

Open Source Project Collapse – Sources and Patterns of Failure

Daniel Ehls
Hamburg University of Technology

 daniel.ehls@tuhh.de

Abstract

Why do open source projects fail? Open source
projects have gained tremendous momentum, in
theory, managerial practice and global economy.
However, a large number of projects are now
dormant, collapsed, or abandoned. Even celebrated
success stories lose developers and fail. Yet, failure is
underexplored and our understanding of developer
departure is limited. Previous literature has
concentrated on prospering projects, attracting
contributors, and expanding communities, but it is
unclear why even well-integrated members leave and
projects fail. This study explores open source project
failure by drawing on ten in-depth open source
software case studies and netnographic analyses. We
identify antecedents of developer departure, discover
patterns of project collapse, and reveal where
members move. We complement the dominant
research logic of how to facilitate membership on-
boarding with the aspect of understanding de-
boarding. Our results enhance our understanding of
why and how open projects fail and involve
implications for open organizations.

1. Introduction

“Around the same time we started [the open source
project] we knew people at another Swedish company
that worked on a great web server. And it was licensed
under the GPL! Since this was before the Apache web
server dominated the field, you would have thought
that they had a glorious future. Well, that future did
not work out, since they failed in some basic
principles.”

The open source (OS) literature knows a number
of iconic and highly prospering communities such as
Linux or Wikipedia. Projects that have managed to
attract a large number of contributors and create a
product are usually referred to as successful projects

[3, 33, 39]. However, numerous further OS projects
are neither crowded, nor generate outputs. Besides
success stories, failure is a substantial case [5, 36].
While 1.63% of all hosted projects at
SourceForge.com reach the maturity phase, a total of
63% fail [19]. Moreover, failure is not limited to
emerging communities and growing projects, but even
‘incumbent’ communities collapse and fail.
Frequently, participants terminate their contribution a
few months after joining in, OS projects lacking
returns and various OS communities are abandoned
[19, 30]. Thus, even established projects that
overcame start-up challenges such as license choice
[5], agreed on governance structures [26], attracted
members [3, 29] and fulfilled success criteria [6, 21,
34] might still fail. Indeed, 50% of registered project
members halt their contribution [10], with most
contributors quitting within one year [31], and 80% of
open source software projects disappearing [5] even
with their objective unachieved.

So far, our understanding of failure cases has been
limited, and the causes of and patterns for the collapse
of open source projects have been missing. For
instance, while previous research has focused on
explaining member incoming and growth, such as
attracting participants and leading them towards the
center [12], our understanding of membership
departure and collapse is limited. Earlier research
recommends a socialization process for sustained
member participation; yet, how can we explain
integrated core members with strong ties leaving an
ongoing, not completed, project? Why do participants
no longer contribute, although they have previously
done so? What spurs them to change their minds?
Additionally, with 80% of OS projects disappearing
[5], where do these significant numbers of developers
go after their project termination?

Moreover, an emerging stream of membership
turnover [3, 12, 24, 28] has demonstrated the
substantial consequences of participants’ incoming
and going such as cognitive dissonance, but the
antecedents of participation termination and
community collapse are still unclear. This paper aims
to explain this puzzling phenomenon. Particularly, we

5327

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41807
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:daniel.ehls@tuhh.de

explore three questions: what drives away community
members of a working project, where do they go, and
what are the patterns of community collapse?

In order to explore this poorly-understood
phenomenon, we employ an inductive qualitative
grounded approach, draw on multiple intentionally-
sampled case studies, and adopt several data sources.
Our empirical fields are ten heterogeneous, but firm,
sponsored open source projects chosen according to
theoretical sampling. Data collection follows a
netnographic research approach, reviewing the
archival project database, and retrospective data such
as existing interviews with project core members.

Our study reveals underpinning factors and
trajectories for membership withdrawal and
contributes to our understanding of how open projects
collapse. We shift the focus away from the dominant
research logic on how to facilitate membership on-
boarding to the aspect of understanding de-boarding.
Instead of looking for supporting mechanism to grow
and expand projects, we concentrate on existing
projects and lessons how not to run them. In doing so,
we complement existing participation and success
research by discovering damaging strategies that cause
a loss of developers and project failure. The next
section provides a more detailed research background,
followed by the research strategy employed, and
findings. We conclude with implications for theory
and executives.

2. Research Background

Open source (OS) initiatives are today a central
element of value creation and firm’s business strategy
[2]. Firms gain access to scarce knowledge, as well as
creativity and ideas [20, 25]. The features of OS
communities make them distinctive organizational
forms [2, 20, 22] which “fundamentally change the
approaches and economics” of production [14] and
offer “eye-opening examples of novel innovation
practices” [36].

Previous research has strongly focused on
stimulating contributions. Eliciting external input of
participants and increasing the size of the community
is a central tenet for prospering projects [8, 35]. Earlier
studies provided great insights into participation
motives and attraction of members [37]. Later studies
explored how to stimulate repeated or long-term
contributions [10, 38] and how members progress
towards the community center [7, 20, 26]. While
research on participation has thus contributed
tremendously to our understanding of participant
incoming and project growth, results regarding project
collapse are missing, as prior research is limited on the

building up of communities. Furthermore, literature
highlights the motivation to contribute; however, why
do contributors lose motivation and quit the project?

An emergent stream of literature has also started to
concentrate on membership turnover [3, 12, 24, 28].
This line of research has so far revealed the
consequences of membership turnover for projects.
Empirical evidence highlights the effects of gaining or
losing knowledge sources on production, stimulating
herding behavior, introducing cognitive dissonance, or
effects on product performance. Although we have
thus gained insight into the effects of turnover,
research remains inconclusive regarding revealing
rationales underpinning membership turnover.

Moreover, OS success literature [6, 21, 34] has
identified a range of success factors. However, even
this literature calls for additional measures to explain
success in more detail. It is also questionable as to
whether failure is the opposite of success, and if there
is such an assumed dichotomy. Can success factors
really explain failure? Indeed, analyzing success cases
introduces a success bias and susceptible samples [8,
9]. Failure and success projects might have pursued
different strategies of which we are not aware.
However, these harmful ‘invisible’ strategies can also
be present in successful projects, but mediated and
potentially mitigated by other factors. These hidden
factors not only pose a latent threat to projects that are
still running, but understanding them also expands
theoretical discussions.

In summary, several important questions are
unanswered, while research faces controversial
observations regarding individual member
participation and organizational failure. In other
words, although prior research recommends the
socialization of members for sustained participation,
we observe that even socialized and core members still
depart. Why should they leave their ‘friends’ and
abandon an influential community position?
Moreover, enabling community leadership structures
and governance fosters project prosperity.
Nevertheless, how can we explain the collapse of
mature communities that not only successfully
attracted members and created social bonds, but also
established a working basis of authority and decision
rights?

Avoiding the collapse of innovation systems is a
central issue for policy-makers and executives.
Understanding failure pattern facilitates
organizational learning [4], reduces sample bias
towards successful cases [8], and responds to the call
for further research on theorizing membership
turnover [12]. In line with these rationales, introduced
controversies, observations and open questions, this
study explores the failure of OS projects. As explained

5328

above, we particularly pursue three questions: what
turns project members away, where they go, and what
the patterns of community collapse are. According to
previous literature, we focus on developers as being
essential for OS projects [8, 29, 34, 35], and define
failure cases as projects that are neither formally
canceled by project owners nor finished, but have lost
a large number of formerly active developers while
gaining fewer new ones.

In exploring participant departure and project
failure, we take a different look at the dominant
participation research logic. Instead of concentrating
on managing the member supply side and leading
members towards the community center, we
concentrate on the member drop-out side and seek to
explain what leads developers away from the project,
causing community collapse. The participation
research focus is extended from encouraging
participation and member on-boarding to also
understanding the patterns of driving away
participants and de-boarding. We thus follow the
important rationale to elicit volunteer contribution to
firm’s problem solving tactics [35] and drawing on a
critical number of participants [29, 34], but we
acknowledge that contributions can be elicited by
attracting new joiners, and already existing members
in the community. Particularly, if already attracted
members leave, the total contribution base decreases
and the project size shrinks, eventually down to the
point of community collapse.

3. Research Strategy and Sample
Selection

Our research question aims to search for unknown
antecedents for developer departure, create an initial
model for understanding failure and elucidate an
underexplored issue. Accordingly, we follow the
literature reference and apply a qualitative grounded
approach [11, 13, 23]. This approach is most useful in
providing insight into unchartered terrain [23],
particularly to identify novel conceptual categories for
a poorly-understood phenomenon and find broad
possible explanations in the absence of a strong theory
[11, 13]. Another crucial research aspect to consider is
the heterogeneous project situation. Contrary to
empirical evidence that the institutional setting of the
community already strongly affects contribution and
self-selection behavior [31, 32, 33], prior research has
frequently failed to consider the broader project
context [36] and interactions between individual and
organization level factors [8]. We respond to this call
for “messy holistic methods” in fluid organizations
[12] and do not rely on a single project analysis.

Instead, we pursue a multiple case study analysis [17]
that is suitable for exploring central constructs within
their context, and increase variance in data [13, 39].

In order to establish our sample, we purposefully
selected specific OS projects for analysis, as
recommended for inductive qualitative research [17].
We purposefully screened communities, forums and
blogs for developer comments pointing to failed
projects, according our definition of failure. We
triangulated our failure criteria with data. For instance,
to validate the projects that are neither formally
canceled nor finished, we searched for project status
statements by project owners or administrators.
Additionally, we looked for projects that were
formerly active (measure: create a product) and mature
(measure: at least 2 years of being productive). Our
identified projects managed to overcome start-up
challenges, established working structures, and
elicited important member contribution for
collaborative production [3, 26], which are important
success criteria [6, 21, 34]. In analyzing these special
failure cases, we aim to identify clear antecedents
causing the change from a flourishing project to
failure. Finally, archived project’s documents still
need to be available for data collection (measure:
access to key community traffic given). None of the
authors has been involved in any of the selected
communities or knew any of the participants
beforehand. Table 1 shows the selected cases.

Case Project Type Peak
Xara Xtreme Graphics 2005-2007
Roxen WebServer 1996-2009
Mambo CMS 2002-2007
Sodipodi Graphics 1999-2004
XFree86 X-Windows 1992-2004
Meego Mobil Op. S. 2010-2011
OpenDarwin Op. S. 2002-2006
OpenOffice Office 2000-2011
MySQL Database 1995-2010
Compiere ERP 2001-2006

Table 1: Sampled Cases

3.1. Data Collection

Our primary data source for each case is archived
project’s documents, such as stored forum discussions,
e-mail lists, and FAQ pages. These information
sources are the central communication tools. They
reflect participant behavior, interactions and
controversies within the community, as well as key
actions taken in the project. A common key concern in

5329

data collection is self-reported data and social
desirability bias. To mitigate this challenge our
collected data came from retrospective and real
projects [27]. For each case, we studied the available
documents from at least four months before failure and
several weeks afterwards, summing up to several
hundred documents per case. Notably, most of the
cases still have their websites and documents publicly
accessible. Another key general concern in data
collection is limited contextual understanding and
common method bias. We therefore triangulated our
data with supplementary documentation from third-
party websites. Drawing on supplementary external
information sources increases the perspectives
covered and provides greater depth [39]. Main
information sites were information hubs, such as open
source news platforms, independent opinion pages,
including blog articles, as well as media coverage,
such as interviews conducted with project participants
or leaders. Linking this secondary material to our
primary data helped us to compare project information
to outside views and account for the project
environment.

3.2. Data Analysis

Our data analysis follows the practices of
netnographic content coding and analytic induction
[13, 18]. We first screened the publicly available
project documents for indications of community
collapse and extracted original participants’
statements. These initial statements were collected and
tagged with provisional codes. They were
supplemented with ‘outsider’ statements tagged as
well. Thereafter, the provisional coded testimonials
were compared, and if applicable combined, resulting
in conceptual categories and a more solid description
of failure for a specific case. Our analysis proceeded
with discussing and aligning the categories across
cases and deriving general sources of failures. We
further grouped these sources of failure into broader
classes. Our analysis elicited several distinct sources
of failure, and we differentiated them into two broader
classes. In order to safeguard the soundness and
robustness of our categories, two independent
researchers reviewed our coding scheme and
supported our categorization.

4. Findings

This section shows the discovered sources of OS
projects’ failure and patterns of failure, and reveals the
new ‘home project’ of departed developers.

4.1. Failure Sources

4.1.1. Product Functionality

The functionality of the generated product is a core
challenge and indicator of high product quality. For
OS projects, it is the software product per se, the
delivered product as a black box. Users can observe
the features of the product as well as its
malfunctioning without inspecting or understanding
the source code. This category is relevant not only to
developers, who can modify the product and are
strongly involved in the community, but also to
ordinary users who just use, but do not further develop,
the product. Critical elements within product
functionality are technical issues, missing features,
product compatibility and usability, bugs and
malfunctioning. Frequently, users accept a certain
amount of limited product functionality, particularly in
good faith and hope for future updates and
improvements. However, we noticed that, in collapsed
communities, the product functionality declined for a
longer time, with no action taken to improve the
product. Even worse, project managers refused to
implement certain features, leaving users and
developers frustrated.

"No, but I do miss features which have been
availible for a long time in XaraXtreme's Windows
version........ Don't get me wrong, I really enjoy using
XaraXt<reme and don't think there's an equal
program availible for Linux. But I don't like using
abandoned programs with missing features (e.g.
proper SVG im/export, flash export or the possibility
to use the great LiveEffects and other plugins)."

4.1.2. Production Challenges

A core characteristic of open source projects is the
collaborative nature of the projects and working as a
community towards a goal. The organization,
processes and practices describe how the product is
developed. Our study discovered that organizing
production and developer collaboration is a major
reason for project collapse. For developers, the
production aspect is important from two perspectives.
First, production determines the final product. Thus,
confidence in the production can mitigate product
flaws as well as short release cycles signal activity of
the product and community. Secondly, interaction
with other community members is important for
collaboration. Challenges in working together slow
down production and even upset contributors.
Exemplary issues are missing development tracking,

5330

limited development resources, slow release schedule,
and lacking support.

“What make MiaCMS different from Mambo? By
design we have less formal policies and procedures,
fewer teams and team leaders, and have refocused on
a core open source principle… release early, release
often”.

A major aspect within production is the difficulty
to align the development direction. Project members
feel uncertain about plans of the product and are
concerned about the project future. To develop the
product together, it is important that developers work
in the same direction and their work is aligned along a
roadmap. Particularly challenging is a change of the
development direction. Developers signed up under
the assumption of working towards specific
objectives. However, if it later transpires that
community management heads towards another
direction, developers often go towards other projects.

"The group is a bunch of Roxen users that are
unhappy with the direction that the Roxen
development is heading. We decided that we could
create a server that would better serve our needs than
Roxen 2.x...."

4.1.3. Respect OS Ideology and Community The
collaborative and open nature is an idiosyncratic trait
of OS projects. However, community management
and the hosting firm frequently fail to pay due
attention to them. Real interest in the project is missing
as well as a community focus. Sometimes, the
community is ‘used’ for commercial purposes without
being given sufficient benefits. A project thus can
provide sufficient code access and the right license,
and may even be a bolt corporate name as a sponsor;
however, the community is interested in a greater goal.

"Apple failed to build a community around Darwin
in the seven years since its original release because it
was not a corporate direction, but rather a marketing
stunt. Culturally, Apple did not and does not
understand what it means to be open source or to build
a working community."

4.1.4 Partnerships Eliciting a certain number of
developers is a core issue for growing a project.
However, it is not only the number of developers and
pure market share, but also the right developers and
connection to an ecosystem of partnerships.
Particularly for mature projects, growing out of the
amateur niche and gaining traction among further

professional partners is vital. Clearly, having a vital
project and attractive product might not be sufficient.
Our cases point to a lack of cooperation with other
projects and not being supported by commercial
partners. Projects are still alive without these partners.
However, to enter a larger ecosystem, building
interfaces to other projects and gaining a market
penetration is required to survive beyond a project
scale level, particularly as soon as global competition
grows. An essential partnership also represents an
NGO, providing a safe harbor for developers and
hosting the project.

“Another thing to note is that XFree86 has
dramatically less commercial support than just about
any "cornerstone" Open Source project. Maybe that's
because of our "meritocracy" and focus on individual
contributors.”

4.1.5 Change of Leadership and Governance
Structure Coordinating development efforts and
decision processes are important aspects in steering
the project. Vivid projects seem to have developed a
working leadership structure and a governance system.
However, we discovered that, not the current
leadership structure, under which developers have
signed up for the project, that represents the problem,
but changes to the leadership team do. Hosting
partners try to alter the leadership team without
contacting the community directly, or introduce
sudden changes to the project organization.
Particularly after ‘acquisitions’ of an open source
project, a new leadership team should take over.
However, the community loses its voice, and in turn,
feels hijacked.

“The Mambo Foundation was formed without

regard to the concerns of the core development teams.
We, the community, have no voice in its government or
the future direction of Mambo. The Mambo Steering
Committee made up of development team and Miro
representatives authorized incorporation of the
Foundation and should form the first Board. Miro
CEO Peter Lamont has taken it upon himself to
incorporate the Foundation and appoint the Board
without consulting the two development team
representatives, Andrew Eddie and Brian Teeman.”

4.1.6. Change of Business Strategy The nature of
open source projects, including free revealing of its
outcomes, is a constant challenge for managers.
Offering complementing services or products is a
well-functioning strategy for commercialization.
However, reflecting and aligning the business strategy
might be necessary. Particularly for established and

5331

running communities, the shifting of its business
model toward a classical proprietary model is
attemptable, as it could allow a direct revenue stream.
We found evidence that some of our sampled projects
try the shift and force open source participants into
commercial products. However, community
volunteers reacted strongly to this announcement, and
as a result, frequently left the project. Communities
overstepped the balance, and lost a major share of their
members.

“Compiere certainly did not fail due to its

technology. It failed due to lack of sales and
marketing expertise, execution and the wrong bet to
“upgrade” open source minded partners and
customers to a traditional, commercial model. I think
that the Commercial Open Source model is still valid,
but Compiere overstepped the balance between
proprietary and open product components”.

An important aspect within the business model

represents openness traits. Access to code and license
properties are two essential criteria for open source
software developers. The two criteria determine the
use and modification of the code, and thus the fit with
individual needs and employing the code for further
purposes. In contrast to the high importance of the
criteria, we found evidence that projects try to change
given properties. Accordingly, they aim to change two
core features of the projects on which volunteers have
themselves self-selected into the project. However,
changing the base for project selection causes
members to rethink their contribution, and stimulate
voting with feet and forking.

"we've decided to delay making the source code

fully public until we've progressed the port a little
further and the program is more functional on Linux".

4.1.7. Trust Issues A final reason for project collapse
is trust. Community members at one point realize they
cannot trust the project anymore. Thus, community
members put trust in the project, but lost it for certain
reasons. Broken promises, mistrust in corporations or
false advertising are exemplary issues.

“Now, a rational, cynical human being would say

corporations around the world say anything to make a
buck, and you can't trust them, so why did you believe
these open-source claims? Very fair. Some of us aren't
so bright and were lured in by the promises that turned
out to be false advertising."

4.2 Patterns of OS Failure

While the aspects above are separate sources of
failure, they rarely appear isolated. In fact, we notice
that certain failure sources add to each other and even
build on each other. Community members are loyal to
their community’s respective product, and try to
influence the project to enable a collaboration.
However, we find that the leadership team frequently
does not listen to complaints and disagrees with the
community.

“Oracle's official response to the announcement of

The Document Foundation was clear – Oracle will
continue OpenOffice.org as usual”

Consequently, a failure cycle starts. The

community members’ level of confidence and need
fulfillment declines, while their dissatisfaction grows.
Members react increasingly sensitively to further
aspects, and, in parallel, production slows down and
further failure sources emerge, leading to the final
departure of participants.

"I am developer and when I first heard about

opensourcing of Xara, I was really happy. I want to
help you with such an excellent product (which is
missing in Free Software world, Inkscape doesn't fit
my needs), but then I realized that it is not fully Free
Software, that there are still some proprietary parts.
My willingness for help completely fell off in that exact
moment, but I have got still hope that it will be
completely opensourced sometime in future (yes, it
means including CDraw). I would never invest my time
in some partially closed source software. After
reading latest discussion on mailing list, my hopes are
gone. You clearly doesn't understand what is
important for Free Software community. "Free as in
beer" is _nothing_ for us, we want "free as in speech"
software. Completely free, without closed proprietary
parts. I know many good developers in Free Software
community and nobody would even consider helping
Xara because the fact that some parts of Xara are
closed. It doesn't matter that it is only one part, Xara
is simply "tainted". And your attitude clearly shown in
latest discussion on mailing list proves that you really
don't understand Free Software community and
development model. This is why Inkscape get all
attention and help from community, while you get
nearly nothing. It is simple "opensource or die"
principle. […] I am really disappointed that such a
great software (which Xara clearly is) is sentenced to
failure in Free Software community simply because
you don't understand principles on which Free
Software community stands. […] My interest in Xara

5332

is now gone, I am going to look at Inkscape again,
maybe they will be able tu fulfill my needs in the end
and maybe I will be possible to help him too."

We further identified two longitudinal patterns of

project collapse. Members react with different
sensitivity, contingent on the failure source. In
particular, we discovered two basic categories of
failure (see Table 2): slowly emerging and suddenly
erupting. Slowly emergent failure sources are issues
that have existed for a long time within the community
and grow over time. Frequently, other failure sources
reinforce each other and at some point, they overstep
a certain threshold. Exemplary sources within this
category are production challenges, product
functionality, community ideology, and partnerships.
In contrast, suddenly erupting failure sources represent
issues that become visible within a short period of time
and have a huge impact on the community. Examples
for erupting failure sources are changes of important
aspects, such as business strategy, license or code
access characteristics, and realization of missing trust.

Failure categories
Slowly emerging Suddenly erupting
• Product features • Business strategy
• Production

challenges
• License and code

access restrictions
• Community

Ideology
• Trust

• Partnerships
Table 2: Failure sources

4.3 Departure Destinations

It is so far unknown where developers head, after
quitting their engagement. Our study reveals three
categories. Members head towards a forked project,
competing projects or to a sponsoring partner.
Heading towards a fork represents an option, if the
project structure is stable and the code and production
are functioning well. As such, sudden changes such as
those in the leadership team or openness properties
might cause a fork. Members can rely on their previous
contributed donations and continue to use their
familiar product, as if nothing has happened.

“We want a change to give the community as well

as the software it develops the opportunity to evolve.
For this reason, from now on we will support The
Document Foundation and will—as a team—develop
and promote LibreOffice. We hope that many are
going to join us on this path."

Another home for developers are competing
projects. Developers look to fulfill their needs.
Accordingly, they search for similar projects and
frequently find a replacement in projects in the same
scope. Interestingly, developers even accept inferior
technical capabilities, as they are confident about their
own development competencies.

"The end result of that thinking was that the

community around the product shrank to a few very
happy users/customers. The at that time technically
inferior Apache web server got all the users and
developers. So nowadays hardly anybody knows about
the Swedish web server "Spinner/Roxen", but everyone
has heard about the Apache web server."

The third place to which developers migrate, which

we discovered, is the sponsoring or hosting
corporation itself. Hosting projects know core
contributors and welcome them as knowledgeable
employees. However, this might crowd out and drain
the volunteer developer base even further.

"Apple ended up hiring more than half of its most
active contributors, which amounted to roughly three
or four people. This drained the contributor pool
significantly, and effectively muffled the ones that got
hired,...."

5. Discussion

Failure of open source projects is widely observed,
but our understanding is limited. While young projects
face the challenge to attract sufficient participants and
set up the organizational structure for community
interaction, which was explored in previous research,
mature communities have already increased and
apparently managed collaboration. Yet, even mature
communities fail. Despite earlier research to
understand participation motives and the
consequences of membership turnover, prior insights
are lacking the identification of what causes the
collapse of a project. Our study provides early insight
into the underexplored phenomenon of community
failure. We focus our knowledge in three core areas:
(1) revealing antecedents that drive the likelihood of
project failure, (2) introducing two different patterns
of project collapse, and (3) revealing departure
destinations of developers of collapsed communities.
More generally, we (I) reinforce the call to watch out
for biased samples and highlight failure studies, (II)
contribute to the understanding of social practices, and
(III) inform the discussion of ‘open organizations’.

5333

(1) We disclosed several sources for failure and
antecedents of community collapse. Our findings
indicate a strong association between the identified
failure sources and projects becoming inactive.
Indeed, the identified failure sources might exhibit an
explanation why participation motivations decline and
even socialized members leave. They inform the
discussion on OS member turnover, and link it to
decreasing motivation. It also calls to attention OS
project success research, and the inclusion of
‘destroying’ factors dampening the prosperity of
projects - despite the prevalence of established success
factors.

(2) We discovered that volunteer developers raise
their voice before deciding to leave the community,
but frequently management refuses to listen. Several
issues might build up, increasing frustration and
finally triggering the departure. Therefore, we
discovered two patterns differentiated by the speed at
which developers decide to leave and are contingent
on the specific failure source. Some failure
antecedents drive developers more quickly away than
others. Accordingly, we classify failure sources in two
broader failure pattern categories leading to project
collapse: sudden changes and emerging issues.
Emerging issues are present in the community over a
longer period and slowly grow until developers leave.
Sudden changes bring disrupting impacts for the
community and initiate a rapid departure decision by
developers. Thus, developers are more sensitive to
some failure antecedents, while they tolerate others for
a longer time. Some failure sources might even
represent hygiene factors. These insights detail the
failure discussion. Not all ‘faults’ are similar, which
explains why some OS projects die over a longer
period, while other communities collapse rapidly.

(3) We studied the migration destinations of
developers after leaving. Developers move to forks,
project-hosting firms and competing projects. As such,
contributors remain active in the “development”
world, but dedicate their efforts to other projects. In
doing so, they socialize with new projects, making a
return to previous projects harder. Losing members
thus hurts failing projects twice. First, the failing
community loses its labor. Second, they indirectly
empower competing projects because they free up for
them the capacity of the departing developers.
Developers go to rival projects and contribute to their
prosperity. Switching developers therefore means a
loss of development power for the failing project as
well as a boost or contribution to new projects. As
shown in the case of Roxen, developers even turn
towards currently inferior projects, for the sake of
development freedom and future. The loss of labor not
only weakened Roxen, but also, with the developers

turning to the new project and increasing it
tremendously, drove it out of the market. Revealing
developer destinations together with antecedents for
departure thus not only increases our understanding of
failure, but also offers a more nuanced view of an end-
to-end participation lifecycle of participants and
community [15].

From a broader point of view, our contribution is
threefold. First, (I) from a methodology point of view,
our insights inform future research and address a
biased sample in previous research. While prior
research has advanced our knowledge tremendously,
it has frequently concentrated on successful projects.
As such, earlier studies claim limitations regarding
their sample and their findings. Our study is one of the
first to explore and include failed cases, thereby not
only enabling a better understanding, but also opening
an avenue for stronger generalizations and a more
complete picture of the open source ecology.

Second (II), our findings contribute to the social
practice view of OS communities [37] and social
bonds [7]. Participation and institutional settings are
strongly interrelated. Motivation to contribute to
software development does not change per se. Yet,
motivation to contribute to a specific project changes.
Thus, measuring participation to one specific project
might not reveal the full picture. One might assume
that participation has decreased because a developer
does no longer contribute to the project. However, our
study has found that participation rationales still exist,
but developers focus their contribution efforts towards
new endeavors. The institutional setting strongly
influences participation rationales and labor donation.
Our study has found further evidence that developers
group together and head towards new projects
collectively. Leaving a community does not mean
leaving a social bond. Social ties are still existent, and
are frequently transferred to new projects.

(III) Finally, our study informs the discussion
beyond OS projects, particularly the conversation of
‘open organizations’ [2, 7, 22]. Our findings point to
two critical challenges for (mature) open organizations
so far little understood: solving conflicts and
introducing major changes. Major changes might be
required to adapt to a changing environment or a new
business direction. Also, the acquisition of a project or
external influence, such as surrounding ecosystem
decisions, is a driver for rapid change. So far, little is
known as to how to manage it. Within our cases, major
challenges are communicated top-down, without
consultation of the community, and without ensuring
an acceptable way forward for community members.
Consequently, heavy conflicts emerge. Conflicts also
grow as a result of identified emergent challenges.
While smaller issues do not immediately trigger

5334

departure of project members, they build up and
increase conflict. The conflicts observed in our
samples are not limited to individual developers, but
rather affect the entire community. While individual
level conflicts might cause single members departing,
the observed failure sources prompt larger groups of
developers to leave. Interestingly, observed projects
rarely collapse because of the conflict per se, but
because of failure to manage the conflict, unite core
project stakeholders, and find suitable solutions.
Community management reacts with ignorance,
instead of interacting with community. Project
members complain about flaws, and even provide
counterproposals and mitigation strategies. However,
community management or the hosting firm
frequently reacts with silence, thus undermining the
community’s confidence in the future. Our study thus
not only provides evidence for adjusting a governance
model [16], but also supports the standing proposition
that member retention is strongly affected by project
conflicts [3]. While successful projects might have
managed to implement formal and informal settlement
processes [3, 20, 26], absence of conflict solving and
resolving structures has a fatal impact on open
organizations with fluid membership and stimulates a
‘leaving script’, resulting in community collapse.

6. Outlook

Our study has certain limitations. We used a non-
random sample to follow the recommendation for a
theoretical case sample. Additionally, the analyzed
projects are all firm-hosted projects that are within the
scope of research, have gained popularity, and offer
insight into firm-community relationships. Future
research should use larger and more diverse samples,
include success cases, and build on complementing
research approaches. Such potential future studies
could help determine the most critical failure issues, as
well as validate associations between identified factors
and context. Second, our failure definition centers on
an unintended huge developer loss. Thus, even cases
that support millions of websites in the world, such as
MySQL which is often referred to as a success case
[21], might appear in a new light. Notably, our
definition does not require a complete termination of
the project. Some projects might even revive after a
major loss of developers, for example with new
structures – and some do. Certainly, further failure
definitions are promising, such as complete
bankruptcy or disappointing adoption. The insight of
future research and our present study would inform
managers. Our study represents a lesson-learnt
document on how a community collapses. It highlights

critical issues in running an open organization,
interacting with the community, and collaborating
with unequal partners. Managers should avoid
identified pitfalls, otherwise they could risk driving
participants away and destroying the community.

10. References

[1] Ars Technica: http://arstechnica.com/tech-
policy/2016/01/editors-demand-ouster-of-wikimedia-board-
member-involved-in-no-poach-deal/ accessed 10 of May
2016
[2] Baldwin, C., & von Hippel, E. (2011). Modeling a
paradigm shift: From producer innovation to user and open
collaborative innovation. Organization Science,22(6), 1399-
1417.
[3] Butler, B. S. (2001). Membership size, communication
activity, and sustainability: A resource-based model of
online social structures. Information systems research,
12(4), 346-362.
[4] Cannon MD, Edmondson AC (2005) Failing to learn and
learning to fail (intelligently): how great organizations put
failure to work to innovate and improve. Long Range Plan
38(3):299–319
[5] Colazo, J., & Fang, Y. (2009). Impact of license choice
on open source software development activity. Journal of the
American Society for Information Science and Technology,
60(5), 997-1011.
[6] Crowston, K., Annabi, H., Howison, J. (2003). "Defining
open source software project success". International
conference on information Systems.
[7] Dahlander, L., & O'Mahony, S. (2011). Progressing to
the center: Coordinating project work. Organization science,
22(4), 961-979.
[8] Dahlander, L., & Piezunka, H. (2014). Open to
suggestions: How organizations elicit suggestions through
proactive and reactive attention. Research Policy,43(5), 812-
827.
[9] Denrell, J. (2003). Vicarious learning, undersampling of
failure, and the myths of management. Organization
Science, 14(3), 227-243.
[10] Ducheneaut, N. (2005). Socialization in an open source
software community: A socio-technical analysis. Computer
Supported Cooperative Work (CSCW),14(4), 323-368.
[11] Edmondson, A. C., & McManus, S. E. (2007).
Methodological fit in management field research. Academy
of management review, 32(4), 1246-1264.
[12] Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011).
Knowledge collaboration in online communities.
Organization science, 22(5), 1224-1239.
[13] Glaser, B.G., Strauss AL. 1967. Discovery of Grounded
Theory. Strategies for Qualitative Research. Mill Valley,
CA: Sociology Press.
[14] Hars, A., & Ou, S. (2002). Working for free?
Motivations for participating in open-source projects.
International Journal of Electronic Commerce, 6(3), 25–39

5335

[15] Herstatt, C., & Ehls, D. (2015). Open Source
Innovation: Phenomenon, Participant Behaviour, Impact
(Vol. 37). Routledge.
[16] Kane, G. C., Johnson, J., & Majchrzak, A. (2014).
Emergent life cycle: The tension between knowledge change
and knowledge retention in open online coproduction
communities. Management Science, 60(12), 3026-3048.
[17] Eisenhardt, K. M.: Theory Building from Multiple
Cases. In Primer: Qualitative Research in Strategic
Management, Strategic Management Journal [originally
posted September 2014; updated October 2014]
[18] Kozinets, R. V. (2002). The field behind the screen:
Using netnography for marketing research in online
communities. Journal of marketing research, 39(1), 61-72.
[19] Krishnamurthy, S. (2002). Cave or community?: An
empirical examination of 100 mature open source projects.
First Monday.
[20] Lee, G. K., & Cole, R. E. (2003). From a firm-based to
a community-based model of knowledge creation: The case
of the Linux kernel development. Organization science,
14(6), 633-649.
[21] Lee, S, T., Kim, H., Gupta, S. (2009). Measuring open
source software success. Omega, 37, Pp.426-438
[22] Levine, S. S., & Prietula, M. J. (2013). Open
collaboration for innovation: principles and performance.
Organization Science.
[23] Anteby, M. Lifshitz, H., Tushman, M (2014): Using
Qualitative Research for “How” Questions. In: Primer:
Qualitative Research in Strategic Management, Strategic
Management Journal [originally posted September 2014;
updated October 2014]
[24] Oh, W., & Jeon, S. (2007). Membership herding and
network stability in the open source community: The Ising
perspective. Management science, 53(7), 1086-1101.
[25] O'Mahony, S., & Bechky, B. A. (2008). Boundary
organizations: Enabling collaboration among unexpected
allies. Administrative Science Quarterly,53(3), 422-459.
[26] O'Mahony, S., & Ferraro, F. (2007). The emergence of
governance in an open source community. Academy of
Management Journal, 50(5), 1079-1106.
[27] Podsakoff, P. M., & Organ, D. W. (1986). Self-reports
in organizational research: Problems and prospects. Journal
of management, 12(4), 531-544.
[28] Ransbotham, S., & Kane, G. C. (2011). Membership
turnover and collaboration success in online communities:
Explaining rises and falls from grace in Wikipedia. MIS
Quarterly-Management Information Systems, 35(3), 613.
[29] Ren Y, Harper FM, Drenner S, Terveen L, Kiesler S,
Riedl J, Kraut RE (2012): Building member attachment in
online communities: Applying theories of group identity and
interpersonal bonds. MIS Quart. 36(3):841–864.
[30] Schweik, C. M., & English, R. (2007). Tragedy of the
FOSS commons? Investigating the institutional designs of
free/libre and open source software projects. First Monday,
12(2).
[31] Shah, S. K. (2006). Motivation, governance, and the
viability of hybrid forms in open source software
development. Management Science, 52(7), 1000-1014.
[32] Stewart, K. J., & Gosain, S. (2006). The impact of
ideology on effectiveness in open source software
development teams. Mis Quarterly, 291-314.

[33] Stewart, K., & Ammeter, T. (2002). An exploratory
study of factors influencing the level of vitality and
popularity of open source projects. ICIS 2002 Proceedings,
88.
[34] Subramaniam, C., Sen, R., & Nelson, M. L. (2009).
Determinants of open source software project success: A
longitudinal study. Decision Support Systems, 46(2), 576-
585.
[35] Terwiesch, C., & Xu, Y. (2008). Innovation contests,
open innovation, and multiagent problem solving.
Management science, 54(9), 1529-1543.
[36] Von Krogh, G., & Von Hippel, E. (2006). The promise
of research on open source software. Management science,
52(7), 975-983.
[37] Von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M.
W. (2012). Carrots and rainbows: Motivation and social
practice in open source software development.MIS
quarterly, 36(2), 649-676.
[38] Wu, C. G., Gerlach, J. H., & Young, C. E. (2007). An
empirical analysis of open source software developers’
motivations and continuance intentions.Information &
Management, 44(3), 253-262.
[39] Yin, R. (1994). Case study research: Design and
methods . Beverly Hills.

5336

