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Abstract 
 

This study offers a method for empirically testing 
theories operationalized in the form of multivariate 
statistical models. An innovation of the method is that it 
distinguishes testing into three separate forms, “effect 
testing,” “prediction testing,” and “theory testing,” 
where statistical significance plays a separate role in 
each one. In another innovation, the researcher 
specifies not only his or her desired level of statistical 
significance, but also his or her desired level of 
practical significance. Statistical significance and 
practical significance each serve as a dimension in a 
two-dimensional table that specifies the rejection region 
– the region where the researcher can justify the 
decision to reject the theory being tested.  The boundary 
of the rejection region is the “validity frontier,” which 
ongoing research may advance so as to reduce the size 
of the rejection region. 
 
1. Introduction 
 

What are the roles of statistical significance in theory 
testing? 

Consider the situation where a behavioral theory in 
information systems (IS) is operationalized 
mathematically as a set of one or more equations.  
Typically, the left-hand side of an equation is a 
dependent variable and the right-hand side is often a 
linear combination of independent variables, but 
nonlinear combinations are certainly allowed too.  The 
set of equations is then fitted to a population with a 
sample of data taken from the population.  Traditionally, 
hypothesis testing is conducted to determine the level of 
statistical significance of the estimated coefficients of 
the independent variables. 

The purpose of this essay is to innovate two 
additional roles for statistical significance in testing: In 
addition to the role played by statistical significance in 
the traditional hypothesis testing just described, we 
propose a second role for statistical significance in 
prediction testing (the testing of an individual prediction 
made by the theory’s equations after they are fitted with 

sample data to a population) and a third role for 
statistical significance in theory testing (the testing of 
the theory through the multiple predictions it makes). 

In the second and next section of this essay, we will 
use a case from natural science to introduce some basic 
ideas that we will subsequently refine with a behavioral 
IS example.  The reason for using a natural-science case 
is that its subject matter, being physical and 
unambiguous, is conducive to the introduction of more 
abstract ideas without unnecessary complications. 

This introductory case will allow us, in the third 
section, to make a revealing examination of behavioral-
science theorizing which involves statistical inference.  
We will draw attention to how traditional statistical 
hypothesis testing for the statistical significance of 
estimated coefficients, while not incorrect, is 
incomplete when it comes to the matter of theory 
testing.  We will show how to conduct statistical 
behavioral research so as to carry out, to completion, the 
required scientific method of testing. Then, in the fourth 
section, we will introduce a new methodological 
concept, a theory’s “validity frontier,” which is a visual 
way of summarizing how well a behavioral theory does, 
or does not, predict and therefore is, or is not, valid. It 
accounts for a researcher’s own preferences for how 
inaccurate a theory’s predictions may be until the 
researcher himself or herself feels compelled to consider 
the theory to fail. 
 
2. A natural-science example: an 
illustration of the use of statistical 
inference in theorizing  
 

For an illustration of the use of statistical inference 
in natural science, we turn to an example of an object 
falling in a liquid for which 19 data points are collected, 
where each data point denotes the object’s velocity V 
(measured in meters/second or m/s) as the independent 
variable and the object’s force F (measured in Newtons 
or N) as the dependent variable. 

The source of the material in Figure 1 is [14]. The 
original data for the 19 data points (the measured values) 
and the two graphs are taken from the downloaded 
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documents.  The “Prediction Error” columns have been 
added. 

As the left-hand side of Figure 1 indicates for the 19 
data points, a simple regression explains the force F of 
the falling object as a linear function of the object’s 
velocity, “F = -0.4612V + 5.6518,” where the 
explanation is excellent statistically. The p-value for the 
estimated coefficient -0.4612 is almost as small as 0 
(which would ideally be its best value) and the R2 value 
is 0.9698 (where ideally its best value would be 1). In 
behavioral research, numerical values for the p-value 
and the R2 are rarely, if ever, as good as these, which 
would be regarded as excellent support for the 
theoretical explanation being tested. 

However, as the right-hand side of Figure 1 
indicates, the very same 19 data points also allow a 
different regression to explain the same force F of the 
falling object as a nonlinear (quadratic) function of the 

object’s velocity, “F = -0.0271V2 -0.1278V + 4.977,” 
where the explanation is even better than the prior one. 
The p-value for the estimated coefficient -0.0271 and 
the p-value for the other estimated coefficient -0.1278 
are both excellent (each is almost as small as 0) and the 
value for the R2, as 0.9986, is even closer to 1 than the 
R2 for the linear equation. 

Scientifically, the bottom-line criterion is not so 
much one or another statistical measure, but a predictive 
measure: Which theoretical explanation is more 
predictive? In Figure 1, there are two “Prediction Error” 
columns; the column for the linear explanation, “F = -
0.4612V + 5.6518,” shows prediction errors that are 
consistently greater than the prediction errors in the 
same rows in the column for the other explanation, “F = 
-0.0271V2 -0.1278V + 4.977.” The better predictive 
power is sufficient to reject the former explanation in 
favor of the latter one. 

Figure 1 
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Four additional points are worth noting. The first one 
is that statistical measures (such as the R2 value, and the 
estimated coefficient’s p-value or level of statistical 
significance) are indeed helpful to show how well a 
general equation (such as “F = ß0 + ß1V” or “F = ß0 + 
ß1V + ß2V2”), when applied to a set of data sampled 
from a population, fits the population; however, in 
general, statistical measures and statistical inference 
play an ancillary role (or, at best, a supporting role) in 
science. In our example, how well or poorly an equation 
statistically fits the population is a matter that precedes, 
and is different from, how well the equation predicts. 
Individual predictions must still be made from the 
equation, and then empirically tested to see if each one 
succeeds or fails. Thus, empirically testing a theory 
through its predictions follows, and is not pre-empted or 
supplanted by, any statistical tasks of fitting the theory’s 
equation(s) to a population. Historically speaking, 
statistical inference is just one possible, but not 
necessary, research tool available to scientific research. 
Consider that Neyman and Egon Pearson introduced the 
idea of a confidence interval only in 1928 and the 
procedure for hypothesis testing only in 1933 [1]. If 
research must be statistical to be scientific, then this 
would mean that there was no science before 1928. 
Also, statistical hypothesis testing of the estimated 
coefficient of an independent variable (e.g., “H0: ß1 = 0” 
regarding “F = ß0 + ß1V + ß2V2”) is not to be confused 
with the empirical testing that compares predicted 
values with observed values (e.g., comparing a value 
predicted for F with the value observed for F after “F = 
ß0 + ß1V + ß2V2” has been fitted to the population where 
the empirical testing is being conducted). 

The second additional point worth noting is that 
even an incorrect theory can have excellent statistical 
measurements.  As even a first-year university physics 
student knows, the linear equation “F = -0.4612V + 
5.6518” (or actually, regarding our example of the 
object falling in a liquid, any linear equation) is 
scientifically incorrect, despite its having an excellent p-
value for an estimated coefficient and an excellent R2 
value. And if this is the case in natural science, then 
what does this portend for the case in social science, 
where typically p-values and R2 values are hardly ever 
as good as they are even in the incorrect natural science 
case of “F = -0.4612V + 5.6518”? The lesson is that, 
because excellent statistical results – e.g., even an 
astonishing R2 of 0.9698 and even estimated coefficients 
with high statistical significance – can still be consistent 
with an incorrect theory, the scientific status of a theory 
as true (or, at least, as not rejected) does not follow from 
the quality of its statistical fit (assuming that statistical 
inference is used at all), but from the empirical testing 
of the predictions made from it. 

The third point is that, in our example of the object 
falling in a liquid, we can conduct a test of either theory 
(one theory being that force and velocity are related to 
each other by the relation “F = ß0 + ß1V” and the other 
theory being that the relation is instead “F = ß0 + ß1V + 
ß2V2) by noting how many of its predictions can be 
regarded to succeed or fail.  Of course, this would 
involve establishing a threshold level for how great a 
prediction error may be before the prediction is judged 
to fail, as well as establishing another threshold level for 
how many predictions may fail before the theory itself 
is also judged to fail.  Both thresholds, we will explain 
in detail below, involve a role for statistical significance 
– but they are roles different from the one associated 
with the traditional testing of the null hypothesis 
pertaining to an estimated coefficient, e.g., “H0: ß1 = 0.” 

The fourth point is that, in the literature of 
behavioral IS articles, numerous studies conducted by 
prominent researchers and published in prominent 
journals demonstrate the practice of engaging in 
traditional statistical hypothesis testing with regard to 
estimated coefficients, but these studies never proceed 
to the subsequent, necessary scientific step of 
empirically testing a theory by computing any values it 
predicts for a dependent variable and then comparing 
them to values observed for the dependent variable.  
Such studies include [2], [3], [4], [5], [6], [7], [8], [9], 
[10], [11].  All of these studies mention “prediction,” 
“predictor,” “predicting,” or “predict,” but not one of 
them describes or reports the actual test of any 
prediction.  The journals in which these studies appear 
include all eight of the “Senior Scholars’ Basket of 
Journals.” The statistical method in these studies is not 
incorrect, but is incomplete in so far as the theories 
being advanced were not empirically tested.  In the next 
section, we propose a remedy for this situation. 
 
3. In behavioral IS research: a remedy for 
making the use of statistical inference 
complete for theory testing 
 

Testing a theory, where the researcher has used a 
sample of data from a population to fit the theory to the 
population, is not as simple as using the fitted theory to 
make and test just a single prediction.  The main reason 
for this is that sampling error, introduced whenever a 
sample of data is taken from a population, can induce 
inaccuracies in the fitted equation’s coefficients.  For 
instance, in an example from Figure 1, the coefficient -
0.1278 in “F = -0.0271V2 -0.1278V + 4.977” could be 
different from what the true value of it is.  (In statistical 
parlance, the equivalent statement would be that the 
estimated value ß̂2 is different from the true, but known, 
value ß2, where the predicted value of F should ideally 
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be computed using ß2, not ß̂2.)  This, in turn, creates the 
complication that the result of testing a predicted value 
of F could then be disputed because the predicted value 
of F is itself inaccurate, whether the result is “the 
prediction succeeds” or “the prediction fails.” 

The remedy to this problem involves two actions.  
One is to make the decision that a prediction fails only 
if the difference between the predicted value and the 
observed value reaches a given threshold level, where 
this threshold level is to be determined.  The second 
action is to make the decision that the theory fails not if 
just one prediction fails, but only if the number of 
predictions that fail, out of the total number of 
predictions that are tested, also reaches a given threshold 
level, where this threshold level is also to be determined.  
How are the two threshold levels to be determined? 

 
3.1. Determining the threshold level for where a 
prediction fails  
 

One approach to determining the threshold level for 
where a prediction fails is for the researcher to rely on 
his or her own judgment in a reasoned, and replicable, 
manner.  The use of a critical level of statistical 
significance, such as “reject H0 where α = .05,” 
establishes the precedent allowing this to be done.  Just 
as a researcher is allowed to determine the threshold 
level of statistical significance in hypothesis testing to 
be a numerical value that the researcher chooses for α 
(the threshold level beyond which the measured p-value 
allows the researcher to make the decision to reject H0), 
we regard a researcher as no less allowed to determine 
the threshold level of prediction error beyond which the 
observed or measured prediction error allows the 
researcher to make the decision that the prediction fails.  
Just as the threshold level in statistical hypothesis 
testing is denoted with the symbol α, we choose to 
denote as the threshold level in prediction testing with 
the symbol π.  And just as a researcher can conduct 
“what if” analyses with different values of α, showing 
how sensitive or insensitive the conclusion (i.e., “reject 
the null hypothesis”) is to different values of α, the 
researcher can also conduct “what if” analyses with 
different values of π, showing how sensitive or 
insensitive the conclusion (e.g., “the prediction fails”) is 
to different values of π. 

We choose, furthermore, to take advantage of a 
particular circumstance in behavioral information 
systems research.  It is that many or most variables are 
measured on a Likert scale, typically from 1 to 7.  
Suppose that a dependent variable (such as “the 
individual’s behavioral intention to use the given 
technology”) is measured on a scale from 1 to 7, that a 
numerical value is predicted for the dependent variable, 

and that the resulting prediction error turns out to be just 
±0.1 unit (on the same scale from 1 to 7).  On the one 
hand, a researcher may consider this prediction error to 
be so small as to lack practical significance; the 
researcher considers it to be insufficient to judge the 
prediction to fail and instead writes it off as an artifact 
of sampling error.  On the other hand, if ±0.1 unit on a 
scale from 1 to 7 is too small to bear any practical 
significance, then how large must a prediction error be 
to provide sufficient confidence to a researcher to make 
the decision that the prediction has failed?  Consider 
prediction errors that cross the threshold of ±1.0 unit.  
Such a threshold would be particularly generous, 
considering that it spans a range of 2 units and therefore 
covers 33% of the entire scale. 

Analogously to statistical hypothesis testing, just as 
a researcher may choose his or her desired level of 
“statistical significance,” α, to be a particular numerical 
value such as .05, a researcher may also choose what we 
are now naming his or her desired level of “practical 
significance,” π, as being ±1.0 unit for the given variable 
operationalized on a Likert scale from 1 to 7.  And just 
as it would behoove the researcher to see if his or her 
conclusions change or are insensitive to changes in the 
value chosen for α, it would behoove the researcher to 
see if his or her conclusions change or are insensitive to 
changes in the value chosen for π.  The larger the range 
of values across which the conclusion remains 
unchanged, the more durable or objective the conclusion 
would be; just as this has always been the case regarding 
the range of values for α, this is also the case regarding 
the range of values for π. 

An additional necessary consideration is the 
probability, in decision making, of a false positive.  In 
statistical hypothesis testing, it is the probability, where 
the null hypothesis H0 actually happens to be true, that 
the researcher makes the decision to reject it.  In fact, 
this is the definition of, and is denoted as, the 
aforementioned α.  It is the probability of making the 
decision that the independent variable, whose estimated 
coefficient’s statistical significance is being measured, 
is indeed related to the dependent variable when, in 
actuality, it is not (hence, “false positive”).  
Analogously, in prediction testing, it is the probability 
of making the decision that there exists a difference 
between the predicted value and the observed or 
measured value (apart from the “noise” of sampling-
induced inaccuracy in computing the prediction) when, 
in actuality, there is no such difference.  Unfortunately, 
to denote the latter probability, the symbol α is already 
taken.  Therefore, to denote the two probabilities, we 
will distinguish them as αet and αpt.  For the former, αet, 
the subscript “et” refers to effect testing, insofar as 
statistical hypothesis testing with regard to the null 
hypothesis “H0: ßi = 0” is about whether or not the 
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coefficient ßi of the independent variable in a 
multivariate analysis indeed indicates an effect on the 
dependent variable.  (Our usage of the term “effect” here 
is consistent with the term “effect size.”)  For the latter, 
αpt, the subscript “pt” refers to prediction testing.  By 
convention, the maximum acceptable probability or 
threshold level for making the decision error of a false 
positive is 0.05. 

What this means is that, in the test of a prediction 
made by the theory (which is that there is no difference 
between the predicted value and the observed or 
measured value, apart from the “noise” of sampling-
induced inaccuracy in computing the prediction), the 
researcher is willing to accept up to a 5% probability 
that he or she would be incorrectly deciding, whenever 
the prediction error exceeds the numerical value that he 
or she earlier established for π (such as ±1.0), that the 
difference exists – i.e., that the prediction fails and 
therefore contradicts the theory. 

 
3.2. Determining the threshold level for where a 
theory fails 

 
As mentioned, the reason why a single prediction is 

not sufficient to test the theory making the prediction is 
that sampling error induces “noise” in the computation 
of the value that is predicted.  Suppose, then, 100 
predictions are tested instead of just 1.  If 90 of the 100 
fail, the researcher could be confident in rejecting the 
theory making the predictions. But suppose just 10 of 
the 100 predictions fail.  In this case, would the 
researcher have sufficient confidence to reject the 
theory?  After all, some of the predictions deemed to fail 
could be false positives.  The binomial distribution 
provides a formula by which to compute the probability 
that, out of n trials, x of them will be successes (as well 
as, therefore, the probability that x or more of them will 
be successes), where the probability of success in a 
given trial is p.  In our application of the binomial 
formula, (1) a false positive is defined as a “success,” 
which is the occurrence of a prediction that is deemed to 
fail because its prediction error exceeds π, when in fact 
the prediction is successful, (2) n = 100, (3) x = 10, and 
(4) the researcher chooses 0.05 as the value for the 
probability p (which in this application of the binomial 
is also the probability of a false positive αpt).  Thus the 
probability of making the decision that 10 or more of the 
100 predictions fail, when in fact the predictions are 
true, can be computed from the cumulative binomial 
formula as only 0.028, or 2.8%.  Because this 
probability fits the definition of a p-value, this implies 
that the theory can be rejected at a critical significance 
level of 0.05; we designate this latest critical 
significance level as αtt, where the subscript “tt” refers 

to theory testing.  Like αet and αpt, we note αtt is the 
probability of a false positive – here, the probability of 
making the decision that the independent and dependent 
variables in the theory are related to each other as the 
theorized equation specifies, when they are in fact not 
so related – where convention regarding false positives 
dictates that this threshold level not be greater than 0.05. 

Because the p-value of 0.028 crosses the threshold 
level of αtt as 0.05, the researcher may properly reject 
the theory as true.  Equivalently, the researcher may 
reject, at the 97.2% level of confidence, the statement 
that the theory is true when the researcher judges 10 of 
the predictions to fail, where a failed prediction is one 
where the prediction error exceeds the threshold of the 
numerical value that the researcher earlier assigned to π 
(such as ±1.0). 

 
 
To recapitulate our discussion from the beginning of 

the essay, we have formulated a research method by 
which not only (1) a theory, operationalized in the form 
of an equation, is statistically fitted to a population with 
data sampled from the population in a process that 
makes use of statistical significance in the traditional 
form which we denote as αet, but also (2) the same theory 
is then empirically tested through the predictions it 
makes, making use of statistical significance in our 
newly innovated forms of αpt and αtt.  As noted earlier, 
numerous behavioral studies in information systems, 
conducted by prominent researchers and published in 
prominent journals, demonstrate the practice of 
engaging in traditional statistical hypothesis testing with 
regard to estimated coefficients (i.e., the phrase just 
designated as “(1)”), but these studies never proceed to 
the subsequent, necessary scientific step of empirically 
testing a theory by computing any values it predicts for 
a dependent variable and then comparing them to values 
observed for the dependent variable (i.e., the phrase just 
designated as “(2)”).  In this study, we are contributing 
“(2).” 
 
4. An application of the three roles of 
statistical significance and a theory’s 
validity frontier 
 

We were fortunate enough for Lee and Hubona [12] 
to grant us access to the same data set that they used in 
Appendix C of their article, given the potential for our 
research method to complement the one that their 
Appendix describes.  They state (p. 262): 

 
For purposes other than those in this study, the 
second author collected data from a project 
financed by the Saudi Arabian government to 
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assess factors that affect the acceptance and use 
of computers (as a technology) by knowledge 
workers in Saudi Arabia. The participating 
organizations represented various banking, 
merchandising, manufacturing, and petroleum 
industries. The survey solicited responses from 
professional knowledge workers in these 
organizations engaged in the use of desk top 
computers for the purpose of their work. 
Through this procedure, a total of 1,190 survey 
responses were collected. The survey collected 
data on three of the technology acceptance 
model’s constructs. ... 

 
We used Lee et al.’s data, sampled from a 

population, to fit an equation of the technology 

acceptance model or TAM (Davis et al., 1989) to the 
same population.  The equation is “IU = ß0 + ß1 PU + ß2 
PEOU.”  IU is a person’s behavioral intention to use the 
given technology, PU is the persons’ perceived 
usefulness for the technology, PEOU is the person’s 
perceived ease of use for the technology, and each ßi is 
a constant whose true value is unknown but is estimated 
through statistical inference.  Each variable is measured 
on a scale from 1 to 7. 

To explain the meaning of Figure 2, where we 
embed the use of the “validation set approach to cross 
validation” [13], we focus on one cell in the table, where 
π = ±1.1 and αpt = 5% or 0.05. In this cell, the numerical 
values of the constants ßi are estimated with PLS SEM, 
using just 1,090 of the total of 1,190 data points in the 
sample.  We then use each one of the remaining 100 data 

Figure 2 
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points along with the fitted equation to predict a value 
for the dependent variable IU, which we then compare 
to the measured or observed value of IU.  If the 
difference between the two values is greater than π = 
±1.1 (i.e., if the absolute value of the difference exceeds 
1.1), then we make the decision that the prediction fails.  
The table indicates that 11 of the 100 predictions fail.  
Then, using the binomial formula as explained above, 
the p-value can be computed; it is 0.0115.  Where αtt = 
0.05, this p-value justifies the decision to reject the 
theory as true.  This cell is shaded red to indicate the 
rejection.  Each cell represents a different pair of values 
for of π and αpt. 

Worthy of attention is that there are only two cells 
where the theory TAM escapes rejection; they are in the 
column where π is ±1.2.  This means that a researcher 
who wishes to advocate TAM would have to tolerate an 
unrealistically large “leeway” or “margin of error” to 
explain away the large prediction error as the result of 
sampling error.  In other words, only by adopting a 
maximum tolerable prediction error π as generous as 
±1.2, which spans 40% of the dependent variable’s 
entire scale from 1 to 7, may the researcher avoid 
rejecting the theory TAM as true. 

And if one desires to use maximum tolerable 
prediction errors that are more reasonable or more 
modest (i.e., as in the first six columns in the table), then 

Figure 3 
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the results are unanimous to reject the theory TAM as 
true.  The major point here is not the rejection of TAM, 
but the finding that the same conclusion is reached 
across numerous “what if scenarios.”  In general, the 
finding of insensitivity in a sensitivity analysis is a 
finding of durability or objectivity in the conclusion that 
was reached. 

Despite the dramatic finding, based on the Lee et al. 
data set, to reject TAM, we do not necessarily vouch for 
the quality or the validity of the data set.  To address this 
problem, we use two simulated data sets in order to 
crosscheck our investigation. The reason is that using a 
simulated data set allows us to control measurement 
errors and other potential sources of errors that one 

would inevitably face in any type of empirical study.  
We report, in an unpublished working paper, the results 
of using the two simulated data sets.  We share the 
results as follows. 

We simulated data mostly using functions from the 
SIMSEM package in R. The simulated data sets exhibit 
excellent properties of multivariate normality with 
regard to skewness, kurtosis, heteroscedasticity, and 
measurement.  The size of each simulated data set is 
1,000. We applied the validation set approach to cross 
validation to each one, where the training set has 900 
data points and the validation set has 100 data points. 
The R2 was 25% in scenario A (using one simulated data 
set), and 48% in scenario B (using the other simulated 

Figure 4 
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data set). (Note that the r-square was 35% for our 
original field data set.) The estimates of the coefficients 
ßi were all statistically significant (at p < 0.001) in 
scenarios A and B, as they were in our original field data 
set. The red-shaded rejection region for scenarios A and 
B (see Figure 3) are altogether comparable with the 
rejection region we came up with using the original data 
set – a finding consistent with the presence of errors in 
the theory, TAM, rather than the presence of problems 
in the data. Another point worthy of mention is that the 
rejection region counterintuitively expands even though 
the R2 increases when moving from scenario A to the 
original field data and eventually to scenario B – a 
finding potentially consistent with the idea that our 
research method does not produce a replication of R2, 
which is an in-sample measure; rather, it is concerned 
with how well a theory performs when dealing with out-
of-sample data points. 

Finally, we offer, in Figure 4, two completely 
fictitious scenarios, C and D.  Notice how the profiles of 
the red-shaded rejection regions are slimmer and also 
much closer to the table’s “northwest” corner.  What we 
are calling the “validity frontier” is essentially the 
eastern “border” of the red-shaded region.  In our view, 
the goal of theorizing using statistical inference is not 
so much to “prove” that the theory being tested is true 
in a one-off study.  To the contrary, the goal is, first, to 
establish what the red-shaded rejection and hence, the 
validity frontier are in the first place, so that ongoing 
investigations can improve the theory (e.g., by adding, 
removing, or replacing variables and relationships, and 
even entire equations) as would become evident in the 
validity frontier moving further northwest compared to 
its location in the previous study.  Therefore, in addition 
to making the contribution of innovating statistical 
research methods for prediction testing and theory 
testing (not just hypothesis testing), we are also 
contributing a conception of theorizing where the 
objective is not to somehow “prove” the existence of an 
immutable scientific law, but rather, to craft a theory 
over time in an extended, multi-study research program 
so that, as a human-made artifact, the theory can become 
more and more useful in making accurate, and therefore 
useful, predictions. 
 
5. Conclusion  
 

A simple and straightforward idea motivates this 
research. The idea is that science requires a theory to be 
empirically tested and to survive the empirical testing.  
A theory that does not survive empirical testing, much 
less one that has never been empirically tested in the 
first place, may not be considered scientific.  This idea 
can be obscured by the extremely detailed and 

sophisticated, but nonetheless necessary and helpful, 
statistical procedures that have been regularly used in 
behavioral IS research.  The remedy that this paper has 
advanced consists of additional statistical procedures 
with which to restore the empirical testing of theories 
back to its rightful place in the repertoire of required 
scientific research methods. 

This paper makes three contributions. 
First, this paper’s differentiation of empirical testing 

into three different and distinct procedures, each 
involving its own role for statistical significance, not 
only gives due recognition to the continued importance 
of traditional hypothesis testing (which this paper names 
as effect testing), but also gives names to additional 
statistical procedures that also need to be carried out 
(prediction testing and theory testing) before a 
researcher can claim that his or her theory, 
operationalized as a multivariate statistical model, is 
scientific.  Thus, a researcher who completes what he 
knows as just the first of these procedures would not 
mistakenly believe that he has completed all work 
required in conducting the empirical test of a theory.  
Henceforth, authors of research submissions to journals 
and conferences, along with reviewers, editors, and 
conference program chairs, may evaluate a theory, 
operationalized as a multivariate statistical model, as 
scientific only if it has also additionally undergone the 
procedures of prediction testing and theory testing. 

This paper’s second contribution is a two-
dimensional table useful for allowing a researcher to 
examine numerous “what if” scenarios in the empirical 
testing of a theory that is operationalized as a 
multivariate statistical model.  In this table, each cell is 
a “what if” scenario reflecting two of the researcher’s 
judgments: (1) the judgment for his or her choice of αpt 
(the maximum tolerable probability, in prediction 
testing, for making the decision that there exists a 
difference between the predicted value and the observed 
or measured value [apart from the “noise” of sampling-
induced inaccuracy in computing the prediction] when, 
in actuality, there is no such difference) and (2) the 
judgment for her choice of π (which is the researcher’s 
maximum tolerable prediction error, reflecting her 
judgment of the point at which the prediction error 
begins to bear sufficient practical significance so as to 
indicate that the prediction fails).  The results can be a 
large number of “what if” scenarios, where the 
researcher can see the extent to which a conclusion that 
the theory is refuted (as reflected in table cells where the 
p-value<αtt, where αtt=0.05) is sensitive, or insensitive, 
to changes she can make in these two judgments.  Such 
insensitivity would bolster the objectivity of the finding 
that the theory is refuted, where a larger rejection region 
indicates greater insensitivity. 
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This paper’s third contribution is the concept of a 
theory’s validity frontier, and the associated idea that a 
theory is better regarded as a human-made artifact to be 
crafted and improved over time than as an immutable 
scientific law to be discovered and proved in one piece. 

Together, the three contributions amount to a 
statistical method that uses not only statistical 
significance, but also practical significance to test 
theories.  As discussed, this paper has demonstrated the 
method’s viability and utility, but the generalizability of 
the method can be established only through ongoing 
research. 
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