
Challenges in Transitioning to an Agile Way of Working

Riitta Hekkala Mari-Klara Stein Matti Rossi Kari Smolander
School of Business Copenhagen Business School School of Business Department of Computer Science
Aalto University, Department of IT management, Aalto University, Aalto University,
Helsinki, Finland Frederiksberg, Denmark Helsinki, Finland Helsinki, Finland
riitta.hekkala@aalto.fi mst.itm@cbs.dk matti.rossi@aalto.fi kari.smolander@aalto.fi

Abstract

This longitudinal study examined how an
information systems development team transitioned to
an agile way of working. We describe the main events
of a large, inter-organizational project, where agile
methods and practices were applied for the first time.
The organizations involved had a long tradition in
heavy, waterfall style projects, and many of those past
projects had severe challenges. We examine how the
agile way of working was understood by particular
groups (project team, management and suppliers), as
well as how these understandings changed over time.
The lack of experience with agile development, no
common view on ‘agility’ and its key principles and
practices were obvious challenges for the transition.
Our study suggests that complex agile projects need to
have very clear goals and management has to be able
to communicate these, while preserving the autonomy
of teams and individual team members.

1. Introduction

During the past decade a number of studies have
been conducted on agile software development [e.g. 1,
2, 3]. Extant literature in the information systems (IS)
field focuses particularly on three different
perspectives on agility: 1) as empirically validated
software development methods and practices; 2) as an
organizational capability to learn, to explore and
exploit knowledge; and 3) as ‘collective agility’ which
is seen as a performance of daily practices by social
actors (cf. [4]). This paper is positioned within the first
perspective, focusing on the “specific needs of
organizations and human nature [that] inevitably lead
to diverse interpretations and implementations of a
method, which in turn lead to different, sometimes
surprising, effects and consequences of use of agile
methods and associated practices” [5].

There have been calls for studies that investigate
the influence of organizational culture and
environmental constraints on agile development [e.g.
5], as well as how and why organizations select agile
approaches for managing and delivering IS projects
[6]. In this paper we describe events in a large, inter-
organizational project, where agile methods and
practices are being applied for the first time. Our goal
is to identify the challenges of transitioning to an agile
way of working through a longitudinal study of a case
project. We identify management challenges that
inevitably arise, when an organization with a long
tradition in waterfall-style development wants to
develop new systems in a more dynamic way. We look
especially at choices made by the management to
introduce the new approach and how these resonate
with the people working in the project and their
different backgrounds. As the project has had
challenges in the transition, we identify issues and
conflicts that appear during the transition.

In sum, this qualitative case study research is
guided by the following questions: How do information
systems development (ISD) teams transition to an agile
way of working? What are the organizational and
managerial challenges of this transition?

This study contributes to calls for better
understanding of the influence of organizational
culture and environmental constraints on changing
development methods, and the role of organizational-
level implementation of ‘agility’ in ISD environment.
Our longitudinal study is particularly suitable for this
as it enables us to investigate the trajectory of a project
and the groups (project team, management and
suppliers) within it, and shows how a project
organization learns to work in an agile way.

The rest of this paper is organized as follows. In the
next section, we present the definition of agility and
the basic principles, processes and challenges of agile
software development. The following three sections
present the research case, the research method and our

5869

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41871
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

findings. In the final sections, we discuss our findings,
and conclude the paper.

2. Theoretical Background

In the following we consider how agility is defined
and describe the key aspects of agile development
methods.

2.1. Definition of Agility

Seventeen software developers [7] published the

Agile Manifesto in 2001 – in a nutshell the idea was to
present “better ways of developing software by doing it
and helping others do it". The Agile Manifesto
includes four values: individuals and interactions over
processes and tools, working software over
comprehensive documentation, customer collaboration
over contract negotiation, and responding to change
over following a plan. These values are manifested in
twelve principles: 1) Highest priority is customer
satisfaction; 2) Welcome changing requirements; 3)
Frequent delivery of software; 4) Business people and
developers cooperate daily; 5) Build projects around
motivated people; 6) Face-to-face conversation is best;
7) Progress is measured by working software; 8)
Sustainable development pace; 9) Continuous attention
to technical excellence; 10) Simplicity; 11) Self-
organizing team, and 12) Regular reflection and
adaptation.

Since 2001, agility has been a multidimensional
concept, and interpretations of it abound (e.g. [5, 8, 9]).
Often highlighted key aspects of agility include
quickness, nimbleness (e.g. [10]), lightness,
responsiveness to changes [11], and keeping the code
short [12]. However, while agility implies speed –
being fast does not imply being agile (e.g. [13]). In the
context of ISD, agility can be defined as organization’s
ability not only to sense, but to respond swiftly [10]
and flexibly [12, 14] to technical changes, new
business opportunities and unexpected environmental
changes. While there is some agreement with regard to
the conceptual principles of agile development, there is
much room for interpretation when applying these
principles in practice [5], as considered next.

2.2. Agile Software Development: Principles,
Processes and Challenges

In order to respond swiftly to turbulent business
environments and technical changes (e.g. [10, 15-17]),
an agile ISD project typically requires the following
three principles and processes to function properly: (1)
self-organizing teams, distributed leadership and

decision-making, (2) incremental and iterative
development, and (3) a supporting organizational
culture. Table 1 summarizes each of these.

While these principles are useful and widely
followed in practice, they come with many challenges.
For example, ‘just enough planning’, lack of upfront
commitment to scope, cost and schedule (key aspects
of iterative and incremental development) may pose
very challenging demands on managers who are
responsible for making funding decisions [15].

Table 1. Key Principles and Processes of
Agile

Key Principles
& Processes of
Agile

Description

Self-organizing
teams;
distributed
leadership &
decision-
making

1) Rather than being guided by
others outside the team, a self-
organizing team aims to choose the
best way to accomplish their duties
and work; 2) Leadership is divided
between team-members, who
should be able to make decisions
collectively. Leadership is usually
given to the person who has the
key knowledge and skills for
specific issue(s); 3) The role of
project manager is to ensure that
people with key knowledge are
able to affect decisions (cf. [18,
19])

Incremental
and iterative
development
(planning as
you go along)

Self-organizing, agile teams (in
this case, Scrum1 teams) develop
software in increments done in
iterations, called “sprints”, to
optimize predictability. In addition
to the Scrum team(s) and their
associated roles (Scrum master,
product owner, development team),
the Scrum framework consists of
specific events (e.g. planning,
review, and backlog). The product
owners have the power to decide
which backlog items should be
developed in the following sprint
(e.g. [14]).

Supporting
organizational

Organizational culture should
support the key principles and

1 We describe the incremental and iterative
development principles of Scrum, which is one of the
many agile development frameworks (and the one
adopted in the project we studied).

5870

culture
(responding to
change over
following a
plan)

values of agile ISD (especially the
shift of power from management
towards the team), because agile
ISD requires a very different
organizational culture than
traditional, so-called plan-driven
methods (e.g. [5, 20]).

Self-organizing teams and iterative development

often work well within small teams and when
“championed by a small number of highly effective
people”. However, many teams find it difficult to
“implement agile beyond their own boundaries. As a
result, they are constrained by many of the functions
they are dependent on to get work done” [5]. In sum,
while the agile way of working has the potential to
improve software development outcomes [21], there is
a lack of in-depth empirical studies of ISD projects
transitioning to an agile way of working that are able to
shed light on how the theory of agile works in practice
(cf. [2, 5]). In addition, there is a lack of studies that
give evidence-based guidelines to project managers on,
for example, how to maximize the benefits from an
agile way of working during an IS project [2].

3. Methodology

We studied the development of a planned records
management system (RMS) in four public sector
organizations (Alpha, Beta, Gamma and Delta) in
Northern Europe. The goal of the new RMS was to
provide a centralized means of collecting customer
information. In addition, the system should also
facilitate the dissemination of certain information back
to the customers, as well as offer web-based self-
service capabilities. All four organizations were from
the same sector, so their requirements for the system
were fundamentally the same. Alpha, Beta and Gamma
decided to develop the new system together because of
budgetary constraints.

Because of the different financial situations of the
organizations, the project expenses were not divided
equally: Alpha was expected to cover 30%, Beta 50%,
and Gamma 20% of the costs. The current project
organization was established in early 2013. Delta
joined the project in 2015. The project organization
consisted of the project group, steering group and
management group, each including representatives of
the four organizations. Later on, several external
software houses also joined the project. The transition
to an agile way of working in the project was largely
triggered by cost considerations – the management
group believed that agile was a natural fit with time-
and-material-basis contracts, allowing consultants

hired by the project to be paid based on the hours they
spent on the project, rather than a fixed amount.
However, the IT managers also highlighted that
“extremely agile is difficult (e.g., it is difficult to
manage work when programmers have the freedom in
choosing their tools)”, especially in a situation where
the project members are not familiar or experienced
with an agile way of working.

3.1. Data Collection and Analysis

Our data consists of 42 qualitative interviews,
collected in three phases: (1) March 2013 - April 2013,
(2) May 2014 - June 2014, and (3) May 2015 - August
2015. The project is forecasted to end in 2017/2018..
All interviews were recorded and fully transcribed. For
the purposes of this paper, we have only included
interviews with the management and project groups as
well as various suppliers, as these were the key actors
involved in the transition to agile. Overview of the
interviews conducted is given in Table 2.

We began our data analysis by identifying all
descriptions related to an agile way of working in the
interviews. After we had coded the data for ‘agility’,
we then focused on the key principles and processes of
agile (Table 1) and followed the transition to agility
along the trajectory of the IS project.

 In order to do so, we considered how the agile way
of working was understood by particular groups
(project team, management and suppliers), and how
these understandings changed over time (from 2013 to
2015 or covering the requirements specification, design
and implementation phases identified by the project
manager Alex). The labels of the project phases (as
described by Alex) reflect the significant influence of
the waterfall method (familiar to the team from
previous projects), particularly in the beginning of the
project. In addition, we identified the key events that
influenced the transition. As a final step, we coded for
the different challenges encountered during the
transition.

5871

 Table 2. Overview of Data Collection

Group Role Member # of Interviews

MANA-
GEMENT
GROUP
(16 interviews
altogether)

The members of the management
group decide on all personnel and
budgeting issues. They guide the
project group and define general
policies. It is also the duty of the
management group to take a stand
on issues, which the project group is
not able to solve.

Lily (Beta) 3
Kelly (Alpha) 1 (left the project in June 2013)
Leslie (Alpha) 1 (started in June 2013,

substituting for Kelly)
Leon (Gamma) 3
Ewan (Alpha) 3 (Left the project at the end of

2015)
Ben (Beta) 3
Sean (Gamma) 2 (Left the project in 2014)

PROJECT
GROUP
(19 interviews
altogether)

The aim of the project group is to
find possible technical solutions for
the new system and to make sure
that the processes are defined and
done by people who know the
substance well. The group has
software developers (SD) and
representatives of users. Alex is the
overall project manager. He was
hired externally to run the project,
but is now paid by Alpha.

Alex (Alpha) 3
Isaac (Gamma) 2
Carol (Alpha) 3
Jacob (Beta) 1 (left the project in Sept. 2013)
Amber (Beta) 2 (left the project in Sept. 2013)
Nathan (Beta) 1
Chloe (Alpha) 3
Nicole (Beta) 2 (was on longer leave in 2015)
Wendy (Beta) 1 (Substituting Nicole)
Philip (Delta) 1 (Started in 2015)

SUPPLIERS
(7 interviews
altogether)

Omicron is an agile software house
founded in 2005 (consists of about
20 people). Omicron has an
agreement with Beta.

Robert (SD)
Tom (SD)

2 (Started in April- May, 2014)
1 (Started in 2014)

Midén develops digital business
solutions. The staff consists of about
50 people. Midén has an agreement
with Alpha.

Samuel (SD)

Justin (SD,
scrummaster)

1 (Started in March 2015; left in
March 2016)
1 (Started in May 2015)

Déka is a global design firm
founded in 1999. The staff consists
of about 150 people. Déka has an
agreement with Beta.

Amanda (user
interface
designer)

1 (Sept. 2014, on longer leave
from June 2015)

Ekatón is a software architecture
company (consists of about 100
people). Ekatón has an agreement
with Alpha.

Tobias (user
interface
designer)

1 (Started in August 2014)

5872

4. Findings

In the following we present our findings through
the analysis of the key aspects of transitioning to an
agile way of working: transitioning to self-organizing
teams and distributed leadership; to incremental
development, and to an agile organizational culture.

4.1. Learning How to Guide Self-Guided
Teams

Because of the lack of experience with agile methods
(training only took place in 2014), the members of the
project faced difficult problems right from the
initiation of the project in 2013. For example, project
team members expected clear and precise instructions,
while the manager wanted them to self-organize:
“Nicole is the person who needs exact guidelines for
work. She belongs to the ‘old school’, where the boss
gives the exact tasks, and says that you’ll do this today
and these ones tomorrow…” (Alex, project manager).
Meanwhile, the management group was worried that
people in the project did not only lack experience with
agile, but experience with successfully completing
projects at all: “The challenge is that many people in
this organization haven’t done a systematic, target-
oriented project work, they don’t have experience.
When I came here three years ago, and I of course
discussed with people and asked from one person,
whose title is a project manager, ‘When did you finish
the latest project and what kind of project was it?’ And
the response was that ‘I haven’t done the project, or
s/he wasn’t able to show any project that had ended, so
s/he wasn’t able to tell how they succeeded’.” (Ewan,
IT manager).

Even if the people in the project had a long history
of working on what they saw as projects, even in
managerial roles, they had been working more in a
process that develops single software features at a time.
Furthermore, several key decisions, such as
architectural and technology choices, that would have
allowed agile practices to be followed, were not fixed
early enough in the project. In particular, there were
radically different opinions about key technological
responsibilities and choices – the IT managers
(management group) and the software designers
(project group) did not agree on which technology was
the best one for the project, nor whose responsibility it
was to make such choices.

As a result, the software designers worked on
technical issues for several months, while the IT
managers went ahead and commissioned a solution
from Omicron (an external software house). The
software designers were so insulted by this that they

left the project altogether (in Sept. 2013). “When I go
to the seminars of this project group, people are
talking about the agile way of working… but it is
totally different to say on PowerPoint that we are
working the agile way, and we trust on experts, if we
are not doing so in practice … […] I looked at the
minutes of the management group meeting, and they
have drawn some architecture pictures at the meeting.
I do not think that it is the duty of the management
group to do them, but it is more the duty of experts.
The management group should do bigger strategic
alignments…” (Amber, project group).

The transition to the design and implementation
phase (from 2014 forward) was accompanied with
changes in the project organization (new personnel in
the project group, a new supplier). People also received
training on agile methods (Scrum) to avoid further
conflicts: “When the row was over, there was training
about agile methods for the other project members.
[…] Anyway, it convinced us that the agile way is the
right way…” (Alex, project manager). After the
training, the project group and software developers of
Omicron established Scrum roles as defined in the
Scrum guide (product owner, development team,
scrummaster). Some project members still lamented
the lack of daily leadership and someone clearly telling
them how to proceed: “In one team meeting Alex said
that his duty is not to take care of daily leadership …
well, I could criticize that he hasn’t hired a person who
tells us how we should go ahead… I guess that
different product owners think differently about this
[…] it is stated that the project is self-guided
[laughing]. It’s tragicomic at times. I don’t feel that
I’m in safe hands” (Nicole, project group).

At the same time other project members were
happy with the new way of doing things, but found it
difficult to work together with people with different
interpretations of agile. "We [Alpha people], we think
that the developers can decide within frames that have
been given to us [project members]. So there are clear
frames in an agile project as well, and there is freedom
to do issues within these specific frames… but still we
face situations with Beta people that they think an agile
project is a project where nothing can be decided
beforehand… that we can’t guide them, for example if
we [me and Chloe] discuss with Nicole, the discussion
always ended in that user interface designers will
decide specific issues and software developers decide
specific issues, and product owners [like me and
Chloe], we are just twiddling our thumbs beside
them…” (Carol, project member).

As the project progressed (2015), tensions between
wanting to go agile and wanting to have a clearly
controlled frame became increasingly discussed in the
management group: “It’s important that we don’t do

5873

things for two months and then check if something
works or not. I also think that although we are working
in an agile way, we need to anyway have some scope,
roadmap and goals. Some project members thought
that it is like a blue-sky way, and you just start … well,
there is a need to have a clear frame” (Lily,
management group). This quote again highlights the
importance of scope and architecture to be in place to
allow for concentration on daily and weekly tasks
without individual project team members being
concerned about the progress in global development.

 By this point, both Alpha and Beta had hired their
own external software houses (Midén and Omicron),
but this unfortunately created a situation of two self-
organizing teams, with the idea that they will work in
parallel on different issues. The developers from
Midén started in the project later and were not satisfied
with the work that Omicron had done, suggesting to
start over with a clean slate. Of course Omicron
defended their work and the importance of continuity
in the project. The standoff ended with one developer
from Midén being fired from the project, however, the
overall problem of parallel development (without much
coordination) has yet to be resolved.

The transition to an agile way of working changed
the control relationships between managers, supplier
and project team members. While the project team
members were controlled by two IT managers from
their respective organizations [Alpha and Beta] at the
beginning [2013], the transition to the “design and
implementation phase” [2014] changed this situation.
The scrum master from Omicron was perceived as the
new controller of the project team members: “Robert,
our scrum master has taken a role of daily leader, he is
bossing us and saying that you should think about this
kind of issue now…” (Nicole, Beta).

4.2. Learning How to Make Small Increments

In the beginning of the project (2013), the project

management and the team lacked experience with agile
methods. Thus it is not surprising that they were not
following the agile principles for incremental
development at all in this phase. While on paper the
project was framed as agile, in practice this had yet to
manifest. Given the level of conflict that had developed
between the software developers and managers, the
developers started to work in secret: “I started to work
on things in secret… and then when I’ve finished
something, the project members have said that, ‘Well,
it’s nice’, and I myself thought that, ‘Oh surprise, why
didn’t you think of it earlier’. I felt that I had to fight
about everything, it’s really frustrating…” (Jacob,
Beta). As already noted, two key software designers

(Amber and Jacob) left the project altogether in
September 2013.

The training received in 2014 was intended to help
the project not only in terms of transitioning to a new
way of self-organizing and distributed leadership, but
also to a new way of doing incremental development.
In the training on Scrum the project team members
learned about sprints, backlogs, product owners, and
the like. External software developers already familiar
with Scrum (and other agile frameworks) joined the
project. Various processes, techniques and tools (e.g.
Kanban & Jira) became increasingly employed in the
project in this phase. As practical working experience
with incremental development grew (2015), the daily
challenges the project team faced became more
nuanced. Issues, such as the misuse of sprints to make
it appear that development is progressing faster than it
actually is, and lack of visibility (of what other
members are doing) emerged:

“I would like to see how fast we are able to solve
problems. I think that the product owners look very
much at Jira [a bug and issue tracking as well as a
project management software]. But it has been hard to
get information for example about what my team
members [software developers] are doing although we
are sitting in the same room.” (Justin, scrummaster,
Midén).

“The challenge is that in Scrum there are these
story points, which tell how much you have achieved in
two weeks. I think that it would be more sensible to use
this in a way that we would not measure how much we
achieved, but as an evaluation tool of how much we
are able to do in the next sprint. The idea of the sprint
has turned out to be more of a negative for our project.
You can ‘manipulate’ things in Scrum so that it looks
buoyant … there is often a situation that people think
that it is sensible to add as many issues as possible into
one sprint, but the problem is that they will not just be
done by magic…” (Robert, scrummaster, Omicron).
Philip (Delta) summarized the challenge as “cherry
picking”: the software developers did not necessarily
use Scrum as it was originally planned for agile
projects. Instead they were just using the parts of
Scrum that served this specific operational
environment.

4.3. Hierarchy Prevails: Difficulties of Cultural
Change

From the beginning of the project, the management
group was aware that despite the desire to follow an
agile way of working, the project would face
challenges stemming from public procurement
regulations. The procurement law and the EU directive
dictate that in public procurement tendering documents

5874

must fully specify the artefact to be procured, yet this
is seldom (if ever) true for tailored IT solutions,
especially when agile methodologies are used to find
the best solution for the customer. In addition to
external constraints, the project was set up in a highly
hierarchical fashion (management, steering and project
groups), creating the expectation among the project
group that they will be led by the project manager
(Alex) and the management group. Yet, for some
project team members the experienced leadership style
was neither clearly directive nor facilitative of self-
management: “It was one of the big reasons that I
wanted to leave the project, because the style of
leadership of Alex was so odd… he is not leading the
team but rather serving the management group, and
the communication, he doesn’t say ‘That we could do
so or what do you think’, but he says that ‘The
management group says that we need to do it this
way…’, and then when we criticized some issue like
‘What? Why this way?...’, he says that, ‘Well, I don’t
know, but the management group said so…’ “(Amber,
project group). Furthermore, while the project
organization brought together people from different
organizations, it failed to create a feeling and culture of
a new collective. Project team members from Alpha
and Beta kept to themselves, and communicated with
the management group via managers from their home
organizations. Tensions along the organizational lines
were exacerbated when the first external software
house was hired, but with a contract only with Beta.
This was obviously not very good for communication
and Scrum practices in general.

As the project progressed (2014), such tensions
continued, leading to a lack of transparency in
communication and the suspicion of hidden agendas:
“We don’t have our own staff, but we have people from
three different organizations, who try to work together.
And because all plans are not transparent, the
consequences are that the content of planning is
sometimes poorly seen… so it leads to the feeling that
people have hidden agendas… and the most probable
reason is that there has not been time for it [to talk
about issues], or it just hasn’t come to mind that
people should know about these things …” (Alex,
project manager). Several more software houses joined
the project at this stage; each of them having an
agreement with a specific user organization, rather than
the project. By 2015, it was increasingly clear to all
working on the project that agile principles were
challenging to implement when the operational
environment (user- and project organization) was not
facilitative of working in the agile way. There was and
still is a continued tension between ‘conservative’ user
organizations and the ‘agile’ project: “Our own
organization is very conservative and slow, and we

always have to have very clear plans. When people in
our organization are asking about this project, I have
to say that I don’t know what is going to be ready next
spring, what is working and how – it is very difficult…”
(Wendy, Beta). This quote highlights the issue of
“definition of done” in agile projects: how to know
when the release is ready? We will consider the
implications of our findings, and future research
avenues next.

5. Discussion

The aim of this study was to explore how ISD
teams transition to an agile way of working. We
described the main events of a large project, where
agile methods and practices were applied for the first
time. The organizations participating in the project had
a ong tradition in waterfall style projects, and many of
those past projects had had severe challenges. Thus,
these organizations were lured by ‘agility’ because of
the promise of better results [21] that, for example,
self-organizing teams, distributed leadership,
incremental development, and the assumed ‘better’
contracts with suppliers would deliver.

However, an agile way of working has in this case
also turned out to be the Achilles’ heel of the project
instead of a silver bullet. We claim that the diverse
interpretations of what agility means (cf. [5]), and the
lack of strong vision led to an unstructured approach
[3]. We have summarized the key milestones and
events in this project’s transition to an agile way of
working in Appendix 1 (Please find it at the end of this
document). The findings reveal insights with regard to
the key managerial and organizational challenges in the
transition. Table 3 summarizes the issues that we
identified in this project, but that we believe to be far
more common than one would expect, especially when
adopting an agile way of working. In the following we
look at the key challenges that we claim to be nearly all
cultural and managerial in nature (rather than, for
example, technical or specific to the domain of public
sector).

Table 3. Challenges in transitioning to agile
development

Issue type Issue
Learning Agile practices were misunderstood

and misused
Managerial Self-organized teams were not able

to proceed with consensus
Managerial/
Cultural

More leadership and guidance was
expected by the developers

Cultural Hierarchical organizational

5875

structure was not suitable for agile
Managerial Conflicts were avoided by working

in secret
Managerial/
Cultural

Old organizational borders
prevailed after adoption of agile

Managerial/
Legal

Agreements were made between
individual partners - overall project
objectives were not clear

Legal/Domain
-specific

Procurement laws were not suitable
for agile

To most project members, this was the first agile

project in their work history. The lack of experience
with ‘agility’ was an obvious problem and challenge
for the transition. Supporters of agile frameworks
highlight that changes and learning must take place
throughout the project (cf. [10, 22]). Our study
suggests that such learning does not happen through
training alone. While adopting iterative and
incremental development processes and principles was
the least problematic aspect of this transition, the
surrounding elements of team-work, leadership and
culture were much more challenging to address.

This was made worse by the organizational issues:
there were three organizations working separately and
with very little common training in the new way of
working. This led to poor communication and repeated
failures in coordinating work. There were severe
managerial challenges already at the beginning; the
choices made by the management group did not
resonate with the ideas of project members working in
the project and their different backgrounds. In addition
to this, the IT managers did not support the more group
intensive approach, as they wanted to control, for
example, technological choices. The management
group and software developers, thus, had very different
conceptions about what self-organizing teams and
distributed leadership meant in practice. Some people
on the project level made assumptions that agile means
anything goes, whereas the management group still
needs status reports, even within sprints. At the same
time, for some project group members the idea of ‘self-
guided’ work was an uncomfortable experience.

Open communication and meetings that discuss
current issues are important for, on the one hand,
knowing the status on any working issues and, on the
other hand, for building trust among the team
members. Building trust is essential for creating a
common understanding among the project members on
how things are progressing and confidence in that
others are working in the same pace and with the same
goals in mind. This idea was violated seriously in this
case with secret sub-projects and parallel developments
that were not coordinated in any way.

This lack of coordination was made worse by two
further managerial issues: first, individual partners
procured work from different external software houses
(without coordination); and, second, lack of clear
central project objectives and architecture, within
which self-organizing teams could thrive. These two
issues, together with lack of clear leadership, can be
seen as the main causes of the seemingly chaotic work
and unsatisfactory outcomes that we have observed
here. Our impression is that these managerial issues are
especially challenging in large-scale agile adoption.
Many simultaneous autonomous teams require skilled
coordination and cross-cutting concerns (such as
architecture) require careful governance, which may be
seen as “non-agile”.

6. Conclusions

As is evident from our findings, most of the
challenges seem to stem from an organizational
conflict between the assumptions made and beliefs
held by the management and the developers. This is in
no way made easier by outsourcing to several partners.
We believe that these kinds of challenges are quite
typical for modern software development. In addition
to external constraints, the project itself was set up in a
highly hierarchical fashion (management, steering and
project groups). One challenge stemming from the
hierarchical organization was the fact that negotiations
of contracts took a long time and software houses
joined the project gradually, each time creating the
need to re-organize teams and tasks. In sum, our data
suggests that large, complex agile projects need (1)
very clear high-level objectives, and (2) architecture
and management controls derived from those. A
challenge for management is to be able to
communicate high-level objectives and overall
architecture, while preserving the autonomy of the
teams and individual team members. Further research
is needed to better understand how the transition to an
agile way of working changes the dynamics of control
and power relations, and the kinds of consequences this
has (cf. [22]).

References

 1 Fitzgerald, B., Hartnett, G., and Conboy, K.:

‘Customising agile methods to software practices at
Intel Shannon’, European Journal of Information
Systems, 2006, 15, (2), pp. 200-213

2 Maruping, L.M., Venkatesh, V., and Agarwal, R.:
‘A control theory perspective on agile methodology
use and changing user requirements’, Information
Systems Research, 2009, 20, (3), pp. 377-399

5876

3 Robinson, H., and Sharp, H.: ‘The characteristics of
XP teams’: ‘Extreme programming and agile
processes in software engineering’ (Springer,
2004), pp. 139-147

4 Zheng, Y., Venters, W., and Cornford, T.:
‘Collective agility, paradox and organizational
improvisation: the development of a particle
physics grid’, Information Systems Journal, 2011,
21, (4), pp. 303-333

5 Abrahamsson, P., Conboy, K., and Wang, X.:
‘“Lots done, more to do”: the current state of agile
systems development research’, 2009

6 Wells, H., Dalcher, D., and Smyth, H.: ‘The
adoption of agile management practices in a
traditional project environment: An IT/IS Case
Study’, in: ‘Book The adoption of agile
management practices in a traditional project
environment: An IT/IS Case Study’ (IEEE, 2015,
edn.), pp. 4446-4453

7 Beck, K., Beedle, M., Van Bennekum, A.,
Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., and Jeffries,
R.: ‘Manifesto for agile software development’,
2001

8 Holmström, H., Fitzgerald, B., Ågerfalk, P.J., and
Conchúir, E.Ó.: ‘Agile practices reduce distance in
global software development’, Information Systems
Management, 2006, 23, (3), pp. 7-18

9 Sarker, S., and Sarker, S.: ‘Exploring agility in
distributed information systems development
teams: an interpretive study in an offshoring
context’, Information Systems Research, 2009, 20,
(3), pp. 440-461

10 Lyytinen, K., and Rose, G.M.: ‘Information system
development agility as organizational learning’,
European Journal of Information Systems, 2006,
15, (2), pp. 183-199

11 Highsmith, J.A.: ‘Agile software development
ecosystems’ (Addison-Wesley Professional, 2002.
2002)

12 Anderson, D.J.: ‘Kanban’ (Blue Hole Press, 2010.
2010)

13 Börjesson, A., Martinsson, F., and Timmerås, M.:
‘Agile improvement practices in software
organizations’, European Journal of Information
Systems, 2006, 15, (2), pp. 169-182

14 Dybå, T., and Dingsøyr, T.: ‘Empirical studies of
agile software development: A systematic review’,
Information and software technology, 2008, 50, (9),
pp. 833-859

15 Cao, L., Mohan, K., Ramesh, B., and Sarkar, S.:
‘Adapting funding processes for agile IT projects:
an empirical investigation’, European Journal of
Information Systems, 2013, 22, (2), pp. 191-205

16 Cao, L., Mohan, K., Xu, P., and Ramesh, B.: ‘A
framework for adapting agile development
methodologies’, European Journal of Information
Systems, 2009, 18, (4), pp. 332-343

17 Vidgen, R., and Wang, X.: ‘Coevolving systems
and the organization of agile software
development’, Information Systems Research,
2009, 20, (3), pp. 355-376

18 McAvoy, J., and Butler, T.: ‘The role of project
management in ineffective decision making within
Agile software development projects’, European
Journal of Information Systems, 2009, 18, (4), pp.
372-383

19 Moe, N.B., Dingsyr, T., and Kvangardsnes, O.:
‘Understanding shared leadership in agile
development: A case study’, in: ‘Book
Understanding shared leadership in agile
development: A case study’ (IEEE, 2009, edn.), pp.
1-10

20 Hummel, M., and Epp, A.: ‘Success Factors of
Agile Information Systems Development: A
Qualitative Study’, in: ‘Book Success Factors of
Agile Information Systems Development: A
Qualitative Study’ (IEEE, 2015, edn.), pp. 5045-
5054

21 Hastie, S., and Wojewoda, S.: ‘Standish Group
2015 Chaos Report-Q&A with Jennifer Lynch’,
Retrieved, 2015, 1, (15), pp. 2016

22 Mahadevan, L., Kettinger, W.J., and Meservy,
T.O.: ‘Running on Hybrid: Control Changes when
Introducing an Agile Methodology in a Traditional
“Waterfall” System Development Environment’,
Communications of the Association for Information
Systems, 2015, 36, (1), pp. 5

5877

Appendix 1. Overview of Project’s Transition to an Agile Way of Working

SELF-
ORGANIZING
TEAMS;
DISTRIBUTED
LEADERSHIP &
DECISION-
MAKING

- Leadership was entirely
centralized in the hands of
IT managers from the
management group (even
though on the surface the
developers were given the
task of finding the right
technology)

- People received training on agile and
different ideas on what self-organizing
teams and distributed leadership mean
emerged; establishment of Scrum roles
(product owner, development team,
and Scrum masters). Project members
of user organizations started to call
themselves product owners

- Agile principles are increasingly
discussed by the management group and
there are continued tensions between
wanting to do agile and wanting to have a
clear, controlled frame for the project.
- The benefits and disadvantages of
distributed leadership start to emerge
- Power relationships change in many
ways

INCREMENTAL
DEVELOPMENT

-Development is
happening in an
incremental way in theory,
not in practice
- No common idea what
incremental development
is.

- New software developers and user
interface designers join the project
(from many software houses). People
start to learn and follow Scrum
framework, and employ various
processes and techniques (e.g. Kanban
& Jira)

-Project members follow Scrum
framework: Scrum events: the Sprint
(planning, reviews, retrospectives) +
Scrum artifacts (product backlog/sprint
backlog)
- The benefits and disadvantages of
Scrum framework emerge in daily project
work

SUPPORTING
ORGANIZATION
AL CULTURE

- Public procurement
regulations, EU directive
and hierarchical
organizational culture in
user organizations set
challenges to following an
agile development style.
- A software house joins;
has an agreement only
with Beta.

- Project culture: The communication
between managers and project
members, and even inside
organizations [e.g. Beta] is not open
- Plans are not transparent (‘hidden
agendas’)
- Several software houses join – each of
them has an agreement with a specific
user organization (not with the
collective project)

- Conservative and ‘slow’ user
organizations (from software house
perspective).
- New software houses join the project
also in 2015; a new user organization join
in 2015 – this keeps ‘resetting’ whatever
project culture has been established.
- A key manager [Ewan] of the whole
project leaves the project –>instability

Requirements phase
(2013); Data collected:
March, April 2013.

Design and Implementation
phase (2014); Data collected:
May, June 2014.

Design and Implementation phase
(2015); Data collected: May, June,
August 2015.

5878

