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Abstract 
 

Knowledge representations have greatly enhanced 
the fundamental human problem of information search, 
profoundly changing representations of queries and 
database information for various retrieval tasks. 
Despite new technologies, little thought has been given 
in the field of query recommendation – recommending 
keyword queries to end users – to a holistic approach 
that recommends constructed queries from relevant 
snippets of information; pre-existing queries are used 
instead. Can we instead determine relevant 
information a user should see and aggregate it into a 
query? We construct a general framework leveraging 
various retrieval architectures to aggregate relevant 
information into a natural language query for 
recommendation. We test this framework in text 
retrieval, aggregating text snippets and comparing 
output queries to user generated queries. We show that 
an algorithm can generate queries more closely 
resembling the original and give effective retrieval 
results. Our simple approach shows promise for also 
leveraging knowledge structures to generate effective 
query recommendations.  
 
 
1. Introduction  
 

Knowledge mining has recently become an 
important component of text-based technologies and 
has shown us a new way to represent information on 
the Web.  It has shown us how to extract entities – such 
as actors, presidents, or cities – from plain text, to 
quickly discover facts about those entities, and to 
compile or infer relationships about a single or 
multiple entities by operating on a knowledge graph.  
Knowledge mining has shown us how to enhance 
traditional Web search by supplementing queries and 
documents with additional latent structure. 

In Web retrieval, the driving method of input has 
largely remained the same: a single text box for a 
natural language query. Yet now, knowledge graphs 
enhance and expand natural language queries into 
queries that can be issued to a knowledge base. The 
enhanced queries often return objects (e.g., actors in a 
movie) and relationships (e.g., people related to an 
actor) to supplement the “10 blue links” paradigm of 
traditional Web retrieval. 

While knowledge representations have opened the 
discussion of backend representations for a variety of 
search tasks, query recommendation – the study of 
recommending relevant, related queries to an end user 
during a search task – has drawn little from this 
discussion. Query logs – i.e., logs of user search 
sessions – provide rich data for query recommendation 
algorithms.  But recommender algorithms only 
recommend either past queries users have previously 
issued or reformulations. These recommended queries 
are a proxy to the information that is actually relevant 
to a user’s information need; queries are not an 
information need and only express an aspect or 
approximate the need. 

It would be better, then, to recommend information 
directly related to a user’s need, rather than 
recommending past queries that are approximately 
related. One method is to recommend documents. 
While this can hasten the completion of a user’s 
current interaction, it effectively “gives the user a fish” 
instead of “teaching a user to fish”. To better inform 
future interactions, it is better to strike balance and 
teach a user how to query. Suppose we have a structure 
that models the “information” a user has observed so 
far, as well as what has been marked relevant. From 
this, we can perhaps determine related bits of 
information (for instance, words or relations) that are 
unexplored but relevant. From this breadth of 
unexplored information, we could hypothetically 
generate a new query. How well can we encapsulate 
this information within a succinct query? Furthermore, 
can an algorithmic method of extraction outperform 
humans, the source of queries from query log data? 
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Figure 1. Overview of user and system 

interactions in Web search, as given by [5]. 
We describe a framework for mining relevant 

information and aggregating it into a natural language 
query to be used by humans in Web search.  We show 
that queries generated from aggregation sometimes 
perform even better than humans in summarizing text 
into a query. In Section 2, we begin to describe how 
Web retrieval technology is related to the problem of 
query recommendation, discussing text retrieval and 
knowledge mining technologies. In Section 3, we 
propose a full pipeline of totally generative query 
recommendation, using motivating examples to show 
how it would be instantiated with knowledge 
management and information retrieval backend 
technologies, and we give our research question. In 
Sections 4 and 5, we detail our data collection process 
and algorithmic experiments.  In Section 6, we give our 
technical results, and we conclude in Section 7 with 
our insights.  
 
2. Background  
 

While knowledge systems add much architecture 
and structure on top of text-based Web retrieval, many 
useful comparisons can be drawn between the two. We 
outline similarities and differences between both 
below, illustrating how query recommenders fit over 
various retrieval structures. Throughout Sections 2 and 
3, we will use the running example query “things to do 
in Munich” to illustrate different concepts. 
 
2.1 Web Search Architecture Overview 
 

Figure 1, borrowed from Ceri et al. [5], illustrates a 
pipeline of what they call the “semantic search 
process”. The user inputs a query to the system, which 
the system transforms into a more structured query. 
The structured query is matched to system resources, 
returning a ranked list of results that is possibly 
ordered by relevance. As we shall discuss, this model 
applies to both knowledge graph retrieval and text 
retrieval. 

 
2.1.1. Connections to Text IR. In text-based retrieval, 
simple transformations are applied at the query 
translation level to the user’s input query. Stopwords – 
such as “a”, “and”, “into” – are removed, and words 
are reduced to a basic form through stemming or 
lemmatization. Our running example may be 
transformed into “thing Munich”. Likewise 
transformations are applied to the document collection 
in system resources. At the matching level, the 
simplest systems compare the transformed query to the 
transformed document with a simple term weighting 
scheme called the “term frequency inverse document 
frequency” (TFIDF). This weights terms in a document 
by their frequency and inversely weights them by their 
frequency across the corpus [22].  Matching and 
ranking simultaneously occur by scoring transformed 
queries and documents with a cosine measure. The 
scores determine a rank order.  The transformations 
applied to queries and documents compose a “vector 
space model”.  Other document metadata such as 
PageRank scores and anchor text can be used as well in 
a more effective “learning to rank” model ordering 
documents [11]. The knowledge graph scenario, 
however, contains more than just a document 
collection in its system resources – it also contains a 
knowledge graph over entities and documents.  Yet the 
same mode of interaction applies, as well as the 
recommendation problems that come with it. 

 
2.1.2 Knowledge Systems Realizations. Users’ 
queries to a web-based knowledge graph system – as 
with Google – are largely identical to naturalistic text 
retrieval queries, though Web-based knowledge 
systems also incorporate a knowledge graph. 
Knowledge graphs are important resources in several 
search-related applications like Web search, mobile 
search, and question answering. A common everyday 
example of a knowledge graph is Google’s Knowledge 
Graph [23].  It supplements traditional search results 
with a “card” that summarizes entity information.  
Analogously to an abstract graph in Math or Computer 
Science, the basic units of a knowledge graph are 
nodes – i.e., entities like presidents, animals, or events 
– and edges – i.e., relationships between entities. 
Microformats and RDF, for instance, are two possible 
technologies to define the vocabulary for entities (e.g., 
“Munich”) and pairwise or unary relationships (e.g., 
“In(EnglischerGarten,Munich)” or “City(Munich)”). 
These vocabularies are either defined through a central 
source such as schema.org or are mined in a 
decentralized way through web pages. Richer 
relationships can also be defined through ontology and 
inference frameworks such as OWL [3]. Knowledge 
graphs can be ultimately constructed by experts who 
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choose the relations, through a collaborative open-
sourced approach, by combining rules and machine 
learning, or through totally automated learning. Much 
current research in relational learning is in the 
construction and curation of graphs [17].  

Users’ queries and a document corpus can be much 
more richly transformed with a knowledge base. One 
can, for instance, apply traditional vector space 
techniques after enriching queries and documents with 
simple entity and relationship information [7]. For 
example, the query “things to do in Munich” can be 
supplemented with the entities “Munich” and “City”. A 
document about two tourist attractions in Munich – 
Englischer Garten and Marienplatz – can be 
supplemented with the entities “EnglisherGarten”, 
“MarienPlatz”, “Garden”, “CitySquare” and 
“TouristAttraction”, using relationship information to 
elaborate the nature of the two attractions.  Then a 
cosine measure can be applied like in Section 2.1.1. 
Alternatively, user queries can be mapped to a system-
specific semantic language [7]. One example is the 
query language of SPARQL, a database infrastructure 
often used to store and retrieve RDF-like data. An 
example SPARQL query, in plain English, would be 
“Select x’s such that In(x,Munich) and 
TouristAttraction(x)”. The query gives constraints that 
can be matched against a graphical representation of 
entities and relations, known as graph pattern matching 
[5]. The result of the query is typically a list of entities 
(e.g., the tourist attractions mentioned before) and 
relationships (e.g., people related to a celebrity). In 
summary, knowledge graphs add structure to a user’s 
search session, both in the queries and objects returned. 
As will be explained in Section 3, this can help us 
determine entities and relationships worth exploring 
for recommendation. 
 
2.2. Query Recommendation 

 
Now that we have explicated the semantic search 

process, we will describe query recommendation, a 
supplement to this infrastructure to assist Web users. 
Query recommendation is the process of 
recommending a query for a searching user to issue to 
a database, while the user is engaged in a task. In the 
language of our architecture, system resources often 
include a recommender that saves a user’s search 
session data and recommends queries that the user 
should issue in the future (in our case, natural language 
queries to a Web search engine). While query 
recommendation in Web search engines is a fairly 
recent feature, it sees real use [21] and has made 
several advances since its inception. Yet the 
naturalistic queries recommended are typically either 
previously existing queries from a log or refinements 

of a user’s previous queries. A simple approach, for 
instance, clusters similar queries from a log and 
recommends queries based on a static clustering [26]. 
Smarter approaches have incorporated more session 
context than this, for substantial gains. Such 
approaches, for instance, learn a Markov transition 
model of queries from logs, calculating the probability 
that pairs of queries co-occur within a portion of a 
search session [8,13,14]. Others generalize this 
approach to sequences of n queries [4,12] and have 
been shown to outperform pairwise methods. A less 
common approach is to refine or expand the most 
recent query, applying operations to a query like 
substituting, adding, or deleting words. One example 
uses topic modeling, like Latent Dirichlet Allocation 
(LDA), to mine latent query topics for refinement [2]. 

The query recommendation literature commonly 
compares a user’s queries to candidate ones by 
examining clicks, the surface form of a query, and the 
snippets from search engine result pages (SERPs) – the 
URL’s, snippets, and titles returned in a linear list in 
engines like Google and Bing.  Yet query 
recommendation could also compare the lists of 
relations and entities extracted from the queries, as in 
the vector space model in Section 2.1.2. Even with this, 
the query recommendation approaches cited thus far 
are variations of content filtering and collaborative 
filtering at the level of queries.  Content-based 
recommender systems recommend items based on a 
user’s previous item history (in this case, queries). 
Collaborative filters recommend items based on other 
users’ interests, like by combining multiple users’ 
querying behavior into a transition model [1]. A hybrid 
approach such as Song et al. [24], which combines 
clickthrough data and a topical representation of 
queries, also operates purely at the level of existing 
queries. This is analogous to a movie recommendation 
framework, but in this recommendation domain, item 
features cannot be used to generate a new item. A 
movie recommender cannot recommend a new 
combination of actors and directors if such a movie 
does not exist. In query recommendation, however, the 
basic units of analysis are not actors, genres, and 
directors; they are words, and new combinations of 
words can always be built into queries. 

We must also note that Web keyword queries only 
express an approximation or aspect of an information 
need. In the end, a searcher is looking for information 
that is relevant to a need. The above literature either 
recommends previous queries or iterations of them. If 
an existing query recommends exactly what a user 
wants, then it should be returned, but such 
recommenders cannot return something new but more 
desirable. Therefore gains can be made in determining 
what a user wants first and then generating a query 

4367



with this new knowledge. Prior work has shown that 
there are potential gains to be made in a search session 
by injecting part of another user’s search into the 
current user [9]. Nevertheless, it has been shown that 
merely interleaving results is not enough [19] and that 
performance gains can be made with algorithmic 
intervention. Starting with information to generate new 
recommendations for queries, then, would be the next 
approach in recommendation. 

 
3. The Generative Query Recommendation 
Approach 
 

In the previous section, we laid out our working 
definitions and terminology for knowledge systems 
and text retrieval systems, which have very analogous 
infrastructure. We advocate for a generative query 
recommendation approach that can apply to both types 
of infrastructure. Our algorithm for generative query 
recommendation decomposes into 4 steps: 

 
1. Transform interaction data (e.g., query and 

document text) according to the system’s 
translation method. 

2. Map this data to a subset of textual or 
graphical space (e.g., a subgraph in the 
general knowledge graph or a textual topic 
model). 

3. Determine a next set of information that 
should be retrieved, based on some 
predetermined criteria (e.g., relevance to 
the task or diversification of results). 

4. Aggregate this set into a query. 
 
No modification of the Figure 1 framework is 

necessary. In Section 2.1, we abstractly outlined how 
steps 1 and 2 are currently implemented. We now give 
illustrative, running examples of steps 3 and 4 in 
hypothetical systems to detail a full pipeline. 
 
3.1. Determining Next Steps 
 

In query recommendation, we are provided 
interaction data such as user queries, their respective 
SERPs, and interactions with the results (e.g., clicks, 
dwell time on pages, and other browser interactions). 
We can use this data to determine things that the user 
deemed relevant and not relevant, to determine the next 
actions that a user should take. In text-based search, we 
can use LDA similarly to [2] to model the underlying 
topics of both sets of words. Topics are weighted sets 
of words, so we can compute pairwise topic similarity 
to determine the next best topic, such as a relevant but 
novel topic (e.g., the “Vienna tourism” topic for our 
example). We do not further discuss this aspect in 

detail but assume an algorithm exists to give us the text 
to aggregate in our algorithms. In our experiments, we 
focus on aggregation. 

With a knowledge graph, the relevant and irrelevant 
interactions can be represented as subgraphs within the 
general knowledge graph, with weight given to more 
recent interactions or more relevant interactions 
(determined from longer dwell times, page 
bookmarking, etc.), giving more weight to more 
relevant parts of the subgraph. Determining the next 
step would be equivalent to determining the next set of 
hops in the graph, or the next hops from the strongest 
weighted parts of the subgraphs. 
 
3.2. Aggregation 
 

After determining some structure of information 
that a user should explore, the next necessary step – to 
give the user an action item to execute – is to generate 
the query for recommendation, since in Web search, 
querying is the primary mode of action. The 
knowledge graph offers some challenging 
complications. The structure added by relations 
simplifies the process of expanding them into queries. 
If a recommender only produced the relation 
“In(EnglischGarten, Munich)”, it can recommend 
“Englisch Garten Munich” as a query. But even a 
single node can have many unexplored relations, many 
of which are extremely dissimilar (e.g., 
“Population(Munich)”, “In(EnglishGarten, Munich)”, 
and “MayorOf(DieterRieter,Munich)”) and cannot be 
formulated in a concise query. Our data from Figure 2, 
for instance, shows most queries in our external dataset 
are of length 3. The challenge, then, is to aggregate 
dissimilar relations into a query, perhaps defined by an 
ontology or automatically learned.  We do not further 
explore this here but discuss it in the Future Work. 

Our text-based scenario with LDA offers simpler 
aggregation with a similar tradeoff. After determining 
the “Vienna tourism” topic for recommendation, for 
instance, one could sample from the probability 
distribution of words, or even get the most likely 
words, to form the query “trains to Vienna”. The 
challenge here is making a coherent query, rather than 
simply sampling words like “opera palace trains”. 
     In the technical component that follows, we test a 
simple mapping component. We convert query results 
(snippets of text) into pieces of information (a list of 
words) and aggregate this representation into a short 
query. A SERP approximates an information need; it is 
the information a search engine deems relevant to a 
query. Conversely, can an ordered list of relevant 
pieces of information be captured in a single query, by 
either users or algorithms?  If so, how do they 
compare? 
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Figure 2. Layout of the Mechanical Turk task.

3.3. Research Question 
 

The duration of our paper focuses on Step 4 of the 
algorithm – the aggregation. For our research question: 
Given a set of results marked as relevant, can a system 
accurately capture this information in a usable query? 
We illustrate an answer to this question in the positive 
in two experiments.  Namely, we show that a system 
can outperform humans in such aggregation and that 
with reasonable training, even a simple text-based 
system (so presumably a knowledge-based system) can 
give accurate recommendations, given a set of data. 
 
4. Datasets  
 

In this section, we explain the data collected to run 
our experiments that address our research question. 
 
4.1. User Data in Mechanical Turk 
 

To compare users to algorithms, we must first 
provide users with some snippets of relevant 
information and ask them to generate some queries. In 
accordance with our framework, the set of results 
contain snippets that represent our “relevant 
information” that an aggregation algorithm should 
aggregate into a query. Specifically, we ask 
anonymous Web users to guess the underlying query 
that could have generated (and in fact, did generate) a 
set of results. We recruited them through 
crowdsourcing, a method of retrieving data by utilizing 
the labor of a large number of people.  In recent years, 
this has emerged as a major method of retrieving large 
labeled data sets inexpensively, particularly through 

Amazon Mechanical Turk1.  Mechanical Turk is a 
service in which requesters can publish microtasks, 
called human intelligence tasks (HITs), for workers to 
complete. Workers search Mechanical Turk for tasks 
and complete them to receive payment; requesters 
accept submissions and pay workers depending on 
their performance.  While workers use this as a source 
of money, researchers have used this as an 
inexpensive, quick source of large sets of annotated 
data when recruiting large numbers of people for a lab 
study (e.g., thousands) becomes infeasible.  
Mechanical Turk and other crowdsourcing tools have 
been used for several natural language tasks, such as 
determining the political bias in segments of texts [25] 
as well as for machine translation [18].  A task was 
posted on Mechanical Turk by [10], in which users 
were asked to mark pages with relevance to a query; 
our task is the reverse of this one. 

Table 1. Mechanical Turk statistics. 
Number of HITs 4 
Workers per HIT 30 
Result pages per HIT 11 
Queries per result page 3 
Inputs per HIT 33 
Total Inputs 3951 
Average Time per HIT 26m9s 
Average words per query 3.05 
Number of blank inputs 9 
Estimated hourly rate $1.721 
Total money spent $99 

     Mechanical Turk workers (i.e., our “users”) were 
asked to annotate sets of 10 search results given as 
<page title, URL, snippet> triples, simulating the first 

                                                
1 https://www.mturk.com/ 
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page of commercial search engine results (the first 
SERP).  We told users that each set of search results 
was generated by a query and asked them to give the 
top 3 queries that were most likely to generate the set 
of results, ordering them from most to least likely.  If 
users could not produce 3, we asked them to fill the 
remaining entries with a specific URL, using this as a 
filter for bad workers. We presented workers with 
search results from 44 topics. We distributed these 
among 4 HITs, yielding 11 topics and 33 annotations 
per HIT. See Table 1 for a breakdown of HIT statistics 
and Figure 2 for a sample screenshot of the task. We 
also accepted only users with at least a 95% approval 
rating located in the United States to work on our 
HITs.  We manually verified the validity of each 
Turker input and rejected only 3 out of 123 
submissions.  As can also be seen from Figure 1, we 
did not boldface any of the snippet words that were 
contained in any of the original queries, as is common 
with commercial search engines today, because we did 
not want to artificially prime users to include boldfaced 
words in their queries.  

 
4.2. TREC Session Data 

 
4 of the above topics were our own, but the other 

40 were from the TREC 2014 Session Track2. The 
TREC 2014 Session Track is a collection of user 
sessions on 60 text retrieval topics, where users input 
queries to a text database. It is often used in IR 
experiments to evaluate the performance of ranking 
algorithms and query suggestions. While there are 60 
TREC topics, we removed duplicate TREC topics that 
were rewordings of the same genre, and used a subset 
of 40 topics: numbers 2-7, 9-11, 14, 16-18, 20-25, 28, 
31-35, 37-38, 41-42, 44-46, 48, 52-53, 55-58, and 60.  
These topics are exploratory search topics - topics that 
are complex enough to require multiple queries and 
potentially multiple search sessions. Exploratory 
queries have been estimated to comprise 10% of search 
sessions and 25% of overall queries [6,15].  We chose 
exploratory topics because exploratory search 
represents the ideal scenario (multiple queries in a long 
session) for our generative query recommendation. In 
total, there were 2460 queries from these topics. We 
used a sample of 40 queries (1 randomly chosen from 
each topic) for the Mechanical Turk task. We used all 
2460, however, to examine algorithmic performance in 
depth, over various parameters.  

 
5. Experiments 
 

                                                
2 http://ir.cis.udel.edu/sessions/index.html 

In Experiment 1, we directly compared user and 
algorithmic performance. We extracted the queries 
given by users in our Mechanical Turk task and 
compared them to queries that our algorithms 
generated when given the same sets of titles, snippets, 
or both. To maximize replicability, we omitted the 4 
extra topics from Mechanical Turk’s 44 from analysis, 
only analyzing user guesses and algorithmic outputs 
from the 40 TREC Session Track topics. 

We found (as will be explained in the results) that 
algorithms could more closely guess the queries than 
users in Experiment 1. Hence in Experiment 2, we 
examined parameter settings to explore what would 
make an algorithm perform well. Namely, we 
examined different evaluation metrics and scaled the 
size of input to the algorithms. How does algorithmic 
performance change, for instance, when 100 relevant 
snippets are used instead of 10?  Is it always better to 
use both titles and snippets in generating a query? We 
examined these types of questions in Experiment 2, 
using all 2460 queries from our 40 TREC topics. 

In both experiments, we used 4 simple algorithms. 
For our first two algorithms, we assumed we knew the 
underlying query length (given as input, call it n) and 
extracted n query words that maximized the query's 
cosine score (i.e., the top n words) from the titles, 
snippets, or both (depending on what feature was 
used). SERP text preprocessing included 
lemmatization and stopword removal. For the second 
algorithm, we chose the top skipgrams of length n 
instead. We counted only skipgrams that also 
contained the most frequent word, as we found that the 
most frequent word was almost always in the gold 
standard query. Skip-grams generalize n-grams; words 
are allowed to occur within a window of k words in 
order to be counted in the model. For smaller data, 
skip-grams can cope with data sparsity that can affect 
n-gram models, and they can be an effective smoothing 
method for language model estimation [20]. Our third 
and fourth algorithms are copies of the prior two, with 
the output query length sampled probabilistically 
instead from a distribution over training data. We re-
ran our algorithms several times, always holding out a 
random 70% of the queries as training data to develop 
a model of the probability of a given query length.  See 
Figure 2 for an example query length distribution, over 
the 2640 TREC queries. To generate query lengths for 
the third and fourth algorithms, we randomly drew the 
length from a similar distribution on our held out data. 

For all experiments and data collection, inputs are 
URLs, titles, and snippets associated with the true, 
underlying gold standard query (hidden from the 
algorithm for evaluation). Lists of results for eachquery 
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are generated through the Google Search API3. In 
separate lab and live studies, we found that over 95% 
of queries were issued to Google. Similarly, search 
results Mechanical Turk users’ input queries and 
algorithm output queries were extracted with the 
Google Search API, the time of collection from 
Mechanical Turk. This allowed us to not only compare 
generated surface strings but also meaningfully 
compare lists of search results (all returned by the same 
search engine). 
 
6. Results and Analysis  
 
6.1. User vs. Algorithmic Performance 
 
     When comparing user and algorithm results from 
Experiment 1, we measured the Jaccard distance 
between the guessed query terms (i.e., generated by 
users or algorithms) and the true underlying gold 
standard query terms (i.e., those that were hidden). 
Jaccard distance is given as: Jaccard(q1,q2)= 
Intersection(q1,q2)/Union(q1,q2), where q1 and q2 are 
lists of query terms. This score, the set intersection of 
two sets of words over the set union, represents the 
amount of overlap between two queries, with scores 
ranging from 0 to 1 and 1 representing q1=q2.  For 
instance, Jaccard({hello,world},{hello,mother})= 1/3.  
     For simplicity, we lemmatized words and removed 
stopwords from our gold standard query before 
analysis, and did the same for all inputs, 
algorithmically generated queries, and user queries.  
This assumes stopwords and morphological differences 
in words should not affect retrieval results much. Since 
the number of tasks and queries for both experiments 
were small, we could manually do entity recognition 
and disambiguation for all query terms, result snippets, 
and output queries for better evaluation. We manually 
normalized multiple names for the same entity - e.g., 
normalizing “united kingdom” and “uk” into just “uk”. 
Lastly, in the Mechanical Turk task, users were asked 
to give their 3 best guesses for each set of results they 
were given.  We took each user’s best guesses and only 
presented those results for our final analyses. 

Table 2. Experiment 1 - Algorithmic vs. user 
performance, in Jaccard distance on 40 

queries.  User scores are independent of input 
columns. (P) stands for the probabilistic 

model of generating query length. 
 Titles Snippets Both 
Users 0.66 - - 
Cosine 0.76 0.86 0.87 
Cosine (P) 0.53 0.60 0.59 

                                                
3 https://www.google.com/cse/ 

Skipgram 0.66 0.73 0.78 
Skipgram (P) 0.47 0.48 0.50 
     See Table 2 for our results from Experiment 1, on 
40 queries. Both users and algorithms examined 10 
search results per query. The results strongly suggest 
that algorithms can be more effective at guessing a 
query that can guide a user to a certain set of relevant 
information. This strongly suggests the need for 
algorithmic intervention; given a set of information 
that has been marked as important, algorithms can 
more accurately guess a query that users would need, 
as the cosine and skipgram greatly outperform users in 
Jaccard distance – i.e., they get more words correct.  
These generative queries can ultimately be better than 
log queries – which are always supplied by users. 
However, this is only in the condition where the 
number of query terms is known.  Humans still 
outperform our algorithms when combined with our 
model for query length, but this only suggests the need 
for a smarter model for generating query length. 
 

 
Figure 3. Count of query terms per query, over 

our 2460 TREC queries. 
 
 

 
Figure 4. Experiment 2 - Jaccard scores for 

algorithms with increasing input size. 
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6.2. Algorithmic Performance In Depth 
 
     Table 2 suggests that both titles and snippets are 
important, but Table 3 compares algorithmic 
performance on all 2460 queries, comparing 
algorithmic models built on the first 10 results versus 
the first 100. While performance improves overall 
when using more results for generating models, titles 
become less important and even hurt performance.  
Indeed we found this to be the case with several 
alterations of the number of results. 
     For subsequent analyses, our algorithms hence only 
used snippets and the top 100 original results, but we 
show in Figure 4 what happens when only snippets are 
used but the number of input results increases. First, 
Figure 4 further demonstrates the need for a stronger 
method for determining recommended query length, as 
there is a substantial difference between the versions 
with and without the probabilistic query model. 
Second, it shows performance increasing for all 
algorithms as the number of input results increases. 
Third, although skipgrams perform more poorly 
overall, the gains in performance are much more 
drastic performance improvements (a difference of 
about 0.16 versus 0.09), possibly suggesting that 
skipgrams may eventually equal or outperform our 
cosine-based method with more data. 
     We lastly give URL-based results in Figures 5-8.  
This means we compare the list of returned URLs from 
our algorithms to the original list of results, across the 
full 2460 queries. Even if queries may not exactly 
resemble queries that a user may issue, they may still 
be useful for recommendation if they return effective 
results. We present 4 different URL-based scores: 
Mean Average Precision (MAP), Discounted 
Cumulative Gain (DCG), the normalized version of 
DCG (NDCG), and Mean Reciprocal Rank. Each score 
is a function that accepts an ordered list of items (in 
our case, URLs), some relevant and some nonrelevant; 
it outputs a numeric score.  Greater weight is given 
when more items are relevant or when relevant items 
are located closely to the top of the list. One example 
we provide here is DCG@K= 
relevance(r1)+relevance(r2)/log(2)+relevance(r3)/log(
3)+...+relevance(rk)/log(k) where ri is the relevance 
score for the ith item.  K is a variable on the list length, 
common to many of the metrics we use. We provide 
[16] as a more complete reference. 
     Our definition of relevance varies with K. We mark 
a URL in a list of output results as relevant if and only 
if it is in the top K original results we used for 
modeling. We first note that for URL-based scores, the 
performance increases but does so more slowly as K 
increases. This is due to the decay of the functions; 
added value diminishes as more relevant results are 

added further down the list. As the cosine algorithm 
outperforms skipgrams in Jaccard, it is expected that 
cosine should outperform here as well, and it does in 
most metrics.  The only exception is MAP. According 
to our definition of K, this means that more relevant 
outputs are marked near the top in the skipgram 
algorithm, but these are located in the lower part of the 
list in the inputs. This means that some of the top 
retrieved URL’s in the skipgram approach are from the 
bottom of the original list to the top. This can be 
important in serendipitous retrieval, or in retrieval 
tasks where rare information is desirable. 
 

Table 3. Experiment 2 - Jaccard distance 
scores, when training on the top K results, for 

the full TREC Session Track. 
Algorithm (K) Titles Snippets Both 
Cosine (10) 0.65 0.72 0.75 
Cosine (100) 0.68 0.82 0.79 
Skipgram(10) 0.56 0.58 0.62 
Skipgram 
(100) 

0.58 0.74 0.73 

 

 
Figure 5. Experiment 2 - DCG for our 

algorithms, given a known query length.  K is 
the number of original URL's considered for 

relevance. 

 
Figure 6. Experiment 2 - NDCG scores. 
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7. Conclusions and Future Work 
 

We see much promise in a completely generative 
approach to query recommendation in Web-based 
search. In our simple approach, our algorithm shows 
that intelligently determining the length of a query is 
key, but solving that problem can potentially improve 
the user experience. Taking a simple counting 
approach to determining important items – as with our 
counting-based approach – can be sufficient, but with 
enough data, longer distance relationships between 
items may bring performance gains and even get lesser 
known relevant items – as with our skipgram approach. 

We acknowledge that our experimentation is in a 
text-based retrieval environment, using text snippets as 
the relevant items to be aggregated into a query. 
However, in Section 3, we made a case for 
generalizing our approach to a knowledge-based 
framework for generating queries, aggregating 
subgraphs from a general knowledge graph. The 
weighted subgraph represents what a user should 
search for next. Our weighting was at the word level. A 
concrete implementation of this aggregation process is 
beyond our current approach. We show that a simple 
aggregation process, where the aggregates (i.e., text 
snippets) are largely unstructured, can lead to relevant 
retrieval results. Also, the SERP snippets we used in 
our experiment were generated by real queries, so they 
represented genuine information needs by real users.  

Our aggregation process and evaluation also makes 
simplifying assumptions about the structure of queries, 
omitting stopwords – as in “museums in NYC”. 
Knowledge systems add layers of structure on top of 
relevant information, providing names for entities, 
disambiguation, and relationships.  Relations can even 
resemble natural language – such as 
In(MOMA,NewYorkCity) – and can offer a much more 
straightforward transformation process into a natural 
language query. Our general approach is agnostic to 
the specifics of the general retrieval architecture 
outlined in Figure 1. 

Our work shows an optimistic step towards a 
bottom-up knowledge-based system for search 
recommendation.  We found that such a system can 
greatly outperform human efforts to consolidate an 
information need into a query. Future work is required 
to make a complete recommender system to compare 
to current non-generative recommenders.  Namely, 
step 3 and 4 need to be concretely defined and 
implemented for a knowledge base, or in our case step 
3 could be integrated with our text-based aggregation. 
The final test is an A/B test that compares user 
satisfaction and performance on two systems: A) one 

using the traditional query recommendation approaches 
outlined in Section 2.3, and B) another using the 
generative approach. This paper shows an optimistic 
step towards a complete system that recommends 
information, instead of just someone else’s queries. 

 
Figure 7. Experiment 2 - MAP scores. 

 

 
Figure 8. Experiment 2 - MRR scores. 
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