
Developing a Mechanism to Study Code Trustworthiness

Charles Walter, Rose F. Gamble

University of Tulsa, Tulsa OK

charlie-walter@utulsa.edu

gamble@utulsa.edu

Gene M. Alarcon

Air Force Research Laboratory

Wright Patterson AFB

gene.alarcon.1@us.af.mil

Sarah A. Jessup, Chris S. Calhoun

CSRA, Dayton, OH

sarah.jessup@csra.com,

chris.calhoun@csra.com

Abstract

When software code is acquired from a third party

or version control repository, programmers assign a

level of trust to the code. This trust prompts them to

use the code as-is, make minor changes, or rewrite it,

which can increase costs and delay deployment. This

paper discusses types of degradations to code based on

readability and organization expectations and how to

present that code as part of a study on programmer

trust. Degradations were applied to sixteen of eighteen

Java classes that were labeled as acquired from

reputable or unknown sources. In a pilot study,

participants were asked to determine a level of

trustworthiness and whether they would use the code

without changes. The results of the pilot study are

presented to provide a baseline for the continuance of

the study to a larger set of participants and to make

adjustments to the presentation environment to

improve user experience.

1. Introduction

A programmer’s trust in another’s code, that is,

code that the programmer did not write, is an important

but often overlooked part of software projects.

Misplaced suspicion can incur additional software

development time and cost with programmers

rewriting code that already performs correctly and

meets requirements, as well as cause programmers to

doubt and focus their debugging on code they use but

do not trust. In addition to wasted development time,

during rewrite programmers can introduce their own

bugs.

The issues with a lack of trust extend beyond code

that is written by individuals, in-house teams, or third-

party vendors. Machine generated code can also be

perceived as untrustworthy if it is incompatible with

programmer expectations, leading to disapproval for its

use. Since machines are increasingly relied on for code

generation, programmers must ensure the codes meets

requirements, can be reused in different environments,

and can be maintained, without being sidetracked due

to their distrust of the manner in which the code was

written. This perception is problematic as future

machines may be tasked to autonomously adapt their

code to certain situations. If code must go through a

certification process, for example to meet security

requirements, delays in redeployment can be

exacerbated if the machine generated code must be

rewritten due to mistrust. We propose that if human

and machine-generated code adheres to a set of coding

styles that are expected by intermediate and expert

programmers of the language used, it would improve

its trustworthiness. Ideally, this would lead to a greater

trust in code given to contractors or received by

companies, preventing programmers from losing time

“fixing” working code and potentially allowing

machine-written code to be as trusted as a human-

written version.

This paper examines an initial set of factors to

determine their relationship to programmer trust in

code written by someone else. Two of the factors,

readability and organization, are the first in a series of

factors to be studied that point to specific ways

working code can be degraded to potentially decrease

trustworthiness in its incorporation or use by a

software developer. These factors were identified using

a cognitive task analysis (CTA) as described in [1].

Using a web-based platform, eighteen (18) Java classes

are presented as images to study participant responses.

In addition to their degradations, each Java class is

labeled as coming from a reputable or unknown source.

Participants are asked to rate the trustworthiness of the

code and determine if they would use the code without

changes. The main research questions for the study are:

 RQ1: Does the readability of code affect its

trustworthiness?

 RQ2: Does the organization of code affect its

trustworthiness?

 RQ3: Does basic knowledge of the source of

the code (i.e. reputable vs. unknown) affect its

trustworthiness?

 RQ4: Is the trustworthiness rating of the code

related to whether a programmer would or

would not use the code?

5817

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41864
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:charlie-walter@utulsa.edu
mailto:gamble@utulsa.edu
mailto:gene.alarcon.1@us.af.mil
mailto:sarah.jessup@csra.com
mailto:chris.calhoun@csra.com

In this paper, we overview the platform created for

the study. We detail finer-grained degradations, along

with providing examples of each, and how they are

dispersed throughout the code artifacts to designate

them as low, medium, or high readability or

organization. We discuss the results of a pilot study of

12 participants, which provided foresight into the

potential results of the full study planned for 72

participants. The pilot study also provided an

understanding of usability of the platform, whether the

image-based interface was appropriate for code

trustworthiness assessment, and what the average time

was to complete the study.

2. Background

There are few studies regarding why programmers

trust some code over others. Kelly and Shepard [7]

looked at the number of coding errors found in

software inspections when those inspections were

performed individually versus those performed by a

group. Their findings indicated that interacting groups

detected fewer new issues and rejected errors detected

individually. Their study showed a higher likelihood of

increased trust in external code when a group review is

performed over the trust in the same external code

given by a single reviewer.

Rigby and Bird [12] discussed the usefulness of the

software review process. They focused on the benefits

of finding errors and discussing potential solutions in

open source code. Because open source code is widely

trusted by its users, they presented a good example of

how discussion can lead to greater trust in code that is

written by others. By looking at open source projects

with many users, it is possible to see examples of

trusted code written by others. Thus, the acceptance of

open source code can lead to an increase in the

reputation of the programmer(s) who crafted it.

When a programmer is forced to maintain code

with defects, Albayrak and Davenport [2] determined

that defects in the formatting of the code increases the

false positive rate and lowers the number of functional

defects detected. This study implied that non-logical

defects, such as the way the code or its comments are

formatted, can lead to a mistrust of the code itself,

regardless of whether the code is logically correct.

Naedele and Koch [10] examined a method of

ensuring trust in code after it has been transferred to

another system for review by another program. The

authors focused on how ensuring the delivery of

tamper-proof code, i.e. nothing happens to the code in

transit, along with the reputation and liability of the

supplier of the code, can determine overall trust. While

this focus is important in understanding trust decisions,

it treats the code as a black box, preventing the code

itself from being the basis of the trust decision.

When examining software inspections, Porter, et al.

[11] identified one of the causes of variation in the

outcome of the inspection as Code Unit Factors. These

factors include the author, the size of the code, when

the code was written, and the functionality of the code.

The authors showed that these are major contributors

to the number of defects associated with the code and,

thus, should be further examined as potential trust

markers.

Kopec et al [8] showed that intermediate-level

programming students can make drastic mistakes on

even simple code. Using simple examples, the authors

examined multiple correct and incorrect methods of

solving the same programming problem. The

differences among the resulting code implied

programmers do not write their code in exactly the

same way. The study indicated the possibility that

programmers may be less likely to understand and, by

extension, trust, code that is unlike the code they write.

The readability of code has been previously

studied, though not from a perspective of

trustworthiness. Tashtoush et al. [14] defined a formula

to automatically analyze the readability of simple Java

code. They used online surveys to establish individual

weights for each feature, then tested the readability of

code samples with those features to fine-tune their

algorithm. They found that some features, such as

meaningful variable names and consistency, raised the

overall readability of the code samples, while others,

such as recursive functions, nested loops, and

arithmetic formulas, lowered the overall readability. As

some algorithms cannot be written without the use of

recursion or nested loops, it is important to understand

the factors that can be adjusted to ensure that code

samples which include these features are still readable.

3. Readability and Organization

Degradations

For this study, we examined detailed degradations

of readability and organization, along with a simple

distinction between the code source of reputable or

unknown. These three factors were identified by a

cognitive task analysis associated with the study [1].

The factors were identified as those that led to greater

transparency in the code, which is believed to increase

its trustworthiness. Readability is defined as the ease

with which a programmer or analyst can review the

code and understand its intent. Organization is defined

as the manner in which the control structure and logic

of the code is represented and understandable.

5818

We targeted Java classes for the study as it is one of

the more popular programming languages. Thus,

readability and organization qualities were derived

from Java Style Guides [5, 6, 13], an extensive search

of questions and answers on stackoverflow.com, and a

commonly used undergraduate textbook [4] for Java

coding standards and common practices.

Table 1 lists the readability degradations that were

imposed on the code. Misuse of case is segregated into

the different entities where the wrong case used in the

name could signal a novice programmer. Misuse of

braces can impact readability because brace usage

stems from early training on Java convention.

In some languages proper indentation is required,

so high skilled programmers maintain proper

indentation even when it is not needed for accurate

code execution. The last readability degradation points

to line length and line wrapping. How long a line is

and how blank lines are managed can point to

programmers that are unconcerned about their code

being read by others. Along with improper use,

inconsistent use of accepted conventions can indicate

poor training of an individual or group of

programmers.

Table 2 lists the organization degradations that

were imposed on the code. These degradations focused

on the structural manifestation of the code and

highlighted the programmer’s mindset and training.

For example, how a programmer groups methods,

including those that are overloaded, may indicate how

the code was derived initially and later revised.

Table 1. Readability Degradations

1. Misuse of case

a) For packages

b) For classes and interfaces

c) For methods and variables

d) For constants

2. Misuse of braces

a) Line break before an opening brace

b) No line break after an opening brace

c) No line break before a closing brace

d) Line break after a brace that precedes an else

e) Missing a space before an opening or closing brace

3. Misuse of indentation
a) Improper indentation given code position

b) Inconsistent indentation

4. Improper line length and line wrapping

a) Unnecessarily exceeds character limit without wrapping

b) Missing blank lines to indicate logical grouping

c) Use of too many and unnecessary blank lines

Table 2. Organization Degradations

1. Poor grouping of methods a) Any form

2. Misuse of declarations

a) Import statements used improperly

b) More than one variable per line

c) Variables not initialized as soon as possible

d) Overuse of public instance and class variables

3. Ambiguous control flow

a) Improper, unnecessary, or confusing use of “break” or “continue”

b) Unnecessary or confusing nesting of blocks

c) Multiple function calls or unnecessarily grouping block on one line

d) Switch statement does not have a default case

e) Switch statement with no “break” does not comment explicit
continuation to next statement group

4. Improper exception handling a) Any form

5. Statements unnecessarily require
 additional review

a) Compressed if statements

b) Unusual return statements

c) Multiple classes

d) Inconsistent blocks

5819

The misuse of declarations, as described in Table 2,

may also indicate code that was revised multiple times

with the placement of declarations be placed directly

with newly inserted code. Ambiguous control flow,

and improper exception handling may point to a

programmer creating haphazard code or just being

lazy. Statements that may be overly complex or

structured in a way that requires deeper analysis may

indicate a poor programming style or a careless

programmer. Inconsistency of organization

characteristics within the same code may indicate that

multiple programmers revised the code, which could

promote distrust.

A total of 18 code artifacts, i.e. Java classes, for

this study, were taken from a variety of sources. Either

they could be classified as having existing

degradations, or we augmented them with degradations

without creating code that did not compile or produce

the intended output. Thus, all resulting code artifacts

compiles and works as intended. The code was

sanitized to prevent the study participant from forming

any biases. In addition, the study participants were told

that all comments were removed, again to eliminate

bias toward commenting styles and practices, which

provide different factors for study according to the

CTA [1]. Each code artifact was designated as

• coming from a Reputable or Unknown source

• high, medium, or low readability

• high, medium, or low organization

to satisfy all possible combinations.

Figure 1. Sample Code Presented to Study Participant

5820

A high readability or organization value implies

that style guidelines and best practices are followed

within the code. A medium readability or organization

value implies that there are multiple instances

(generally between 3-7) of the same or different

degradations. A low readability or organization value

implies that there are a significant of degradations

(generally greater than 7 instances) and that there were

at least 2 different degradation representations.

Each degraded artifact had a different selection and

combination of degradations, in an effort to prevent the

code from appearing to be too unnatural or unlike

something any coder would write. While the number of

degradations provided a metric, their inconsistent

appearance and their percentage of representation

given the total lines of code also distinguished between

medium and low readability or organization.

Consistency in the degradation placement in the code

was used at medium levels with the understanding that

it was the way the programmer was trained (possibly

poorly) to write code. Inconsistency in the application

of a degradation throughout the code was used at the

low levels to potentially indicate that multiple

programmers used the code or that a single

programmer was careless or unconcerned about the

reuse of the code. Each code artifact was analyzed by

five subject matter experts independently from two

different organizations to ensure that it met the

assigned degradation level.

4. Study Platform

In order to present the code to study participants for

review and a decision on its trustworthiness, we

constructed a web application platform that allowed the

study to be administered in multiple cities without loss

of data. The platform was created in Ember, a

javascript framework allowing for minimal

communication with a server and for all data to be

stored in the browser until the completion of the study.

Given that the expected participants needed to have

three years of coding experience and familiarity with

Java, they would examine code using an editor (with

color coding) or an IDE, such as Eclipse. Such

programmers may also search the code, run a code

inspection tool on it, and see updates by other team

members, as well as compile and execute it. These

considerations complicated the presentation of the

information, because every programmer is different

and simulating one’s environment or process would not

necessarily be engaging to another programmer. We

experimented with presenting a set of images of a

single Java class that included the class in a standard

editor with color coding, the result of an inspection

tool, and the result of a “diff” command to show

differences in versions. Since the only common artifact

that was acceptable was just the code presentation

image, we opted for that in the study.

Each artifact was on its own page with a general

description of what the class was intended to do at the

top of the page, along with the source. Figure 1 shows

a sample page in the study.

Figure 2 – Figure 5 provide samples of

degradations. Figure 2 shows multiple readability (R)

degradations to achieve a low readability level. Line 83

has a line break before an opening brace (R2.a).

Improper indentation given code position (R3.a) and

inconsistent indentation (R3.b) appear on lines 85 and

86. Line 88 has no line break before a closing brace

(R2.c) and is missing a space before a closing brace

(R2.e).

Figure 3 shows multiple organization (O)

degradations to achieve a low organization level. Lines

66-68 have a switch statement with no default case

(O3.d) and which has no “break” but does not

comment explicit continuation to next statement group

(O3.e) exhibiting ambiguous control flow. Lines 69-71

displays improper exception handling (O4.a).

Figure 4 shows an example of combining

readability and organization degradations. It has a line

break before an opening brace (R2.a) and no line break

after an opening brace (R2.b) on line 44. It also has an

overuse of public instance and class variables (O2.d)

on lines 38-41. These degradations combine with other

in this code artifact to have a low readability and a low

organization.

Figure 5 shows a second example of the misuse of

case for methods and variables (R1.c) on line 37, a line

break before an opening brace (R2.a) on line 38, and a

compressed if statement requiring more in depth

review (O5.a) on line 39 in a portion of a code artifact

that exhibits medium readability and medium

organization.

5821

Figure 2. Sample Readability Degradations

Figure 3. Sample Organization Degradations

Figure 4. Combined Readability and Organization Degradations (#1)

Figure 5. Combined Readability and Organization Degradations (#2)

5. The Pilot Study

For inclusion in the pilot study participants were

required to have at least 3 years of experience in

computer programming and be a competent Java

programmer. Pilot study participants were recruited

from local industry and from The University of Tulsa

computer science graduate students. All participants

met the requirements of having at least 3 years of

programming experience and a working knowledge of

Java. A total of 12 participants (11 males and 1 female)

with a mean age of 25.5 years and a SD of 7.5 were

recruited for the initial experiment. These participants

were not compensated. The age range was 21 to 48.

Eight participants had completed a 4-year degree, 2

had completed a graduate degree, and 2 had less than 4

years of college.

At the start of the study, a user answers

demographic questions and self-report surveys which

include a Mayer-Davis Propensity to Trust Scale [9], a

mini IPIP [3], and a series of Suspicion Propensity

Index (SPI) situational-based items. The participants

5822

were then informed of the number of code artifacts

they will be reviewing, that there were purposely no

comments included in the artifacts, and that they were

reviewing the code only to decide if they would use the

code in a project that had need of the functions the

code claimed it could perform. Participants were told

that they must decide if they will use or not use the

code as it is written. In addition, they were asked to

rate how trustworthy they found the code using a 7-

point Likert scale as shown in Figure 1. Participants

could ask clarifying questions to study proctors about

the code artifacts and the operation of the platform.

5.1. Data Collection

The platform collected data from the user as

decisions were made. Code artifacts were shown to the

user one at a time with a description of what the code

does and a source, either reputable or unknown, for

context. After reviewing the code, a user rated the

trustworthiness and then clicked “Use” or “Don’t Use”

(see Figure 1) If a user clicked “Use,” the platform

directed them to the next code artifact without asking

for feedback, as the user deemed the code trustworthy.

If a user clicked “Don’t Use,” an additional dialog box

appeared that asked for comments on why the code

would not be used, allowing for more detailed

feedback on negative answers. After inserting

comments, the user was then able to click submit,

which directed them to next artifact.

For each content item, a database retained its rating,

trust decision, and explanation of mistrust against a

user ID. If a user attempted to move forward in the

study without selecting a trust rating, the system

responded with a request to choose a rating level

before continuing. To ensure that a user could exit the

study at any time without any personal information

being collected, all data was stored locally in the

browser until the completion of the study.

5.2. Evaluation

To address RQ1-RQ3, we analyzed the data using

three univariate ANOVAs. ANOVA is a collection of

statistical tools for analyzing differences between

multiple group means. We analyzed the data with a

null hypothesis of no significant differences among

manipulations of code. If the null hypothesis was

rejected, we applied post hoc Bonferroni analysis to

study the differences among code manipulations. All

the results are reported on the basis of an alpha level of

0.05. ANOVA results illustrate significant main effects

of readability (F(2,216) = 8.704, p<0.001),

organization (F(2,216) = 3.306, p=0.039), and source

(F(1,214) = 19.526, p<0.001). All factors resulted in a

critical p value less than the selected significance level,

indicating the trustworthiness scores differ

significantly across degradation groups. The

Bonferroni post hoc analysis was used to contrast

multiple comparisons to determine which mean

differences are significantly different from each other

as discussed below.

Analysis of the readability condition indicates high

readability was significantly different from medium

and low readability, as indicated in Figure 6. High

readability led to higher perceptions of trustworthiness

in the code, but once degraded there were no

statistically significant differences in perceptions of

trustworthiness. The organization condition indicates

high organization of the code was significantly

different from medium and low organization, as shown

in Figure 7. However, once code was degraded it was

perceived as more trustworthy than in the high

organization condition. Lastly, there was significant

difference between reputable and unknown sources of

code, as depicted in Figure 8. If the code was said to be

reputable it was perceived as more trustworthy than

code from an unknown source.

Figure 6. Readability Analysis

Figure 7. Organization Analysis

5823

Figure 8. Source Analysis

Table 3 shows the Use/Don’t Use selections given

the artifacts classification for readability and

organization.

To address RQ4, a logistic regression was

performed to ascertain the effects of readability,

organization and source on the likelihood that

participants would use the code. The logistic regression

model was significant (Χ2 (7) = 18.067, p<.01). The

model explained 11% of the variance in the decision to

use the code and correctly classified 65.7% of the

cases. Medium readability code was 0.34 times less

likely to be used, and low readability code was 0.38

times less likely to be used than high readability code.

Low organization code was 2.31 times more likely to

be used than high organization code. There was no

difference between medium and low organization.

Code that was from an unknown source was 0.595

times less likely to be used than code from a reputable

source.

To better understand why there was a difference in

trusting organization degradations and if this could

propagate to the full study, we logged how many times

a participant trusted code that had a particular

degradation. We totaled the number of “don’t use”

decisions for artifacts containing a particular

degradation type and divided by the number of artifacts

where that degradation type appeared. Dividing that

result by the 12 participants yielded the histogram in

Figure 9, representing the percentage of time a

degradation was distrusted when it appeared in a code

artifact, or strength of the distrust with respect to all

degradations.

Table 3. Pilot Study “Use” and “Don’t Use”
Choices for Code Artifacts given their

Classifications

Use
Don't

Use
Use

Don't

Use
Use

Don't

Use

U
n

kn
o

w
n

8 4 5 7 5 7

R
ep

u
ta

b
le

10 2 6 6 5 7

U
n

kn
o

w
n

7 5 8 4 7 5

R
ep

u
ta

b
le

11 1 10 2 9 3

U
n

kn
o

w
n

10 2 6 6 7 5
R

ep
u

ta
b

le

10 2 10 2 9 3

High Medium Low

H
ig

h
M

ed
iu

m
Lo

w

O
rg

an
iz

at
io

n

Readability

It is visually apparent that that organization

degradations have lower levels of distrust as compared

to the readability degradations. The average strength of

distrust over the readability degradations is 0.43 versus

an average of 0.27 for organization degradations. It

should be noted that there are 53 appearances of

readability degradations across the 18 code artifacts

versus 38 appearances of organization degradations.

Thus, it is possible that the organization degradations

were not as apparent as the readability degradations.

However, it does not answer the question of why high

organization caused distrust overall even when

readability was low (see also Table 3). Perhaps these

structural degradations are common even though they

are not considered best practices, but are coded in this

manner for expediency. If Java programmers are

unconcerned about organization, then it may be suspect

if the code is too structured, potentially indicating a

novice programmer trying to be very careful.

5824

Figure 9. Percentage of Time a Degradation was Distrusted when it Appeared in a Code Artifact

6. Discussion and Conclusion

In addition to the initial readability, organization,

and source analyses, the pilot study provided insight

into how the platform could be refined to improve

both analysis understanding and user experience. For

analysis understanding, allowing commenting on

why a programmer would use the code might point to

why certain organization degradations were trusted.

In fact, some participants commented at the end of

the study that they wished to explain their choices

when they would trust the code. The results of the

pilot study are encouraging with respect to readability

and source. Organization degradations may need to

be revisited if the full study has a similar analysis.

The full study of a larger set participants is

underway. These participants are compensated. More

detailed instructions are given at the start of the study

and the code artifacts have not been changed. The

pilot study participants were timed only from start to

finish, but the full study has timings associated with

each code artifact to provide insight into whether

degraded code is more quickly detectable. To

improve user experience, a discussion of the code

coloration is provided prior to the start of the study.

The images used a particular SublimeText Theme

that results in some unexpected text colors requiring

users to ask for clarification on specific sections of

the code.

Our future effort will expand the analysis to

examine the degradations more closely with the

larger sample size, as well as look at the decision

times for each artifact and its relationship to the

degradations. Additionally, we will further

investigate the effect of comments within the code

and how it relates to perceived code trustworthiness.

The plan is to continue the study with additional

forms of degradation as found in the CTA [1] to

develop an understanding of coding styles that are

commonly mistrusted. Ideally, this could lead to

greater trust in code given to contractors or acquired

by companies, preventing programmers from losing

time “fixing” working code and potentially allowing

machine-written code to be as trusted as a human-

written version.

Acknowledgement. This research was funded in

part by the Air Force Research Laboratory (Contract

FA8650-09-D-6939/0033). The findings and

conclusions in this report are those of the authors and

do not necessarily represent the official position of

the Air Force.

5825

7. References

[1] G. M. Alarcon, L. G. Militello, P. Ryan, S. A. Jessup,

C. S. Calhoun, and J. B. Lyons, “A descriptive model of

computer code trustworthiness.” Journal of Cognitive

Engineering and Decision Making, (in press), 2016, online

as doi:10.1177/1555343416657236.

[2] Ö. Albayrak and D. Davenport, "Impact of

Maintainability defects on Code Inspections," Proceedings

of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement -

ESEM'10, 2010.

[3] M. B. Donnellan, F. L. Oswald, B. M. Baird, and R. E.

Lucas, "The Mini-IPIP Scales: Tiny-Yet-Effective

Measures of the Big Five Factors of Personality,"

Psychological Assessment, vol. 18, 2006, pp. 192-203.

[4] T. Gaddis, Starting Out with Java: From Control

Structures Through Objects, Pearson, Addison-Wesley,

2015.

[5] "Geotechnical Software Services, Java Programming

Style Guidelines,

http://geosoft.no/development/javastyle.html," 2015.

[6] "Google, Java Style Guidelines,

https://google.github.io/styleguide/javaguide.html," 2014.

[7] D. Kelly and T. Shepard, "An experiment to

investigate interacting versus nominal groups in software

inspection," Proceedings of the 2003 conference of the

Centre for Advanced Studies on Collaborative Research,

2003, pp. 122-134.

[8] D. Kopec, G. Yarmish, and P. Cheung, "A Description

and Study of Intermediate Student Programmer Errors,"

SIGCSE Bulletin, vol. 39, 2007, pp. 146-156.

[9] R. C. Mayer and J. H. Davis, "The Effect of

Performance Appraisal System on Trust for Management:

A Field Quasi-Experiment," Journal of Applied

Psychology, vol. 84, 1999, pp. 123-136.

[10] M. Naedele and T. E. Koch, "Trust and Tamper-Proof

Software Delivery," Proceedings of the 2006 International

Workshop on Software Engineering for Secure Systems -

SESS '06, 2006, pp. 51-57.

[11] A. Porter, H. Siy, A. Mockus, and L. Votta,

"Understanding the Sources of Variation in Software

Inspections," ACM Transactions on Software Engineering

and Methodology, vol. 7, 1998, pp. 41-79.

[12] P. C. Rigby and C. Bird, "Convergent Contemporary

Software Peer Review Practices," Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering

- ESEC/FSE 2013, 2013, pp. 202-212.

[13] "Sun Microsystems, Java Code Conventions,

http://www.oracle.com/technetwork/java/codeconventions-

150003.pdf," 1997.

[14] Y. Tashtoush, Z. Odat, I. Alsmadi, and M. Yatim.

"Impact of Programming Features on Code Readability."

International Journal of Software Engineering and Its

Applications, 2013, pp. 441-458.

5826

