

Trading Discipline for Agility? Questioning the Unfaithful
Appropriation of Agile Software Development Practices

Akbar M. Saeed
Wilfrid Laurier University, Canada

asaeed@wlu.ca

Abstract

Agile software development practices are rapidly

replacing traditional and apparently more disciplined
methodologies. However, empirical evidence suggests
that organizations experience varying levels of success as
more structured processes are traded for more agile ones.
Using an autoethnographic approach, we reflect on how
the various practices of XP discipline time-space
relations amongst developer, customer and code. In this
new form of disciplining, we contend that each actor is
located in time and space in disciplined or controlled
ways. We conclude that the faithful appropriation of the
entire complement of agile development practices seems
to be critical to the novel disciplinary positioning that
they together collectively promote.

1. Introduction

In today’s uncertain business environments,
organizations are increasingly relying on information
technology to enhance their agility and allow them more
flexibility in choosing strategic direction [1][2].
Consequently, information systems need to be regularly
modified to support emergent business needs [3][4].
Traditional software development processes have been
unable to respond effectively to the rapid pace of change
in the business environment due to the overwhelming
focus on documentation and process [5]. As a result,
many software projects seem to become outdated even
before they are finished [6]. In an attempt to cope with
such volatility, many managers are looking to ‘lighter’
more agile development methodologies to promote
manoeuvrability and speed of response [1][7][8][9].

A recent industry survey found that 88% of 3051
respondent organizations were practicing some form of
agile management techniques to develop internal
applications [10]. However, upon closer inspection, this
appropriation seems to be occurring in an unfaithful
manner as companies adapt only particular agile
development principles to suit the needs of different
contexts [11]. The appropriation perspective asks “[...]

whether people use the technology as its designers […]
intended” [12] p15. The user has the ability to deviate
from what was originally intended by the designer and
use the features in a different way. Desanctis and Poole
originally referred to this as unfaithful appropriation [13].
For example, even though Daily Standup meetings were
practiced by 85% of respondent organizations, only 55%
were using Coding Standards, only 30% were using Pair
Programming and only 25% were using Continuous
Deployment. In other words, managers seemed to be
adopting those agile methods that aligned well with pre-
existing company processes. This is not surprising
considering empirical evidence that suggests the leading
cause of failed agile projects was ‘company philosophy or
culture at odds with core agile values’ [10]. Similar
findings occurred in a recent case study of a software
startup organization that had faithfully adopted some XP
techniques while blending others with traditional
approaches (see Table 1) [14]. Overall, evidence from the
field suggests that most organizations are using a more
blended approach [15][16], as agile methods are often
integrated with some upfront design and formal methods
often involve some form of iteration [17]. Without doubt,
the promises of faster time to market, better management
of changing priorities and better alignment of IT/business
objectives will ensure that agile approaches continue to
grow in popularity amongst software development
organizations [10]. However, academic research on agile
methodologies is still lacking as a more theory-based
approach to scholarship in this area is urgently needed
[18].

TABLE 1.
ADOPTION FAITHFULNESS OF XP PRINCIPLES

XP Principle

Adoption

Level

Summary

40-Hour Work
Week Full Developers worked flexible

but regular workdays.
Coding
Standards

Low to
Partial

Standards were initially
avoided but later implemented.

Collective Code
Ownership Partial

Code was officially shared but
developers exhibited
possessiveness.

Continuous
Integration Full

Code was rarely broken and
was continually linked and
compiled.

5889

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41873
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Continuous
Testing

Partial to
Full

Testing was continuous but
advance scripts were not
created. Black box testing was
phased.

On-Site
Customer Full The CEO and Analytic

Director acted as customers.

Pair
Programming Low

Programmers were
independent except when
difficulties or
interdependencies existed.

Planning Game Full
Value engineering balanced
features against time and
budget.

Refactoring Full

Modules were constantly
improved. Periodic bursts of
and dramatic improvement
occurred.

Simple Design Full Working software was
favored.

Small Releases Full Frequent (weekly) build cycles

System
Metaphor Full

Communication was simple
and informal but
unambiguous.

Adapted from [14].
This paper unfolds as follows. We begin by locating

the traditional approach to software development within
the fabric of history that has colored its evolution. Next,
we attempt to identify the traditional means by which
discipline is understood. The Capability Maturity Model
(CMM), a methodology designed to foster process
discipline in the software development process, will aid
with such an identification. We then use the declaration
known as the Agile Manifesto (www.agilemanifesto.org)
to illustrate how agile development methods have been
defined in opposition to structured, apparently more
disciplined methodology. Consequently, we will imply
that an absence of that which is considered good
discipline results in current popular characterizations of
agile development methodology. We then proceed to
disrupt this implied continuum by suggesting that agile
methods do not exist in binary opposition to structured
methods, but instead, they actualize a different form of
discipline. By way of example, we use first-hand
experiential observation data to model how the agile
programming methodology Extreme Programming (XP)
unobtrusively disciplines the time-space relations between
its actor entities (the developer, the customer and the
code). In this new form of disciplining, we contend that
each actor is located in time and space in disciplined or
controlled ways. We conclude that the faithful
appropriation of the entire complement of agile
development practices seems to be critical to the novel
disciplinary positioning that they together collectively
promote.

2. Software development approaches

2.1. The structured approach

In 1968, over fifty experts of the NATO Science
Committee convened to plot a future course for what was
then a fledgling software industry. They specifically
discussed the looming ‘software crisis’ resulting from the
production of software with low quality and a lack of
reliability [18]. Unable to chart an adequate course, they
nonetheless agreed to define the field of software
engineering as ‘the application of a systematic,
disciplined, quantifiable approach to the development,
operation and maintenance of software’ [5] p87.
Consequently, the software engineer was born into a
somewhat nefarious world, thrust into an unfamiliar
milieu where tried and trusted engineering methodology
was heralded as the ‘silver bullet’ that could finally slay
the legendary werewolf [19].

In reaction to the pending crisis and a need for greater
legitimacy, the software industry collectively centred on
defining a more disciplined software development process
[20]. Consequently, four distinct areas were defined:
requirements gathering, designing and developing of the
software, testing the results, and overall project
management [4]. Through the years, many rational
methods have been forged along these trajectories e.g.
waterfall, prototype, iterative, rapid application
development and spiral-based methodologies [21].
Referred to as heavyweight methodologies, due to their
heavy documentation and process orientation, they
attained legitimacy by drawing on well established
engineering principles. Predictably, software development
came to be characterized as a prescriptive, deterministic
and mathematical process [22]. Structured approaches
involved rigid definitions of the roles to be played,
activities to be performed and artifacts to be produced
[23]. Business requirements were solicited, specified and
extensively documented early in the cycle, and the
‘freezing’ of such requirements, early in the process, was
thought to make the application less vulnerable to
volatility [24]. Requirements were then coded in a manner
that focused on efficiency and as a result process variation
was minimized. By keeping the development processes
structured, the software product that emerged was an
authentic reflection of the original business requirements
and ‘a way to put some order into the chaotic jumble of
thoughts’ [25].

From this mode of thinking emerged the waterfall
method, aptly described as an ‘attempt to put discipline
into the software development process by forcing
understanding and documentation of the requirements
before going on to design, by forcing understanding and
documentation of design before going on to coding, by
forcing testing of the code while coding each module’

5890

[25] p57. However, such understanding is difficult and
elusive, and in particular, documentation is a ‘pain’ in the
highly chaotic software development environment
[17][26][25].

The framework of the Capability Maturity Model
(CMM) was created to deal with such chaos. Originally
developed in 1993 as a tool to objectively assess
government contractors’ development processes in order
to predict their ability to deliver a contracted project
within specification and on time, CMM quickly became
popular as a general process maturity framework. The
Software Engineering Institute of Carnegie Mellon
promoted the CMM as a way to define the key elements
of what they considered to be an effective software
development process, as they argued that the benefits of
better methods and tools could not be realized in the
‘maelstrom of an undisciplined, chaotic project’ [27] p1.
Table 2 outlines the maturity levels of CMM, with
bolding (not in the original) on those phrases that seem to
reflect its underlying disciplinary principles. Notably, the
CMM is at once a reference model for appraising
software process maturity and a normative model for
helping software organizations progress along an
evolutionary path from an ad hoc, chaotic process to a
mature, disciplined software processes [28]. In other
words, CMM provides software organizations with
‘guidance on how to gain control of their processes for
developing and maintaining software and how to evolve
toward a culture of software engineering and management
excellence’ [27] p4.

TABLE 2.
MAJOR CHARACTERISTICS OF THE LEVELS OF

MATURITY IN CMM
CMM Level Major Characteristics

1
Initial

The software process is characterized as ad hoc,
and occasionally even chaotic. Few processes
are defined, and success depends on individual
effort and heroics.

2
Repeatable

Basic project management processes are
established to track cost, schedule and
functionality. The necessary process discipline is
in place to repeat earlier successes on projects
with similar applications.

3
Defined

The software process for both management and
engineering activities is documented,
standardized, and integrated into a standard
software process for the organization. Projects
use an approved, tailored version of the
organization’s standard software process(es) for
developing and maintaining software.

4
Managed

Detailed measures of the software process and
product quality are collected. Both the software
process and product are quantitatively
understood and controlled.

5
Optimizing

Continuous process improvements is facilitated
by quantitative feedback from the process and
from piloting innovative ideas and technologies

Adapted from [27] (bolding not in original)
A quick glance at the description of the different

CMM levels reveals some of the key elements that are

commonly understood to constitute process discipline.
First, development processes must be defined and thereby
rendered controllable by traditional project management
techniques. For instance, software process maturity is
defined as ‘the extent to which a specific process is
explicitly defined, managed, measured and controlled’
[27] p4. These processes must be documented,
standardized and integrated into a standard set of software
processes. The development process must be used and
modified only in controlled and approved ways.
Furthermore, detailed metrics must be established and
continuous process improvements must be
institutionalized using a highly quantitative approach.
Overall, the themes of definition, control, documentation,
standardization and measurement stand out as being
indicative of the process discipline inherent in the CMM
reference model.

Despite repeated efforts to engineer improved
methodologies, software development continues to be in
somewhat of a crisis. Over 30 years ago, Fred Brooks
observed the development of IBM’s 360 operating system
and made the less than intuitive conclusion that adding
more people to a project team running late would only
make it still run later [29]. These findings brought
attention to the possibility that software engineering may
be unlike other traditional forms of engineering. Indeed,
software is not tangible in the sense that other engineered
products are [30]. In a timeless article, Brooks argued that
there is no ‘silver bullet’ approach to making team based
software development easy [29]. He contended that
knowing what to build was still the single, hardest part of
building a software system. Many years later, we are still
faced with the ‘inevitable pain of software development’,
as we struggle to deal with increasingly volatile business
requirements [25][31]. Even though there is unlikely to be
a silver bullet approach, agile software development
methodologies have proven to be better at dealing with
such requirements volatility, more than many more
structured methods [1][32][33][34].

2.2. The agile approach

In business terms, agility can be defined as the ability

to ‘detect opportunities for innovation and seize those
competitive market opportunities by assembling requisite
assets, knowledge, and relationships with speed and
surprise’ [3] p1. Agile methods are usually dynamic,
context-specific, aggressively change-embracing and
growth-oriented activities [35]. However, in an
organizational context, they also need to be skillfully
balanced against the need for institutional order. For
instance, agile project management balances needs of the
highly structured project management process against
those of the creative technical team [37].

As suggested earlier, perhaps the major challenge to
software engineering is to figure out how to deal with

5891

ever-changing user requirements [25]. Agile methods
offer an effective response to such a problem [23][37]. By
allowing business requirements to change throughout the
development process, rather than freezing them in time,
the developed application has a greater chance of
satisfying the evolving needs of the user population [38].
Also, the placement of the customer (or customer
representative) in close proximity to the development
team increases the chances of meeting evolving
requirements. In this way, change is embraced, rather than
controlled [39].

In 2001, leaders of the agile movement met to create a
manifesto that would embody some of the core principles
that they had already come to informally embrace
(www.agilemanifesto.org). In that manifesto, certain
types of activities were given a preference over other
more traditional methods of building applications:
individuals and interactions were valued over processes
and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation and responding to change over following a
plan.

By valuing individuals and interactions over processes
and tools, there is a definite recognition of the social
aspects of software engineering [40]. This line of thinking
is contra to the historically grounded rational approach
described previously. However, it is very much in line
with the thinking that has more recently emerged in the
field of information systems [1][2][41]. By valuing
working software over comprehensive documentation, the
focus of development is on delivery of the end product
and not as much on the method of getting there. Empirical
evidence suggests that developers prefer to reference the
code itself over the code’s documentation [42]. Again,
this is contra to traditional methods that focus on process
discipline and heavy documentation in order to faithfully
create the product as specified by the business
requirements. By valuing customer collaboration over
contract negotiation, the customer is placed in close
proximity to the development team. In some instances, as
in the case study experience described in this paper, a
product manager may even substitute for the customer
role [43]. However, the key factor is that the customer
continually collaborates with the software development
team as the product is being developed. In a structured
world, contracts specify what needs to be delivered. In an
agile world, the customer specifies the needed
functionality as the project progresses, founded on an
underlying trust between customer and developer [42].
Finally, by valuing response to change over following a
plan, the ongoing agility of the development process is
sustained. Taken together, those activities encouraged in
the Agile Manifesto promote the underlying agile culture
that is an integral part of any agile software development
process.

3. Trading discipline for agility: an
apparent continuum

From the preceding discussion, it appears that those

activities more valued in agile development are seemingly
in opposition to those valued in traditional development.
Individuals, interactions, working software, collaboration
and responding to change displaces processes, tools,
documentation, contracts and plans. Those items in the
latter group are considered to constitute discipline, as
confirmed by our discussion on CMM, and those in the
former group are considered to constitute agility, as
confirmed by our discussion on the Agile Manifesto.
Although, it is clear that there is value in the latter items,
most agilists seem to value the former items more [17].
The underlying implication is that these items exist in
binary opposition to each other along a continuum of
sorts. Indeed, those companies that do not achieve a
balance and fall on the extreme ends of the apparent
continuum can suffer detrimental consequences [2]. For
instance, a lack of project management and control was
found to be one of the main reasons for many abandoned
information systems development projects [45].
Conversely, Microsoft remains flexible by not adopting
too many structured software-engineering processes, like
CMM or ISO [24].

In the next section of the paper, we attempt to weaken
the assumption of an implied continuum between
discipline and agility. Our contention is that XP, an
exemplary agile development methodology due to its
overt specification of core principles, also exudes
discipline, albeit in a different way. I will endeavor to
show how XP disciplines time-space relations between its
actor elements. Actor elements are those entities that are
able to influence the development process. This includes
human actors like the customer and the developer as well
as a non-human element like the code itself. Each of these
plays an important role in influencing the way that the XP
development process unfolds [4]. My theoretical
argument will be illustrated through a discussion of each
of the practices of XP and the relationship that is
disciplined by that practice. By demonstrating how this
form of disciplining is quite unlike traditional forms, I
question the apparent continuum that may be hindering
the faithful appropriation of agile processes. However, in
order to be able to proceed with this argument, I must first
briefly discuss the concept of time-space relations.

4. Time-space relations

Historically, management theory has assumed a more
scientific view of time, that is linear, chronological,
objective, universal, independent, quantifiable and
homogeneous [46]. Some researchers have suggested that
effective management action has actually been impeded

5892

by such simplistic understandings of time [47]. Others
have called for a more pluralist conception that could lead
to a fuller appreciation of the diversity in time-ordering
systems that occur in organizational life [48]. Time is
experienced through a process of temporal structuring that
characterizes people’s everyday engagement in the world.
Furthermore, these temporal structures specify parameters
of acceptable conduct and are also modified by the
actions they inform, thereby establishing a temporal
rhythm [49]. Notably, there may also be different modes
of social times, which may exist side by side in an
organization [50]. This however can prove to be
problematic as temporal asymmetry can be a source of
ongoing conflict [51].

As basic categories of human existence, both time and
space can be considered fundamental to defining the
context in which technology interacts within
organizations [51]. A general kind of ‘time-space
ecology’ can perhaps help us better understand the
different kinds of interactions that occur between humans
and their environments. We suggest that social processes
are always situated in a particular time-space context that
provides both enabling and constraining influences on
these processes [51]. More simply put, all activity is
situated as it occurs for a specific duration of time in a
specific place [52]. We will now turn our attention
towards the specific practices of XP and the time-space
relations that exist between them.

5. Extreme programming

Even though XP is not the most widely used of the
agile software development methodologies [10], it is
perhaps the most disciplined as it specifies core values,
core principles and core practices [4]. As our main
interest centers on trying to understand how discipline
emerges through the performance of agile practice, we
therefore chose to focus on XP1. XP is highly agile and
lightweight by nature, therefore rendering it quite reactive
to both the internal and external elements in which it
operates. It has 12 core practices that are by no means all-
inclusive [6]. These practices are not necessarily new, but
take existing principles and practices to extreme levels
[39]. Agile methods offer generative rules, a set of
principles from which a multitude of practices may be
produced and understood [52][53]. They interact in
concert with the team that implements them, by
specifying a minimum set of practices that should be
performed in all circumstances to generate an appropriate
practice for a unique situation [6]. Even though it is
recommended to start adopting all the practices ‘by the
book’ before adapting any of them [54], the key according

1 This was also somewhat opportunistic as the author was already
employed within a software company that was intent on employing XP
practices for the development of software

to many XP gurus, is to implement all the rules
concurrently as they develop a certain synergy when they
interact. Being interdependent, the weakness of one
practice is made up by the strengths of others [39]. These
rules allow a wide range of possibilities as opposed to
demanding a priori specification. In fact, XP is self-
adaptive in that the rules are meant to change through
time and use [54]. Local adaptation of the rules is
therefore highly encouraged [39].

In the field of software development, it is often
difficult to differentiate a computer program’s technical
aspects from the influence exerted by the socio-cultural
background of the software development team [24].
Likewise, XP can be envisioned as a sociotechnical
ensemble that is created by the simultaneous influence of
both people and technology [41]. In this view, neither
people nor technology deserve a privileged position in
shaping ongoing practice but it is the interplay that is
important. For the purposes of our argument, we would
suggest that there are human and non-human entities that
are indispensable to the software production process in
XP methodology. A similar view was promoted by Meso
and Jain when they suggested that the process of agile
development involved interactions amongst three
dimensions: stakeholders, process-related guidelines and
software artifacts [55].

In XP, there are two main human roles that are usually
identified [39]. The first role is played by the developer
who is the actual writer of the code. The second role is the
customer who is the one that is responsible for deciding
the features that are to be included in the product.
Typically, the customer would represent the user
community and be on the development staff full time
[56]. The other entity that is important to consider, in
terms of influence in the development process, is the code
itself. The code, as a contributing element in the XP
development network, enters into relations with both the
developer and the customer. Consequently, we suggest
that understanding how these relations are controlled in
time and space will enable an understanding of the
discipline that is inherrent in the XP development
principles and practices.

Various actors in XP continually engage in time-space
relations with other actors throughout the development
process. This is what makes agile projects so challenging
to manage, as actors are given the leeway to continously
adapt to changing circumstances rather than having rigid
controls imposed upon them. As a result, the project
manager ends up ‘steering from the edge’ [57]. However,
we argue that if these time-space relations can be
disciplined then the activity of the actors themselves will
be disciplined and accordingly the development process
will end up becoming more disciplined overall. Put
differently, agile methods exude a different type of
discipline, one that depends more on locating actors in
controllable ways rather than relying on what we would

5893

consider more traditional forms of control. In the next
section, we will use the notion of time-space relations to
discuss this novel mode of disciplining that we suggest is
exerted throughout the XP development process.

6. Extreme disciplining of time and space

With the advent of information technologies in the
workplace, traditional forms of managerial power have
been displaced by more modern forms [58][59]. Some
have argued that technologies structure social
relationships within organizations and therefore
complement, and occasionally compete with institutional
modes of governance [60]. For instance, disciplinary
power acts in a largely unobtrusive manner as it regulates
movements and establishes calculated distributions [58].
By disciplining time and space, the actions of the body
are enabled and constrained in predictable ways. More
particularly, the disciplining of time involves the
timetable as a central mechanism [58]. Its goal is to
eliminate the danger of ‘wasting’ time and to establish
regularity to activities. In this way, a collective and
obligatory rhythm is imposed from the outside. On the
other hand, the discipline of space involves the
distribution and organization of individuals in an
analytical area such that ‘each individual has his own
place; and each place its individual’ [58]. Such a linear
distribution makes people amenable to discipline and
ultimately establishes their presences and absences i.e.
where they can and can not be at particular times.
Discipline individualizes bodies by a location that does
not give them a fixed position, but more accurately
distributes them and circulates them in a network of
relations. Once individuals are enclosed in identifiable,
ranked, serialized and functional spaces, their activity can
be more efficiently controlled. Our contention is that
through this mode of disciplining time-space relations
emerges the so-called ‘rhythm’ of an XP project emerges
[4]. In the next section, we describe our research approach
and then go on to discussing our reflections on the way
that each of the XP practices helps to discipline the time-
space relations between the developer, the customer and
the code. We then conclude the paper with a discussion of
some implications.

7. Research approach and motivation

This research stems from multiple reflections that
were acquired during an extended period of time during
which the author played the key role of customer in an XP
development process. A case oriented approach was
employed which is useful in investigating a contemporary
phenomenon within its real-life context, especially when
the boundaries between phenomenon and context are not
clearly evident [61]. As mentioned before, XP relies

heavily on contextual factors in order to remain agile and
therefore isolation of the development process from its
context is quite difficult. The case study occurred in a
software development organization, with approximately
150 employees, that developed e-billing software. The
paper’s author was embedded in the organization for a
period of approximately one year during which he was on
the management team responsible for adapting XP
practices into the software development process. During
that time, the author also engaged directly in agile
development processes by playing the customer role i.e.
the one who represents the interests of the system user, as
well as focusing on issues of integration. The motivation
of the research was to understand how what seemed to be
such a supposedly undisciplined and agile process could
remain disciplined. To that end, the author engaged in a
form of ‘autoethnographic’ research which constitutes an
approach to research and writing that seeks to describe
and systematically analyze personal experiences in order
to understand cultural experience [62]. Our interest was to
uncover the means by which the XP system disciplined its
actor entities. Our contention was that this disciplining
was an element of ‘XP culture’, exuding from norms, and
as such, the author’s personal experiences were
importantly a part of the very same system that was being
studied. In other words, reflections on being disciplined
and observations of how other entities (human and non-
human) were being disciplined were critical and formed
the basis of the assertions presented in this paper. Overall,
this study importantly contributes to an area of research
where there seems to be a serious lack of attention to the
theoretical underpinnings of agile development practice
[34].

Data collection occurred over a period of
approximately a year during which informal discussions
about the development process were conducted with
various company employees at various levels in various
jobs. Also, many observations were made of how the XP
process unfolded in relation to those who were enacting it.
The specific focus of the research was to reflect on the
means through which discipline was enacted. As a form
of ethnography, the author was studying and reflecting
upon agile development culture in order to uncover some
of its relational practices, shared values and beliefs, and
shared experiences [63] that specifically related to
disciplining. Some of these cultural values have already
been studied in some detail using an ethnographic
approach [42] and others have surmised that XP culture
may have five key values: communication, simplicity,
feedback and courage, with respect underlying the
previous four [64]. Through the observation of the
unfolding of the development process, the author both
experienced and observed his own and others’ co-
participation within the ethnographic encounter such that
‘both the self and others are presented together within a
single narrative ethnography, focused on the character and

5894

process of the ethnographic dialogue’ [65] p69. In the
next section, we describe our findings about how time-
space relations are disciplined in the XP development
system.
8. The disciplining of time-space relations in

the XP development system

As mentioned earlier, XP consists of three main roles
and twelve key principles. In Fig. 1, these principles are
mapped out along the particular time-space relation that
we suggest they discipline. We will now proceed to
describe how each time-space relation is disciplined by
describing XP principles (italicized in the discussion) that
pertain to that particular relation.

Figure 1 Mapping of XP practices

8.1. The developer and the code

Time-space relations between the developer and the
code are disciplined through the enactment of several
practices that define the way that the developer must
approach the creation of the code. The principle of Simple
Design encourages designs that marginally satisfy the
specified functional requirements that appear in the form
of user stories. This limits the tendency of developers to
over design [66]. Refactoring is the activity of regularly
reviewing the code to remove redundancy, eliminating
unused functionality and rejuvenating obsolete designs
thereby leading to a certain efficiency of expression. This
activity occurs with confidence, as the continual running
of the test code ensures that no pre-existing functionality
is broken. Consequently, any changes to code that disrupt
functionality will be surfaced immediately. Coding
Standards ensure that all written code is formatted and
written in the same way. XP uses a common system of
names and a coding standard for all developers, thereby
improving cross-communication. For a team to work

effectively in pairs, and to share ownership of all code,
programmers need to write code in the same way, with
generative rules that make sure the code communicates
clearly. Unlike traditional methods where developers
‘own’ particular code segments, in XP there is Collective
Code Ownership where the whole team is responsible for
all the code. This collective ownership is essential in
order to support refactoring and scheduling activities.
Finally, in Pair Programming, arguably one of the most
researched principles of XP [67], two developers work
together at one computer, continuously collaborating on
the same design, algorithm, code or test [68]. This has
been shown to improve productivity and quality, as
together the developers are more than twice as fast at
programming, think of more than twice the number of
solutions to problems, have a higher defect prevention
and defect removal rate and overall they learn more [68,
69]. This may not be intuitive to many project managers,
just as Brooks observation that putting more people on a
project team would only make it run later [29].

Taken together, these aforementioned practices
discipline the time-space relations between the developer
and the code that he/she produces. Looked at from
another angle, they help establish the norms that govern
the way that the developer should interact with the code,
thereby specifying the correct and acceptable approach to
development work. In this way, the relationship between
the code and the developer is spatially and temporally
disciplined within the work environment.

8.2. The developer and the customer

Having an On-Site Customer, or a customer
representative on-site, changes the overall dynamic of
software development. In structured approaches, the
business requirements are specified upfront. As discussed
previously, requirements are not allowed to change and
the customer is often in an antagonistic role when
functionality is not delivered that should have been there.
Even the physical distance between the user and technical
support group can influence how effectively problems are
solved, or knowledge is transferred [70]. The customer,
being in close proximity to the development team, is able
to work as a part of the development team. Space and
consequently time is disciplined in this way. The System
Metaphor is a simple analogy for what the system should
be like or do. It allows for a reduction in documentation
but more importantly it allows for a more interpretive
understanding of the product to be built. The metaphor
enables at the same time as it constrains. The 40 hour
workweek is another example of disciplining time, as
anything other than voluntary overtime has an immediate
and dramatic negative effect on productivity [66]. Both
developer and customer mutually understand that
activities must be executed efficiently to adhere to a
limited forty-hour workweek.

DEVELOPER

CODE

CUSTOMER

Refactoring
Simple Design

40-Hour Work Week

Pair Programming

Coding Standards
Collective Code ownership

Continuous Testing

Planning Game

Small Releases

System Metaphor

On-Site Customer

Continuous Integration

5895

8.3. The customer and the code

Small Releases discipline the time-space relationship
between the customer and the code. Traditionally, the
customer would not have any relationship with the code
until the final product is delivered. In XP, there are small
releases of functional code as the system is driven into
working form in every iteration [4]. In this way, the
‘project proceeds in a steady rhythm of delivering more
functionality’ [4] p45, and also any problems are quickly
made visible. Through this visibility, the customer is able
to exert influence to steer the development of the product.
Decisions can be made as to when the product has enough
functionality to be released. This gives heightened control
to the customer who previously was practically helpless in
trying to get an unfinished product released. This is a
notable advantage, especially in turbulent environments
that require companies to be highly agile and reactive to
competition [2][3].

8.4. The developer, the customer and the code

The Planning Game disciplines both release planning
activities and iteration planning activities. The release
plan is typically done before the project is started,
whereas the iteration plan occurs at the beginning of each
iteration. By having regular meetings at the beginning of
each iteration, and daily stand-up morning meetings, a
certain temporal rhythm is established [4]. This temporal
rhythm makes project progress quite visible and therefore
correctable if needed. Traditional approaches often result
in problems not being identified until well into a project.
In the Planning Game, the developer and customer
together determine what is feasible and desirable to get
built in each iteration and consequently in the release.
Importantly, this is by no means a fixed proposition, like
the ‘frozen’ requirements of structured methods. The
customer always has the option of adding more
functionality into the product, thereby requiring more
time, or releasing a product as is [71]. Often times, during
the product development process, the customer comes to
realize what is possible which results in the need for new
requirements. With regular regimented communication,
both emerging requirements and problems are uncovered
quickly and are dealt with collaboratively. More
developers may in fact be assigned to a priority activity
that is falling behind or an in-trouble developer may be
assigned less work in a following iteration. Either way,
there is built-in dynamism in the process as inefficiencies
are uncovered in a timely fashion and dealt with swiftly.
In the planning meetings, business requirements are
typically specified in the form of user stories, which
represent features that the customer desires in the final
product. The user stories are ideally business-oriented,

testable and estimable [39]. They initially appear on index
cards (or an equivalent) with a description of the feature
in the language and terms used by the customer. The user
story has been eloquently described as ‘a promise of a
conversation’ between developer and customer [39]. With
the collaboration of the developer, who accepts and
‘owns’ the assignment, the amount of time required to
complete the job is estimated. However, the exact method
of execution is left to the creativity of the developer.

The principles of Continuous Testing and Continuous
Integration are also very crucial. One of the less than
intuitive principles of XP is that test code is written first.
A developer chooses a particular user story to work on,
deduces the technical tasks required to make it happen
and then writes test code. This test code is based on
functional criteria specified by the customer. Initially the
test code fails until needed supporting code is
implemented. Overall, the test code ensures that the
particular user feature that it represents is still functioning
even as code surrounding it is constantly modified. The
functional test mitigates some of the inherent risks of the
highly interdependent programming languages of today
[72]. The developer can run builds on their own machines
before integrating changes into the main body of code.
The old approach to builds was a problematic process, as
haphazard integration would break the build easily. As a
result, developers would waste countless hours trying to
understand which particular piece of code broke the build.
In XP, the developer tests new code against his/her own
local build on a local machine. The build test code is
mainly made up of previously specified functional tests.
Once this runs satisfactorily, the new code is integrated
into the main build on the build machine.

Any broken tests are dealt with daily thereby further
contributing to the temporal rhythm. Through an
automated unit testing framework, unit tests and
functional tests can be run on a continuous basis [73]. All
efforts are focused on delivering working software in a
timely fashion and keeping it working. The test scripts are
crucial to such an initiative as they keep the code ‘clean’
as new code is added to existing code. This also allows
for business requirements to change as needed, with
minimal disruption, as the code itself serves as
documentation. In traditional methods, documentation
becomes quickly outdated as problems are encountered in
development, workarounds are devised and often not
documented. Continuous Integration also reduces the
introduction of bugs by mandating that the developers
merge their code, only after it has been tested on a local
machine. Indeed, developing a disciplined and automated
build process is essential to a controlled project [72].

The regular planning activities of the Planning Game,
combined with Continuous Testing and Continuous
Integration approaches, discipline the time-space
relationships that exist between the developer, customer
and code. In other words, these practices work together to

5896

control the rhythm of the overall project. The Planning
Game imposes a temporal rhythm on the work, as well as
controlling the ongoing development of the code and the
recurring activities of the developers. The user stories
identify the functionality that is to be developed, in what
time frame it is to be accomplished and also which
developer is assigned to it. Developers become assigned
to working in specific spaces thereby making them more
amenable to disciplinary tactics. Continuous Testing,
enacted in an automated and regular fashion by the test
server, allows for a disciplining of the evolving code and
the functionality that the code is consequently able to
deliver.

9. Developing the future

This paper responds to a call for using more theory-
based approaches in the study of agile methodologies
[34]. We began by presenting evidence from extant
research that organizations may not be faithfully
appropriating agile practices in practice [16]. Then,
structured methodology was compared to agile
methodology in efforts to understand what kinds of
practices constituted discipline and what kinds of
practices consituted agility. The apparent continuum
between the two was described and then we proceeded to
dismantle it by suggesting that discipline is not traded but
transformed. By way of example, we used the agile
methodology of XP to show how its practices discipline
the time-space relations between its actor elements,
namely the developer, the customer and the code. We
tried to grasp the essence of this different form of
disciplinary power with the awareness that this type of
discipline cannot be easily understood using traditional
frames of reference. Our conclusion was that the
developer, the customer and the code are located in time
and space in very disciplined and controlled ways. Both
are individualized by location that does not necessarily fix
them, but distributes them and circulates them in a
network of relations [58]. It is the apparatus of XP, as a
whole with all its practices, that embodies power and
distributes individuals in this permanent and continuous
field. The end result is that a heterogeneous mass of
actors are turned into a homogenous controllable social
order, with disciplined time-space relations, through the
combined influence of the various XP practices.
Similarly, others have suggested that core XP practices
may interact with each other, thereby confounding efforts
to study them individually [67].

In today’s era of increasingly rapid change, there is a
distinct need to balance discipline and agility in software
development initiatives [74]. As information technology
plays an increasingly bigger part in the viability of
companies, the software industry may arguably become
one of the world’s most important [75]. As we have

endeavored to show, agile methodologies can also be
quite disciplined. However, many have alternate
conceptions of agile methodologies that may have
unstated political rationales. Developers often view agile
processes as an attempt to micromanage them because of
the much more frequent interactions. Also, many project
managers are reluctant to surrender the feeling of control
that Gantt charts and other plan-driven process artifacts
give them [76]. Corporate users seem to be only interested
in those aspects of agile development that address their
particular problems [77].

As we alluded to in the introduction, evidence from
the field suggests that most organizations are using a
more blended approach to their agile adoption, in that
they are adopting those principles that align well with pre-
existing processes and company culture [15][16]. This is a
very intuitive and practical approach. Some researchers
have even developed a conceptual framework to guide
more effective agile method tailoring [78]. However, our
analysis clearly shows that each of the twelve XP
principles disciplines a different relationship, with many
reinforcing the effect of others to attain synergies. By not
adopting most, if not all, of the principles we contend that
the overall disciplnary effect may be weakened. Each of
the developer-customer-code relationships we described
needs to be disciplined if the agile method is to work
effectively and attain a highly productive rhythmic tempo.

In order for agile development to be more faithfully
appropriated, employees and managers will have to
understand that agile methods exude a different form of
discipline. For instance, project managers will have to
focus less on schedules, allowing customers to have more
say in the direction of development and the assignment of
programmers to tasks. Instead, they will have to
concentrate more on other activities like maintaining a
temporal and spatial rhythm in the development process.
This involves giving up control on outcome and focusing
more on managing process. Once the principles are more
faithfully adopted, the process needs to be trusted more.

As our field research mainly involved the study of an
XP development process, further research on different
forms of agile software development methods, and the
inter-action between their actor entities is needed. In this
way, we can better understand how to balance, and not
trade, discipline with agility.

10. References

[1] Lee, G., and W. Xia. 2010. “Toward agile: an integrated
analysis of quantitative and qualitative field data on software
development agility”. MIS Quarterly 34(1): 87-114.
[2] Chen, Y., Y. Wang, S. Nevo, J. Jin, L. Wang, and W. Chow.
2014. “IT capability and organizational performance: the roles
of business process agility and environmental factors”.
European Journal of Information Systems 23(3): 326-342.

5897

[3] Sambamurthy, V., A. Bharadwaj, and V. Grover. 2003.
“Shaping Agility through Digital Options: Reconceptualizing
the Role of Information Technology in Contemporary Firms”.
MIS Quarterly 27(2): 237-263.
[4] Lindstrom, L., and R. Jeffries. 2004. “Extreme Programming
and Agile Software Development Methodologies”. Information
Systems Management 21(3): 41-52.
[5] Gibbs, W. 1994. “Software's Chronic Crisis”. Scientific
American (Sep): 86-96.
[6] Highsmith, J. 2002. Agile Software Development
Ecosystems. Addison-Wesley.
[7] Highsmith J., and A. Cockburn. 2001. “Agile Software
Development: The Business of Innovation”. Computer 34(9):
120-122
[8] Williams, L., and A. Cockburn. 2003. “Agile Software
Development: Its about feedback and change”. Computer, June.
[9] Cockburn, A., 2007. Agile Software Development: The
Cooperative Game. Addison-Wesley.
[10] Version One. 2014. “8th Annual State of Agile Survey”.
Retrieved Jan. 7, 2015 from Version One Web site:
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
[11] Cao, L., K. Mohan, P. Xu, and B. Ramesh. 2009. “A
framework for adapting agile methodologies”. European
Journal of Information Systems 18: 332-343
[12] Leonardi, P., and S. Barley. 2010. “What's Under
Construction Here? Social Action, Materiality, and Power in
Constructivist Studies of Technology and Organizing”. The
Academy of Management Annals 4 (1): 1-51.
[13] DeSanctis, G., and M. Poole. 1994. “Capturing the
Complexity in Advanced Technology Use: Adaptive
Structuration Theory”. Organization Science 5 (2): 121-147.
[14] Saeed, A., and P. Tingling. 2013. “Extreme Programming
beyond Adoption: A Longitudinal Case Study of a Software
Start-up”. International Journal of Business and Management
Invention 2(7): 89-95
[15] West, D., and T. Grant. 2010. “Agile Development:
Mainstream Adoption has Changed Agility”. Forrester
Research Inc. January 20.
http://pmshow2012.programmedevelopment.com/public/uploads
/files/forrester_agile_development_mainstream_adoption_has_c
hanged_agility.pdf.
[16] Diebold, P., and M. Dahlem. 2014. “Agile practices in
practice: a mapping study”. In Proceedings of the 18th
International Conference on Evaluation and Assessment in
Software Engineering 30. ACM.
[17] Vinekar, V., and C. Huntley. 2010. “Agility vs. Maturity: Is
there really a tradeoff?”. IEEE Computer 43.5
[18] Georgiadou, E. 2003. “Software Process and Product
Improvement: A Historical Perspective”. Cybernetics and
Systems Analysis 39(1): 125-142.
[19] Brooks, F., 1987. “No Silver Bullet: essence and accidents
of software engineering”. Computer 20(4): 10-19.
[20] Lehman, M. 1989. “Uncertainty in computer applications
and its control through the engineering of software”. Journal of
Software Maintenance: Research and Practice (1): 3-27.
[21] Pressman, R. 2001. Software Engineering: A Practitioner's
Approach. McGraw Hill.
[22] Robinson, H., P. Hall, F. Hovenden and J. Rachel. 1998.
“Postmodern Software Development.” The Computer Journal
41(6): 363-375.
[23] Germain, E., and Robillard, P. (2005). “Engineering-based
process and agile methodologies for software development: a

comparative case study”. The Journal of Systems and Software
(75): 17-27.
[24] Cusumano, M., and Selby R. 1997. “How Microsoft builds
software”. Communications of the ACM 40(6): 53-61.
[25] Berry, D., 2002. “The Inevitable Pain of Software
Development: Why there is no silver bullet”. In Proceedings of
the 2002 Radical Innovations of Software and Systems
Engineering in the Future, 50-74.
[26] Ackoff, R., 1967. “Management Misinformation Systems”.
Management Science 14 (4): 147-156.
[27] Paulk, M., Curtis, B., Chrissis, M. and Weber, C.
(February, 1993). Capability Maturity Model for Software,
Version 1.1. Retrieved on Jan. 7, 2015 from Software
Engineering Institute Web site:
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr
.024.html.
[28] Herbsleb J., D. Zubrow, D. Goldenson, W. Hayes, and M.
Paulk. 1997. “Software quality and the capability maturity
model”. Communications of the ACM 40(6): 30-40
[29] Brooks, F., 1974. The Mythical Man-month. Reading,MA:
Addison-Wesley.
[30] Schneider, J., and L. Johnston. 2005. “Extreme
Programming - helpful or harmful in educating
undergraduates?” The Journal of Systems and Software 74: 121-
132.
[31] Gupta, S., R. Soni, A. Jolly, and A. Rana. 2012. “Optimized
Approach to Software Release Planning with Volatile
Requirements”. European Scientific Journal 8(23): 13-21
[32] Duggan, E. 2004. “Silver Pellets for Improving Software
Quality”. Information Resources Management Journal 17(2): 1-
21.
[33] Conboy, K. 2009. “Agility from first principles:
reconstructing the concept of agility in information systems
development”. Information Systems Research 20: 329–354.
[34] Dingsoyr, T., S. Nerur, V. Balijepally, and N. Brede Moe.
2012. “A Decade of Agile Methodologies: Towards explaining
Agile Software Development”. Journal of Systems and Software
85(6): 1213-1221.
[35] Goldman, S., R. Nagel, and K. Preiss. 1995. Agile
Competitors and Virtual Organizations. New York: Van
Nostrand Reinhold.
[36] Chin, G., 2004. Agile project management: how to succeed
in the face of changing project requirements. AMACOM.
[37] Maruping, L., V. Venkatesh, and R. Agarwal. 2009. “A
control theory perspective on agile methodology use and
changing user requirements”. Information Systems Research
20(3): 377-399.
[38] Leffingwell, D. 2010. Agile software requirements: lean
requirements practices for teams, programs, and the enterprise.
Addison-Wesley Professional.
[39] Beck, K., 1999. “Embracing Change with Extreme
Programming”. Computer 32 (10): 70-77.
[40] Low, J., J. Johnson, P. Hall,F. Hovenden, J. Rachel, H.
Robinson, and S. Woolgar. 1996. “Read this and change the way
you feel about software engineering”. Information and Software
Technology 38: 77-87.
[41] Beath, C., N. Berente, N. Gallivan, and K. Lyytinen. 2013.
“Expanding the Frontiers of Information Systems Research:
Introduction to the Special Issue”. Journal of the Association of
Information Systems 14 (4-5): i-xvi.
[42] Sharp, H., and H. Robinson. 2004. “An Ethnographic Study
of XP Practice”. Empirical Software Engineering 9: 353-375.

5898

[43] Martin, A., R. Biddle, and J. Noble. 2004. “The XP
customer role in practice: three studies”. In proceedings of ADC
2004, Salt Lake City, June.
[45] Ewusi-Mensah, K. 1997. “Critical Issues in Abandoned
Information Systems Development Projects”. Communications
of the ACM 40(9): 74-80.
[46] Kavanagh, D., and L. Araujo. 1995. “Chronigami: Folding
and unfolding time”. Accounting, Management and Information
Technologies 5(2): 103-121.
[47] Crossan M., E. Cunha, D. Vera, and J. Cunha. 2005. “Time
and Organizational Improvisation”. Academy of Management
Review 30(1): 129-145
[48] Whipp, R. 1994. “A Time to Be Concerned: A position
paper on time and management”. Time & Society 3(1): 99-116.
[49] Orlikowski, W. and J. Yates. 2002. “It's about time:
Temporal structuring in organizations”. Organization Science
13(6): 684-700.
[50] Nowotny, H. 1992. “Time and social theory”. Time &
Society 1(3): 421-454.
[51] Lee, H., and E. Whitley. 2002. “Time and Information
Technology: Temporal Impacts on Individuals, Organizations
and Society”. The Information Society 18: 235-240.
[52] Giddens, A. 1984. The Constitution of Society: Outline of
the Theory of Structuration. Berkeley: University of California
Press.
[53] Chomsky, N., 1986. Knowledge of language : its nature,
origins, and use. New York: Praeger.
[54] Fowler, M. 2001. “Variations on a Theme of XP”.
Accessed January 5 2015 from martinfowler.com:
http://martinfowler.com/articles/xpVariation.html.
[55] Meso, P., and R. Jain. 2006. “Agile software development:
adaptive systems principles and best practices”. Information
Systems Management 23(3), 19-30.
[56] Cockburn, A., and J. Highsmith. 2001. “Agile Software
Development: The People Factor”. Computer 34 (11): 131-133.
[57] Augustine, S., B. Payne, F. Sencindiver, and S. Woodcock.
2005. “Agile project management: steering from the edges”.
Communications of the ACM 48 (12): 85-89.
[58] Foucault, M. 1977. Discipline and Punish: The Birth of the
Prison. New York: Vintage Books.
[59] Zuboff, S. 1988. In The Age of The Smart Machine. Basic
Books.
[60] Kallinikos, J., H. Hasselbladh, and A. Marton. 2013.
“Governing social practice”. Theory and society 42(4): 395-421.
[61] Yin, R. 1994. Case Study Research: Design and Methods,
Thousand Oaks, CA, Sage Publications.
[62] Ellis, C., T. Adams, and A. Bochner. 2011.
“Autoethnography: An Overview”. Forum:: Qualitative Social
Research 12(1).
[63] Maso, I. 2001. “Phenomenology and ethnography”. In
Handbook of ethnography, edited by Atkinson P., A.
Coffey, S. Delamont, J. Lofland, and L. Lofland, 136-144,
Thousand Oaks, CA, Sage.
[64] Beck, K., 2000. Extreme Programming Explained:
Embrace Change. Addison-Wesley Pub.
[65] Tedlock, B. 1991. “From participant observation to the
observation of participation: The mergence of narrative
ethnography”. Journal of Anthropological Research 47(1): 69-
94
[66] McConnell, S. 1996. Rapid Development. Microsoft Press.
[67] Erickson, J., K. Lyytinen, and K. Siau. 2005. “Agile
Modeling, Agile Software Development, and Extreme

Programming: The State of Research”. Journal of Database
Management 16(4): 88-100.
[68] Williams, L., and R. Kessler. 2000. “All I really need to
know about pair programming I learned in kindergarten”.
Communications of the ACM 43(5): 108-114.
[69] Saige, C., and N. Berente. 2016. “Pair Programming vs.
Solo Programming: What do we know after 15 years of
research? HICSS, 2016, 2016 49th Hawaii International
Conference on System Sciences (HICSS), pp. 5398-5406,
doi:10.1109/HICSS.2016.667
[70] Sahay, S. 1998. “Implementing GIS technology in India:
some issues of time and space”. Accounting, Management and
Information Technology (8): 147-188.
[71] Jeffries, R., A. Anderson, and C. Hendrickson. 2000.
Extreme Programming Installed. Addison Wesley.
[72] Fowler, M. 2006. Continuous Integration. Accessed
January 5 2015 from martinfowler.com:
http://www.martinfowler.com/articles/continuousIntegration.ht
ml.
[73] Jeffries, R. 1999. “Extreme Testing”. Software Testing &
Quality Engineering (1:2): 23-26
[74] Boehm, B., and R. Turner. 2003. Balancing Agility and
Discipline: A Guide to the Perplexed. Addison Wesley.
[75] Booch, G., 2001. “Developing the Future”.
Communications of the ACM 44(3): 119-121.
[76] Cohn, M., and D. Ford, D. 2003. “Intoducing an Agile
Process to an Organization”. IEEE Computer (June): 74-78.
[77] Sliwa, C. 2002. “Users Warm up to Agile Programming”.
Computerworld, March 18.
[78] Conboy, K and B. Fitzgerald. 2010. “Method and developer
characteristics for effective agile method tailoring: a study of
expert opinion”. ACM Transactions on Software Engineering
Methodology, 20 (1): 1-27

5899

