Cycle length: From hours to months

 Team size: From one developer to a team

of developers

 Termination condition: Full stop once a

technological solution is proven to be

feasible.

Incremental

development
 Provide value to the customers already

during the project.

 Taking advantage of new technology

 Assuring the stakeholders that the

development is continuous and on-going

 Cycle length: Any given time that is

needed to get a new increment done

 Team size: Software team (and the related

stakeholders)

 Termination condition: When the new

software asset / increment is considered

done.

Sprints Responding to emerging user needs

 Helping in execution and coordination of

the work

 Improving the ways of working

 Guiding to frequent evaluations of new

parts of the system

 Cycle length: Evenly one to four weeks

 Team size: Software team

 Termination condition: Calendar deadline

Lean Startup Gathering justifiable evidence if profitable,

scalable user needs exist.

 Evaluating if a hypothesized business

model is feasible to satisfy the user needs.

 Learning by creating MVPs.

 Cycle length: From days to weeks

 Team size: From a single developer to a

whole software team.

 Termination condition: Once the learning

goal can be validated with statistically

significant results.

5904

segments with clear targets.

4. Role of Stakeholders

Almost all software development projects involve

various stakeholders. At least the following roles are

commonly identified:

 Individual developers that participate in the

development in different roles, like designer,

programmer, and tester. Together, they form the

development team, which can sometimes be

considered as a separate stakeholder as well.

 End-users are the individuals and organizations

that eventually use the designed software system.

Most commonly the developers and the end-users

have different backgrounds and therefore have a

different view to the system.

 Customers represent the organization that make

the investment decision, provide the requirements

and decide if the software system is to be taken to

use. The relation between end-users and customers

is often overlapping – you first buy a system, and

then you use it – but at times the roles are distinct.

 Sponsors are investors that help development

team to start their work, when a paying customer

is still to be found or if the current revenue stream

does not yet cover the development costs.

 Software organization provides support for the

developers. For instance, they may provide

support for product management, marketing, sales,

and number of other things that fall beyond the

actual development. Obviously, each specialized

actor inside an organization can be considered as

yet another stakeholder, but for the purposes of

this paper, they can all be treated similarly.

Stakeholders of the different iterative software

development cycles are described in the following

subsections and summarized in Table 2.

4.1. Prototyping

Prototyping involves several stakeholders.

Prototypes may be used to collect feedback from any

of the above stakeholders. End-users and customers

can give feedback on usability and feature set of the

developed product. Sponsors and organization can give

feedback about profitability and other business aspect.

In addition, prototypes are used to communicate the

content of the designs and to gain commitment from

any of the stakeholders. Based on the information the

stakeholders can plan their own activities and increase

their interest and trust in developed software and the

development team.

4.2. Incremental Development

In incremental development a software

organization repeats its development activities one

Table 2 Stakeholders of the Cycles Summarized
Cycle Developers End-users Customers Sponsors Organization

Prototyping Learn about the

tested topic

Get early

information about

the forthcoming

software

Get early

information

about the

forthcoming

software

Get

confirmation

about the

progress

Get early

information for

supporting actions

Incremental

development

Can concentrate

on manageable

set of tasks.

Reduced risk

with early

feedback.

Early value:

can start using

SW and features

earlier.

Can give

feedback.

Early value:

can start using

SW and features

earlier.

Get information of

the progress.

Can give feedback.

Get reliable

information of the

progress.

Get early revenue.

Get reliable

information of

progress.

Sprints Can

Concentrate on

manageable set

of tasks.

Reduced risk

through early

feedback.

Can give early

feedback at the

end of each sprint.

Can give early

feedback at the end

of each sprint.

Can give early

feedback at the

end of each sprint.

Can give early

feedback at the

end of each sprint.

Ability to change

direction due to

changed business

situation.

Lean Startup Get fast

feedback to

minimize waste

Early value:

can start using

SW and features

earlier.

Ability to give

feedback.

Get early

information

about the

forthcoming

software

Get fast feedback

on the business

potential.

Get fast feedback

on the business

potential.

5905

round after another. In the case of RUP, these activities

include inception, elaboration, construction, and

transition that are further decomposed to smaller

increments. Also, different kinds of variants can be

derived for company-specific use. Feedback from end

users, including also usage data collection, as well as

marketing and sales can be taken into account as a part

of the development, and in general the approach is

comprehensive in the sense that it involves almost any

possible stakeholder of the software, including

developers and testers, organizational support

functions, as well as end users and customers.

The overwhelming range of interest groups makes

it sometimes difficult to determine all the

consequences the introduction of a new version

produces. Obviously, phasing of the project means that

the set of involved stakeholders is not the same in each

phase. Furthermore, since the different phases in

themselves include several activities – such as alpha

and beta testing – defining the precise set of

stakeholders for the life-cycle is next to impossible as

every stakeholder is somehow involved at some point.

4.3. Sprints

Sprints are executed by software teams, so software

developers and testers are obvious stakeholders.

However, any outside communication with the team

takes place via a product owner, who acts as a proxy

for all other stakeholders. Therefore, the number of

stakeholders in the middle of sprints remains low.

However, after each sprint, feedback from stakeholders

is requested. Preferably an executable version of the

system is then demonstrated to other stakeholders, such

as product managers, customers, and end users to

gather feedback and foster mutual commitment to the

development. In these demonstrations stakeholders

both learn about the developed software but also have

possibilities to give feedback.

4.4. Lean Startup

As long as the decided end-result of the build

measure learn cycle is a software artifact, individual

developers are obviously entwined in the loop.

However, the software organization is likely the most

influential of the stakeholders, because the bottom line

target of an MVP is commercial. Consequently, the

software from the defined software organization term

above can many times be eased out, because it is not

uncommon that the organization for example

subcontracts the software development of their MVP.

Although the software organization might be the

one calling the last shots when building an MVP, the

influence of potential customers and investors cannot

be emphasized enough. As the main idea in the

development of an MVP is to get feedback from other

stakeholders, refining it towards something that

customers want intrinsically requires their input to the

subject. Additionally, or in some cases even with the

heaviest focus, MVPs can be developed to assure and

engage investors.

5. Attributes of Software Development

Cycles

To understand the software development cycles and

their nature more deeply, we select three dimensions

that are continuously present with them. These

descriptive dimensions are cycle length. work effort or

team size per cycle, and a termination condition for a

cycle or how is each cycle validated

5.1. Prototyping

Prototyping can have the shortest length of the

development cycles, if the low-fidelity paper sketches

are considered – such can be completed with a minimal

work effort and team size of only one developer or

designer. However, be it paper sketching or

technological try-outs, the work efforts of prototyping

usually stop at once when the required result is

reached. In this sense, the amount of work effort and

time can be difficult to define in advance.

On the other hand, prototyping can involve much

more of the development organization than just one

developer. In these situations, the devoted time and

work efforts typically require far more careful

planning, i.e. risk management by the organization.

This, again, can have an impact on the required result

of the prototyping cycle as well, because the decision

whether the result is sufficient enough is not for only

one person to make. For example, a paper sketch or an

experimental design can be done by only one designer.

In contrast, when a whole organization is devoted to

prototyping whether a technological solution is

feasible, opinions on termination conditions are bound

to raise debate, thus requiring careful planning.

5.2. Incremental Development

Incremental development relies on well-planned,

established process, where each of the phases in the

life cycle form a solid basis for the subsequent phase.

For instance, only after inception it is possible to start

to elaborate the project into an implementation form,

and only an elaborated enough project can really result

in an implementation. Due to such planning, the life

cycle of a RUP project can take considerably long time

5906

to run – up to years for each iterations in the case of

complex products such as telecommunications

systems. Due to the extended period of the life cycle,

also the development effort can be considerable, up to

1000 man-years in the case of large systems.

Since each iteration in incremental development

produces a real system, the outcome for each release

includes almost any possible feedback one can

imagine. These include technical data such as code

quality measurements, test and bug reports as well as

business data such as user evaluations, sales reports,

and market research studies. The overwhelming

amount of feedback can at times be so extensive that it

is difficult to utilize all of in the design and planning of

the next version of the system.

Since the time it takes to execute a full project life-

cycle may be so long, it is not uncommon that the

personnel changes in the course of the project. This in

turn calls for a procedure to involve new persons in the

project in a planned, controlled fashion.

5.3. Sprints

One of the most important constants in sprints is

the stability of the development team, followed closely

in importance by the fact that the sprints are always of

the same length and executed to the end. The fact that

the team works together for extended periods of time

results in the ability to create realistic time and work

estimates for problems at hand, forming the key

enabler to meet the time-boxed deadlines.

5.4. Lean Startup

Although a wide range of artifacts from paper

sketches to fund raiser campaigns could be seen as

MVPs, we scope this paper to include only MVPs with

some sort of technological solutions. Even with this

limitation, however, the time and work efforts required

in each build measure learn loop can vary quite

significantly. On one hand, a landing page describing a

product idea and a built-in analytics solution can be

made in a matter of hours. On the other hand, a

detailed user interface that allows customers to act the

same way as is intended with the actual product (but

for example the real business logic is still done

manually), can take weeks only to build.

The decisive point for the length of the cycle in

these situations is the wanted end-result. With the

landing page example, the organization has to wait in

the measure phase as long as the quantitative data, such

as the page visits is statistically significant. With the

second example, however, the organization can have a

very short measure phase and gather qualitative data

from a few specific customers sufficiently to advance

to the learn phase.

5.5. Summary

Of the described iterative development cycles,

prototyping has he most variable cycles ranging from

hours with paper sketching to months spent with more

difficult technological evaluations. The team size can

vary as well, but once the prototype is evaluated as

sufficient, the development with the same learning

objective comes to an end. Similarly, cycle times vary

in the build measure learn loops with Lean Startup.

They are dependent on the set learning goals and

therefore on the MVPs under construction. The

development time of different MVPs obviously varies

case by case, but roughly the times range from days to

weeks. Obviously, the different types of MVPs need

different amounts of staff to work on them, but

typically this amount ranges from a single developer to

a software team. If the learning goals are clearly set,

the termination condition of a build measure learn loop

is clear as well – once the learning is validated.

In contrast to the varying cycle times described

above, sprints have a fixed time period, which is

usually something between one to four weeks.

Incremental development is somewhat similar to this,

as it also has fixed goal with which the cycle

terminates. However, the needed time depends so

heavily on the work effort, that the cycle time varies

dramatically from minutes to months or even years.

The same obviously applies with the needed work

effort and team size.

6. Synthesis

Table 3 presents a summary of the different types

of iterations. When considering the focus of the

described iterative cycles, prototyping and Lean

Startup share a similarity in creating a method for

experimentation. However, prototyping distinguishes

itself with a clearer focus on feasibility and

implementability rather than Lean Startup focusing on

the business side. Incremental development and

sprints, on the other hand, have their focus more on the

way the work is organized - incremental development

chopping it feature wise and sprints scoping it in time.

The motivation for using the described cycles

clearly distinguish them from each other. Incremental

development takes into account a wide mix of

background ranging from business reasons to technical

aspects and from risk management to evolving

customer needs. Sprints, on the other hand, aim to

exclude almost all of the aforementioned and liberate

developers to focus on only the technical aspects.

5907

Similar to this, prototyping scopes the development

into specific problem solving cases. Lean Startup is

something of a mix in this sense, since its motivation is

ultimately business oriented, but it surely has to take a

wide range of different aspects into account in the end.

Lean Startup and incremental development have a

similarity regarding their goals and the people they

affect. In both of them, the intention is to scope the

development work of the whole organization. The final

goal is different, however. With Lean Startup the aim

is on validating or invalidating a set business

hypothesis with a minimum amount of invested effort

and staff - this learning is the ultimate key and the

produced software artifact is almost irrelevant. On the

other hand, an organization probably does not want to

waste any work efforts either with incremental

development, but the produced software artifact is the

most important thing in this case. Therefore, also the

amount of people and different parts of the

organization can be a lot greater than with Lean

Startup.

With sprints, the goal changes again. Although the

produced software artifact is unquestionably of high

value, the main intention is to make sure that the

defined technical and work management related

aspects, such as the amount of people, stay the same

during a fixed time period. In a way, prototyping is

somewhat of a mix from each of the others. It scopes

the work into a specific problem solving case like

incremental development, but its main outcome is

learning from an experiment as with Lean Startup. In

addition, its focus is usually sharply on technical

aspects as with using sprints.

7. Conclusions

In this paper we have presented an initial analysis

of the different types of iterations. The cycles

encompass the whole of product development and its

different levels from business planning to product

refinement. The higher abstraction level cycles such as

Lean Startup and RUP can be achieved using sprints

and prototyping. This way the software development

process as a whole consists of iterations within

iterations producing an interlinking whole that is more

than the sum of its parts.

An interesting topic for further research is the

developer perspective and psychological aspect of

different types of cycles. For example, the motivational

aspects of the cycle types may be rather different. In

addition, we aim at creating a comprehensive

conceptual model that covers the different iterations.

With such, we see a lot of potential in industrial

collaboration to help us validate the model as well as to

test it in practice.

Table 3 Summarized Characteristics of the Cycles

Cycle Focus Motivation Goal Developed by

Prototyping Feasibility and

implementability

Almost always

technical in nature

Commonly executed

to explore design

space for a particular

solution.

Can involve an individual

developer, or a team of

developers if a more

complicated system is

being explored.

Incremental

development

Scoping the

technical work

feature wise.

A mix between

business reasons,

technical aspects

including risk

management, and

customer needs.

The goal is to

organize company

operations as a whole

in terms of releases.

Most commonly affects

the whole organization,

including obviously the

developers but also sales,

marketing, customer care,

and so on.

Sprints Scoping the

technical work

time wise.

Mechanism to

liberate developers

from constant

changes to a fixed set

of features to

implement during the

sprint.

Considers mostly

development aspects

and overlooks others,

in particular if

following Scrum

interpretation.

Traditionally executed by

a Scrum team up to 12

people; variations that

enable synchronization

between different teams

exist.

Lean Startup Learning and

experimenting.

Business oriented in

nature.

Validate or invalidate

a business hypothesis

with minimum

amount of invested

effort.

Usually executed only by

a minimal team.

5908

Acknowledgments

The authors wish to thank Need for Speed program

funded by TEKES, the Finnish Funding Agency for

Innovation, for its support.

References

[1] C. Larman and V. R. Basili, “Iterative and incremental

development: A brief history,” Computer, vol. 36, no. 6, pp.

47–56, Jun. 2003. [Online]. Available:

http://dx.doi.org/10.1109/MC.2003.1204375

[2] M. Stephens and P. Bates, “Requirements engineering by

prototyping: experiences in development of estimating

system,” Information and Software Technology, vol. 32, no.

4, pp. 253–257, 1990.

[3] K. Schwaber, “Scrum development process,” in Business

Object Design and Implementation. Springer, 1997, pp. 117–

134.

[4] E. Ries, The lean startup: How today’s entrepreneurs use

continuous innovation to create radically successful

businesses. Crown Books, 2011.

[5] T. Mikkonen and K. Systä, “Maximizing product value:

Continuous maintenance,” in Product-Focused Software

Process Improvement. Springer, 2014, pp. 298–301.

[6] H. Terho, S. Suonsyrjä, A. Jaaksi, T. Mikkonen, R.

Kazman, and H.-M. Chen, “Lean startup meets software

product lines: Survival of the fittest or letting products

bloom?” 2015.

[7] M. Meboldt, S. Matthiesen, Q. Lohmeyer et al., The

dilemma of managing iterations in time-to-market

development processes, 2012.

[8] Berente, Nicholas, and Kalle Lyytinen. "Iteration in

systems analysis and design: Cognitive processes and

representational artifacts." Sprouts: Working Papers on

Information Environments, Systems and Organizations 5.4

(2005): 178-197, 2005.

[9] P. Kruchten, The rational unified process: an introduction.

Addison-Wesley Professional, 2004.

[10] C. Sandor and G. Klinker, “A rapid prototyping software

infrastructure for user interfaces in ubiquitous augmented

reality,” Personal and Ubiquitous Computing, vol. 9, no. 3,

pp. 169–185, 2005.

[11] C. Floyd, “A systematic look at prototyping,” in

Approaches to prototyping. Springer, 1984, pp. 1–18.

[12] P. Pierre Bourque and R. e. Fairley, Guide to the

Software Engineering Body of Knowledge, Version 3.0.

IEEE, 2014.

[13] M. Fowler and J. Highsmith, “The agile manifesto,”

Software Development, vol. 9, no. 8, pp. 28–35, 2001.

[14] S. Blank, The four steps to the epiphany. K&S Ranch,

2013.

[15] A. Maurya, Running lean: iterate from plan A to a plan

that works. ” O’Reilly Media, Inc.”, 2012.

[16] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and

A. Vera, “Breaking the fidelity barrier: an examination of

our current characterization of prototypes and an example

of a mixed-fidelity success,” in Proceedings of the SIGCHI

conference on Human Factors in computing systems. ACM,

2006, pp. 1233–1242.

[17] A. Taivalsaari and K. Systä, “Cloudberry: An html5

cloud phone platform for mobile devices,” Software, IEEE,

vol. 29, no. 4, pp. 40–45, 2012.

[18] K. Schwaber and J. Sutherland, “The scrum guide,”

Scrum Alliance, 2011.

5909

