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Abstract—Service-Oriented Computing (SOC) has been used
in business environments in order to integrate heterogeneous
systems. The dynamic nature of these environments causes
changes in the application requirements. As a result, service
composition must be flexible, dynamic and adaptive, which
motivate the need to ensure the service composition behavior
at runtime. The development of adaptive service compositions
is still an opportunity due to the complexity of dealing with
adaptation issues, for example, how to provide runtime verifica-
tion and automatic adaptation. Formal description techniques
can be used to detect runtime undesirable behaviors that help
in adaptation process. However, formal techniques have been
used only at design-time. In this paper, we propose an adaptive
service composition approach based on the lightweight use of
formal methods. The aim is detecting undesirable behaviors in
the execution trace. Once an undesirable behavior is detected
during the execution of a service composition, our approach
triggers an adequate reconfiguration plan for the problem at
runtime. In order to evaluate the effectiveness of the proposal,
we illustrate it with a running example.

Keywords-service composition; formalisms; runtime verifica-
tion; adaptation

I. INTRODUCTION

Service-Oriented Computing [1] has been introduced in
business environments to cope with heterogeneous systems
integration. SOC is based on the concept of service and
it brings benefits as platform and language interoperability,
low coupling and functionality reuse. However, the full
potential of SOC can be only fully exploited with the
possibility of composing existing services that integrates
different capabilities across companies′ boundaries.

Services run in business environments that continuously
change, and they are also required to change in order to re-
spond to the demands of these dynamic environments. These
changes can appear as the deployment of new instances of
a particular service that removes the undesirable behavior,
adds new functionalities or optimizes its quality characteris-
tics in terms of performance, security or availability. When
these demands emerge from the environment, the service
composition should be able to continue functioning despite
the changes in the service it uses.

As a consequence of the aforementioned dynamism, ser-
vice composition must become more flexible and it must
be able to detect and react to changes. Because of these

challenges, the adaptation is an important element for the
proper functioning of the service composition. Therefore,
adaptation [2] can be defined as a process of modifying
applications in order to satisfy their new requirements and
to meet the demands imposed by the environment on the
basis of reconfiguration plans.

The development of an adaptive service composition is
still an opportunity due to the complexity of dealing with
adaptation issues, such as how to provide runtime verifi-
cation, how to implement adaptation mechanisms, when to
carry out the adaptation and where to perform the adaptation.
It is also difficult to identify transient undesirable behaviors
and repair the service composition on time through actions
that do not require its suspension. In order to provide the
verification of the service composition at runtime, formal de-
scription techniques can be used by checking the behavioral
properties. However, most approaches on verification and
validation services composition using formal techniques are
only focused on the service composition analysis at design
time. Then, it is necessary to develop new solutions that
dynamically reconfigure service composition with the aid of
formal techniques.

Considering this scenario, this paper presents an approach
for building adaptive service compositions based on the
lightweight use of formal techniques to detect undesirable
behaviors in their execution traces. Initially, we instrument
the interactions among services in order to record the exe-
cution trace. We describe the functional requirements of the
service composition using temporal logic, which allows us
to check the behavior consistency according to the execution
trace. Once an undesirable behavior (deviation) is detected
during the execution of a service composition, our approach
triggers an adequate reconfiguration plan for the problem at
runtime. These plans can range from simply trying to re-
invoke the service up to replacing it by another equivalent
service.

The main contributions of this paper include the definition
of an approach where existing service compositions are
analyzed by means of execution traces, the lightweight use
of tools that support formal behavioral properties verification
at runtime, the adaptation of the service composition at run-
time through actions that do not require its suspension and

4837

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41750
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


without the human intervention and the use of hierarchical
reconfiguration plans. The approach is illustrated with a run-
ning example (Portuguese dictionary service composition)
and it assesses the impact of system adaptation upon its
performance.

This paper is further structured as follows. Section II
shows the motivation of the developed approach. Section III
describes the approach to adaptive service compositions. In
IV, we present the formalization of this approach. Section V
presents the implementation of the proposed approach. The
running example is presented in Section VI. The results of
the proposal evaluation are described in Section VII. Section
VIII shows the related works. Finally, Section IX introduces
our conclusions and some future works.

II. MOTIVATION

A service composition has been recursively defined as an
aggregation of services that generates a new service by pro-
viding more elaborated functionalities. It integrates different
capabilities across companies′ boundaries. However, there is
no guarantee that services will behave as expected due to the
dynamism of the business environment. Then, we need to
ensure the functional requirements of service composition.

According to the service composition life cycle [1],
the functionality of service composition can be verified at
design-time or runtime. At design-time, the method ensures
that the desirable requirements can be achieved without the
system execution, whereas runtime verification concentrates
on the service composition behavior when it is on-the fly
[3].

Once service composition becomes operational, its
progress needs to be frequently monitored in order to
ensure functional competencies and desirable quality levels
(e.g. performance, security and availability) by runtime
verification methods. The collected data correspond to the
interactions among services and they represent the behav-
ior of service composition. Once collected, the data must
be analyzed according to the adopted verification method.
These methods are classified based on system validation
time: off-line mode and on-line mode. In an off-line mode,
although the required data are collected when the system
is on-the-fly, their analysis is performed when the system
execution exceeds the time of logged events. In an on-line
mode, both data acquisition and analysis are carried out in
a timely manner when the system is running.

The result of runtime verification indicates whether the
service composition execution satisfies or violates a given
desirable property. When a violation is detected, verification
methods must be followed by actions that allow the dynamic
adaptation of service composition to take it to a safe state.
Adaptation has been implemented in different moments:
reactive, pro-active and post-morten. Reactive adaptation
handles faults reported during the execution of a com-
position instance, pro-active adaptation modifies a service

composition before a deviation can be detected and post-
morten adaptation characterizes a significant gap between
the detection of the undesirable property and a performed
modification.

Adaptation can be achieved through different mechanisms
that define how a particular plan is performed, when there
is a wide range of available options. Although using for-
mal methods as a plan to implement an adaptation is not
mandatory, they provide the underpinnings to model ser-
vice composition and describe functional properties that are
fundamental for the service composition validation process.
However, the adoption of formal techniques is still a hard
task for developers due to its cost and the degree of spe-
cialization needed for its application. In the adaptive service
composition context, the degree of formalization may vary,
reducing the need for accuracy in certain development tasks,
but it also benefits the correctness of development activities.
These proposals have been commonly called lightweight
formal methods [4].

III. PROPOSAL

We have developed an approach that uses formal methods,
in the lightweight way, to manage the service composition
adaptation process. It adapts the service composition by
checking the conformance between its execution trace and
a set of the desirable behavioral properties described in
a temporal logic. For instance, assuming that a service
composition begins presenting an undesirable behavior (e.g.,
service does not respond to invocations or delivers messages
out of order), our approach detects these problems and
activates a reconfiguration plan for this scenario.

Figure 1 shows a general overview of the adaptive service
composition model. A service composition is executed by
the execution engine while it is monitored to collect its
execution trace (events) (1). Meanwhile, the desirable behav-
ioral properties that must be satisfied by service composition
during its execution are defined in the formal language (2).
Once collected, our approach takes responsibility by the
conformity process of checking behavioral properties ac-
cording to execution trace (3). When an undesirable property
is detected, the simplest action would be sending a message
to the user. However, the adaptation process (4) allows a
reconfiguration plan (e.g. by replacing a service) to be acti-
vated without completely stopping the service composition.
Once the verification process detects undesirable behaviors,
the service composition is reconfigured and the verification
process is repeated according to the reconfiguration plan,
for instance, every minute. The same plan also defines a
time interval for carrying out the verification process when
undesirable behaviors are not detected, for example, every
three minutes. Regarding this work, we defined those values
after performing a set of service composition simulations
with different time intervals for the verification process.
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Figure 1. Adaptive Service Composition Model

Considering the concepts related to development, monitor-
ing, verifying and adaptation of service-based applications
defined by Hielscher [5] and Papazoglou [1], we can classify
our solution as follows:
• the service composition adaptation is performed only

after identifying the occurrence of behavioral deviations
(reactive adaptation);

• the monitoring process is performed in parallel with
the execution of the monitoring subject (asynchronous
execution process);

• service composition is represented as a process flow
that specifies the order in which the interactions should
be executed (service orchestration);

• adaptation plans are pre-defined and associated with the
requirement to be adapted (static selection);

• runtime verification is based on execution traces and
temporal logic properties;

• services are replaced in order to remove the behavior
that is not desirable in a service composition (corrective
adaptation);

• the adaptation results are observed only in the following
executions of the service composition;

• the execution of adaptation actions is performed at
runtime and it does not require any human involvement.

IV. FORMALIZATION

In this section, the set of components that makes up our
approach is formally described. This formalization has been
defined based on works developed by [6] and [7].

Initially, given a service composition SC, its execution
trace Tr and a set of desirable behavioral properties P, then
Tr must satisfies P (Tr ` P). Otherwise, if Tr does not

satisfy P (Tr a P), SC must be reconfigured at runtime in
accordance with a reconfiguration plan R, which consists in
a set of actions µ performed by the approach.

A. Basic definitions

Firstly,, we define our perception about important con-
cepts of the Service-Oriented Computing, such as interface
component, service component and service composition.

Definition 1. (Interface Component). An interface In
describes the set of operations and parameters that expresses
the functionality of the service, where:
• ∀x ∈ In, we define x = <op, I, O>, being op, I,

O correspond to the operations, inputs and outputs
respectively;

• For each operation, there is a set of inputs and outputs,
i.e., I =<δ1, ..., δm> and O =<β1, ..., βn>, where each
of these elements takes the form <name> : <type>.

The signatures of these operations are not relevant for
this paper, because we are interested in the service behavior,
which corresponds to the exchange of messages performed
by the service composition.

Definition 2. (Service Component). A service component
is represented as a triple S = < F, In, A > where F, In, A
stand for functions, interfaces and actions respectively:
• F describes the functionality of the service;
• In is the component interface;
• A is the sequence of possible invocations for the com-

ponent interface.
Other information can be also represented in a service

component. For example, a quadruple S = < F, In, A, P >,
where P corresponds to the non-functional properties such as
availability, delay, cost and so forth. However, as P does not
play a significant role in the service composition behavior
of the proposed approach, we only consider the triple < F,
In, A > for conformance checking.

Definition 3. (Service Composition Component). A
service composition component is a triple SC = < Ns, Rb,
B >, where:
• Ns = S1, S2,..., Sn is a set of service components

that make up the service composition and can be
reconfigurable at runtime;

• Rb is the binary relation in Ns↔ Rb ⊂ Ns X Ns, which
defines how the services are connected. Being Rb = {(x,
y) | x, y ∈ Ns} and Ns 6= ∅ , when the ordered pair (x,
y) belongs to the Rb relation, we can write xRby ↔ (x,
y) ∈ Rb;

• B is the sequence of actions that can be observed in all
the interface components of the service composition.

B. Tracing

Tracing is an important element of this approach because
it refers to the content generated by service composition
while it is running. Regarding this approach, the execution
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trace is produced through the recorded observable actions
which represent the service composition behavior.

Definition 4 (Execution Trace). Composition execution
trace Tr is a set of actions sequences performed by the
service composition, where Tr ⊆ ϕ ∪ ε ∪ θ
• ϕ is a set of observable actions sequences that can

happen in all the interface components of the service
composition;

• ε is a set of actions sequences that came up due to
errors;

• θ is an empty sequence;
• All sequences can be formally defined by a function δ

: I → Tr, where I is the integer interval [0, n] for some
n ∈ N.

We are interested in a restricted set of operations that the
service composition can perform. These operations influence
the truth-value of properties because they generate actions
that must belong to the service composition vocabulary,
namely Σ. Therefore, each set of observable actions se-
quences ϕ must be always contained in Σ, i.e., ∀ϕi (i=0,
..., n) ∈ ϕ, then ϕi ⊆ Σ.

C. Checking Process

The checking process consists in verifying the service
composition behavior based on its execution trace and a
set of desirable temporal properties formally described. The
result corresponds to a logical value that defines if the
property have been satisfied (Tr ` P) or not (Tr a P) by
the service composition.

Considering an execution sequence ϕi (i=0, ..., n) ∈ ϕ,
we can define that ϕi satisfies a property Φj (j=0, ..., n) ∈
P, when ϕi ∈ Σ ∧ (Φj → ϕi).

In this paper, we are interested in properties that can be
verified at runtime. For this purpose, it was adopted the set of
property patterns specifications defined in [8] was adopted.
They are:

• Absence. A given action does not occur within a scope
• Existence. A given action must occur within a scope
• Bounded existence. A given action must occur K times

within a scope
• Universality. A given action must occur throughout a

scope
• Precedence. A given action M must always be pre-

ceded by an action N within a scope
• Response. A given action M must be always followed

by an action N within a scope

From these property patterns and the regular alternation-
free Mu-Calculus [9], we define a set of formal properties as
described in Table 1. Given a service composition execution
trace Tr, the actions sequence ϕi (i=0, ..., n) = π1, π2, π3
∈ Tr. For a better understanding of the table, characters T
and F must be read like True and False, respectively.

D. Adaptation Process
Once an undesirable behavior is notified through the

verification of a temporal property Φi (i=0, ..., n) on the
execution trace, several different kinds of reconfiguration
plans τ j (j=0, ..., n) ∈ R can be triggered at runtime in order
to reach the goals of the service composition, regardless of
the errors. In other words, there is a specific reconfiguration
plan for each undesirable behavior that has been identified:

ϕ1 a Φ1 → τ 1

ϕ2 a Φ2 → τ 2

...

ϕn a Φn → τ n

Different reconfiguration plans for service-oriented sce-
narios have been identified in the literature [10] [2], being
the following ones the most widely-used actions:
• Retry. Executing the same invocation with identical

parameters and contracts, according to the number of
configured attempts for each service. This is a possible
solution when the fault is transient;

• Replace. Trying to select another service with similar
behavioral characteristics because it is necessary to
guarantee the same functional properties;

• Reorganize. Creating an on-the-fly composition from
a set of available services that can provide the same
behavior of a faulty interaction. This is necessary when
no alternative matching service can be found.

The use of these reconfiguration plans can be hierarchi-
cally organized. For example, the reconfiguration component
can start the process from a simple action, like retrying the
same service. Then, if it is not possible to reach the goals of
the composition, the component can choose another recon-
figuration plan, such as replace, and afterwards reorganize.
Choosing the reconfiguration plan to recover the service
composition is not decided in an ad-hoc manner. This choice
depends on the undesirable composition behavior which was
detected during the verification process. The hierarchical
execution mode of the reconfiguration plans is defined by the
reconfiguration specialist who decides the best practices for
a specific service composition considering the hierarchical
organization of the plans.

Definition 5 (Reconfiguration Plans). A reconfiguration
plan can be defined as a function τ : Rb X Rb→ Rb’, where
Rb, Rb’ are relations that define how the services have been
connected.

We need to understand a set of simpler plans (e.g. add
and remove plans) which, when combined among them,
must represent the plans defined for service composition
scenarios.

We need to understand a set of plans simpler (e.g. add and
remove plans) that when combined to each other, they must
represent the plans defined to service composition scenarios.
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Table I
PROPERTIES PATTERNS IN MU-CALCULUS

Description Formula

π1 does not occur [T* . ”π1”] F
π1 must occurs throughout the sequence [T* . ¬”π1”] F

π1 does not occur before π2 [(¬”π1”)* . ”π2” . (¬ ”π1”)* . ”π1”] F
π2 must occurs before π3 [(¬ ”π2”)* . π3] F

π1 does not occur after π2 until π3 [T* . ”π2” . (¬ ”π3”)* . ”π1”] F
π1 must occurs between π2 and π3 [T* . ”π2” . (¬ (”π1” or ”π3”))* . ”π3”] F

No deadlock sequence is found [T*] < T > T

Figure 2. A general overview of the implemented approach

• Add. τ 1 (Rb, {(Si, Sn)}) = Rb ∪ {(Si, Sn)}, where Si
∈ Ns and Sn is a new service to be added to the service
composition;

• Remove. τ 2 (Rb, {(Si, Sr)}) = Rb \ {(Si, Sr)}, where
Si and Sr ∈ Ns and Sr is the service to be removed
from the service composition;

• Retry. τ 3 (Rb, {(Si, Sr), (Si, Sn)}) = τ 2 (Rb, {(Si, Sr)})
⊕ τ 1 (Rb, {(Si, Sr)}), where Si, Sr ∈ Ns and Sr = Sn
is the service to be removed and added again;

• Replace. τ 4 (Rb, {(Si, Sr), (Si, Sn)}) = τ 2 (Rb, {(Si,
Sr)}) ⊕ τ 1 (Rb, {(Si, Sn)}), where Si, Sr ∈ Ns, Sr is
the service to be removed and Sn is the new service to
be added;

• Reorganize. τ 5(Rb, {(Si,Sn)}) = Rb ∪
{(Si,{(Sn1,Sn2)})}, where Si ∈ Ns and {(Sn1,Sn2)} is
a new service composition that can provide the same
behavior of a faulty interaction.

V. IMPLEMENTATION

Our approach was implemented in the Java language
and it used CADP Toolbox (Construction and Analysis of
Distributed Processes) [11] to check the execution trace.

The traces are text files in CADPs sequence format which
can be viewed as an LTS (Labelled Transition System). The
SEQ.OPEN tool connects the trace to the model checker
where it can be analyzed. This tool works on-the-fly, i.e.,
without storing in memory the entire content filename.seq.
Figure 2 shows a general overview of the implemented
approach.

The trace is obtained by instrumentation of the service
composition. It is responsible for logging actions executed
by service composition (i.e. interactions among services).
Before the checking process is activated, it is necessary to
modify the trace file according to the file format supported
by verification tool. In this paper, a CADP Adapter that
modifies the log in accordance with the sequence format
was developed, i.e., tracefilename.seq. Once the trace is
formatted, the Checker invokes the model checker of the
CADP Toolbox to check the behavioral properties, which
are described in Mu-Calculus, a model checking language.

The answer from CADP Toolbox is evaluated by Checker
module. Once an undesirable behavior is notified, a reconfig-
uration plan must be triggered in the attempt to reach the de-
sirable behavior of the service composition. Then, Checker
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asks the Configurator module to execute the reconfiguration
plan in accordance with the unsatisfied property.

Different reconfiguration plans have been identified for
service-oriented scenarios and some of them were imple-
mented in the proposed approach:

p u b l i c i n t e r f a c e I R e c o n f i g u r a t i o n P l a n s {
p u b l i c vo id a d d S e r v i c e ( i n t idx , S e r v i c e C a l l newServ ) ;
p u b l i c vo id r e m o v e S e r v i c e ( S e r v i c e C a l l o l d S e r v ) ;
p u b l i c vo id r e t r y S e r v i c e ( S e r v i c e C a l l new oldServ ) ;
p u b l i c vo id r e p l a c e S e r v i c e ( S e r v i c e C a l l o ldSe rv ,

S e r v i c e C a l l newServ ) ;

}

Although CADP has been adopted as the formal toolbox,
other behavioral verification tools can be added to our
solution, for example, ProM framework (PROM2) (Process
Mining Toolkit) [12] through LTL Model Checker. It has
been used to verify behavioral properties in business pro-
cesses at design time, although the business process activities
can be performed by services. By using CADP Toolbox,
we can choose to check different properties by trace file,
such as deadlocks, temporal formulas, generating tests and
evaluating performance. In this paper, the reconfiguration
process is based only on the verification of the temporal
formulas, i.e., Mu-Calculus.

VI. RUNNING EXAMPLE

The example presented in this section is used to introduce
the behavioral problems that can arise in service composition
scenarios and the solutions we propose to cope with them.
In this example, a client needs the meaning of a Portuguese
word. For this purpose, a service composition is initially
implemented, as shown in Figure 3. We implemented a
Portuguese dictionary service P, which returns the meaning
of the word in Portuguese. It is a service composition
using three different services: Portuguese-English Transla-
tor (PEtranslator), English Dictionary (ENGdictionary) and
English-Portuguese Translator (EPtranslator). Initially, the
given word is translated from Portuguese to English and its
meaning is found in the English Dictionary. Then, the result
is obtained from English to Portuguese. We implemented
and deployed all the services that take part of the service
composition. They were implemented in Java by the Eclipse
tool and deployed in the Tomcat web server.

Since the Portuguese dictionary service composition is
running, we extract the execution trace described in Figure
4(a). An example of the Service Composition information
exchange between client (i.e. consumer of the service) and
service composition is not mentioned here. Different kinds
of behaviors can be analyzed in this service composition.
Regarding the aims of this paper, we consider as undesirable
behavior the lack of messages among services in the exe-
cution trace. For example, Figure 4(b) presents a scenario
where the Portuguese English Translator service does not
respond to the request of service composition. There are

Figure 3. Portuguese Dictionary - An example of the Service Composition

two possible reasons for this situation to occur: service can
go down or it does not have the word to be translated.
After realizing the lack of message, our approach triggers
an adequate reconfiguration plan to solve the problem.

We implemented a reconfiguration hierarchical strategy of
the plans. Thus, when the absence of a message is detected,
firstly the service is re-invoked to avoid a change of services
due to transient undesirable behavior (e.g. temporary server
breakdown or messages that have been lost in the net).
After the reinvocation, if the undesirable behavior continues
being detected, the service that generated this behavior must
be replaced by another service with similar functionality.
Considering that the services replacement is an expensive
process, a service change can be avoided if the undesirable
behavior is transient.

Once the services change has been carried out, the ser-
vice composition execution trace continues being analyzed
through the CADP Toolbox model checker. In the trace,
other undesirable behaviors through the services invocation
can be detected. The same service that replaces the service
presenting undesirable behavior can also generate the same
behavior (Figure 4(b)). Once the reconfiguration is applied,
the execution trace must be according to what is shown in
Figure 4 (a).

Although the service composition was implemented in
Java language and it uses the Java runtime environment
as execution engine, it could have been implemented in
any language since the execution trace was produced in the
format accepted by our approach.

VII. EXPERIMENTAL EVALUATION

The experimental evaluation of this approach was divided
in two main steps. Initially, we proved that the adaptation
process functioned well and it changed the service composi-
tion behavior. Afterwards, we measured the time spent by the
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Figure 4. Execution trace of the service composition: (a) desirable
execution trace; (b) deviated execution trace

approach to realize an undesirable behavior and also perform
the adequate adaptation. We also evaluated the overhead
solution; in other words, the average time spent on the
adaptation activation process.

The experiment was executed in a Mac Book Pro (OS X,
version 10.10.1, processor 2.5 GHz Intel Core i5, 8 GB of
RAM), where a client performed invocations to a service
composition during 6.0E+5ms, and whose service time was
set to 600ms. In the meantime, the service composition was
invoked 1368 times by the client, and 1137 out of them were
correctly processed by service composition. Considering
the time spent between the detection of an undesirable
behavior and its adaptation, only 166 reconfigurations were
performed.

The number of reconfigurations has not been parameter-
ized; random undesirable behaviors are injected in the ser-
vice composition during the simulation time and they specify
the necessary reconfigurations. The number of invocations
has also not been parameterized. This number is defined
according to simulation time configured at design time. The
replacement of the service does not guarantee that the new
service can behave appropriately. Then, it is possible that a
new reconfiguration should be carried out soon after a first
reconfiguration.

A. Adaptation process

In order to show that the adaptation process works well,
we initially implemented two Portuguese-English Translator
services, where PE-Translator1 service (300ms) takes more
time to process a requisition and it can be replaced by
PETranslator2 service (200ms), which is faster. Figure 5
presents the response time of each successful invocation.
Also, it shows the behavior of the response time while the
adaptations were triggered. The response time corresponds
to the time interval between the invocation of the client and
the reception of the response.

The figure shows that the response time of the successful
invocations occur within a small interval, approximately 0.5

Figure 5. Behavior of the response time when reconfigurations are
triggered

seconds for the slower service and 0.39 seconds for the faster
one. When there are some divergent values for the execution
of the same service, it means that some reinvocations were
performed for these cases; therefore, the time is different
from the other invocations. The time response behavior
proves that the adaptation has been carried out. When the
service that takes the longest time to perform is chosen, the
response time is relatively longer (0.5 seconds). At some
moment, this time decreases and remains the same during a
very small time interval, proving that the service that takes
less time to respond to the requisition is being performed at
that moment. Figure 5 represents the relationship between
the simulation time and the response time of each client
(service).

B. Performance evaluation

We are also interested in demonstrating the impact that
the adaptation process has upon the service composition
performance. For this purpose, we chose two different per-
formance aspects: the overhead caused by adaptation process
in the service composition and the time spent from the
beginning of an undesirable behavior until the end of the
adaptation that corrects this behavior. Then, we considered
the average response time (see Section VII - A) as well as
the reconfiguration time for each undesirable behavior as
performance metrics.

The average response time was calculated for scenarios
with the disabled and enabled reconfiguration mechanism.
Therefore, we can evaluate the overhead caused by adap-
tation process in the service composition. According to the
collected data, there is an overhead caused by reconfigura-
tion mechanism, even because an additional processing is
being carried out in the service composition when unde-
sirable behaviors are detected. Figure 6 shows that there
is an overhead in the response time when the reconfig-
uration mechanism is enabled. However, this overhead is
considered low when compared to the time spent with
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the business itself. It means that, although some overhead
can be inserted by reconfiguration mechanism, the service
composition adaptation is better than its execution producing
undesirable behaviors.

Figure 6. Overhead caused by the reconfiguration mechanism

The reconfiguration time expresses the time spent from
the detection of an undesirable behavior until the end of
the service composition adaptation. The goal is analyzing
if there are divergent variations regarding the time spent
in carrying out the different reconfigurations. The collected
data prove that the average time to perform the reconfigu-
rations is 55ms, and the pattern deviation is 3,1ms. In total,
undesirable behaviors were injected into the solution, which
permitted that 166 reconfigurations were carried out. Some
of these configurations showed a longer reconfiguration time,
such as the reconfigurations 56 to 61. For these cases,
reinvocations and service replacements were subsequently
performed. Regarding the cases with lower values, the un-
desirable behavior problem was solved by just reinvoking the
service, which characterizes it as transient. Figure 7 depicts
this time considering the 166 consecutive reconfigurations,
which shows that the reconfiguration time is stable. It is
important to highlight that most of this time is used because
the CADP tool needs to check the suitable property.

VIII. RELATED WORKS

We introduce related work in two groups. First, those
approaches specifically related to the monitoring and verifi-
cation of service composition. Second, approaches that are
focused on some aspects of adaptive service composition.

A. Monitoring and verification

Most studies about checking are focused on behavior ver-
ification using formal description techniques. For example,
[13] propose a method called WSCMon to monitor web
service composition. In WSCMon, WS-BPEL processes are
automatically transformed into Communicating Sequential
Processes (CSP) processes as system specifications and

Figure 7. Reconfiguration time

behavioral properties are specified using CSP or LTL. Al-
though these works deal with verification of functional
requirements at runtime through formal techniques, none of
them are focused on adaptation. Besides, some of them are
bonded to specific notations such as the WS-BPEL.

[14] present a framework that supports the runtime ver-
ification of behavioral properties or assumptions about the
behavior. Properties are automatically extracted from WS-
BPEL specification in event calculus (EC) and are repre-
sented by EC formulas. Execution trace has the same format;
then, it is possible to verify the conformity between trace and
behavioral properties. Other studies work in a similar way;
for example, [15] transform a WS-BPEL specification into a
Colored Petri Net (CPN) to capture concurrent behavior and
a runtime monitor using the CPN description to detect in-
appropriate use of protocol. [16] adopted stream X-machine
(SXM) formalism to model the dynamic behavior. A testing
method applicable to SXMs is capable of deriving test sets,
which can prove the correctness of the implementation. The
focus of these works is also the service composition behavior
verification at runtime, which is different from the proposal
presented in this work, where the focus is on adaptation.

Besides verifying the behavior, some studies focus on
non-functional requirements. For instance, [17] propose a
framework to support the monitoring of functionality and
quality of service requirements which are specified as part of
service level agreements. Specifications of service guarantee
the terms that are specified in EC-Assertion, which is
based on Event Calculus (EC). Other researches also detect
runtime faults for web service composition but without
employing formal description techniques. For example, [18]
present the application of runtime monitoring to detect
problems based on fault handling mechanism. Differently
from these works, our proposals focus is the use of formal
methods to verify service composition behavior at runtime.
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B. Adaptation

Many proposals cope with dynamic reconfiguration, but
they focus on different aspects of adaptation. For instance,
some approaches are concerned with providing adaptation to
service composition described in WS-BPEL. For example,
[19] focus on exploring some WS-BPEL features which can
be used for dynamic reconfiguration of service composition
(e.g. scopes). The work [20] proposes Dynamo, an approach
that allows the addition of adaptation capabilities for BPEL
processes through AOP-techniques (Aspect-oriented). [21]
also propose a plug-in architecture for self-adaptive web
service composition, where self-adaptation features are well-
modularized in aspect based plug-ins. The focus of our work
is not the service composition adaptation by using WS-
BPEL. Instead, we propose that our solution can be used
for compositions described in any language, as long as they
generate the necessary execution trace.

Besides, some researches provide support for dynamic
reconfiguration based on distinct non-functional aspects as
KAMI framework [22], which focuses on non-functional
properties quantitatively specified in a probabilistic way by
Markov models, such as reliability and performance. Petri
nets also have been used to help choose the best configu-
ration with the optimal quality of services (QoS) to meet
users non-functional requirements [23]. Other techniques
have also been used. For instance, [24] elaborated a well-
founded model and theory of adaptation introducing written
formalisms using COWS for evaluating properties such as
reliability and responsiveness. Differently from the previous
proposals, our solution focus is not on adaptation based on
non-functional-requirements.

Furthermore, some proposals are concerned with identify-
ing reconfiguration plans for adaptive service composition.
For instance, [25] introduced a methodology and a tool
for learning the services repairment strategies and selecting
repairment actions automatically. For this purpose, it used
a Bayesian classification of faults. Our work is concerned
about dealing with the entire adaptation process, and not
only with using specific reconfiguration plans.

Nonetheless, despite the number of works published about
adaptive service composition, most of them do not deal with
(or are not concerned about) the analysis of services based
on execution traces and in the lightweight use of formal
tools.

IX. CONCLUSIONS

This paper presented an approach for building selfadaptive
service composition that has the following features: it uses
formal methods in the lightweight way, runtime monitoring
and verification of the functional requirements and reactive
adaptation. Our contributions in this paper include the defi-
nition of an approach where existing service composition
systems are analyzed by means of execution trace and
the lightweight use of formal techniques for modelling the

desirable behavior of service composition. The approach was
presented by using a running example and its experimental
evaluation demonstrated for assessing the impact that the
system adaptation has upon the systems′ performance.

Future works will focus on the validation of the functional
and non-functional properties, such as performance and
availability. Also, certain behaviors must be predicted and
the necessary adaptations must be carried out before the
behavior occurs.
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