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Abstract 
 

Combinatorial auctions represent sophisticated 

market mechanisms that are becoming increasingly 

important in various business applications due to their 

ability to improve economic efficiency and auction 

revenue, especially in settings where participants tend 

to exhibit more complex user preferences and 

valuations. While recent studies on such auctions have 

found heterogeneity in bidder behavior and its varying 

effect on auction outcomes, the area of bidder behavior 

and its impact on economic outcomes in combinatorial 

auctions is still largely underexplored. One of the main 

reasons is that it is nearly impossible to control for the 

type of bidder behavior in real world or experimental 

auction setups. We propose an agent-based modeling 

approach to replicate human bidder behavior in 

continuous combinatorial auctions and leverage our 

agents to simulate a wide variety of competition types, 

including experimentally unobserved ones that could 

not otherwise be studied. The capabilities of the 

proposed approach enable more comprehensive studies 

(via richer controlled experiments) of bidding behavior 

in the complex and highly dynamic decision 

environment of continuous combinatorial auctions. 

 

 

1. Introduction  
 

Combinatorial auctions [1] are important market 

mechanisms that allow bidders to bid on individual 

items as well as their combinations (bundles), which can 

lead to more efficient allocation of resources in complex 

market environments. While there has been research on 

a number of topics in this area – e.g., winner 

determination in combinatorial auctions, combinatorial 

auction designs, practicality of these designs for online 

marketplaces, and comparison of different auction 

mechanisms – the important issues related to bidder 

behavior in these auctions have been largely 

underexplored [2, 3]. The main difficulty is that it is not 

possible to control for bidder behavior in experimental 

studies, which makes it hard to address a number of 

important and interesting research questions, for 

example, understanding how bidder behavior changes 

when facing different types of competition, and how 

these changes affect auction outcomes. In this paper, we 

use a data-driven approach to design and develop 

software agents that replicate human behavior in this 

complex trading mechanism. Our approach draws upon, 

but differs from, existing research on automated bidding 

agents [4-6] in that our agents are intended to replicate 

human bidding behavior, not to outperform human 

participants, compete against other agents, or optimize 

a given task. We leverage the agent-based modeling [7-

11] approach to examine the effect of different bidder 

compositions (i.e., interaction of bidders with different 

bidding strategies) on auction outcomes and bidder 

behavior, using the case of continuous combinatorial 

auctions. Findings from our computational agent-based 

simulations allow for bottom-up theorizing [12] on the 

interaction of bidder behaviors and emerging auction 

outcomes. 

 

2. Background: continuous combinatorial 

auctions  
 

In combinatorial auctions bidders can bid on a single 

item or a bundle. At any time in the auction, any bid that 

has been submitted by an auction participant can be in 

one of three states: (a) winning, (b) dead, i.e., no chance 

of winning in the future, or (c) live, i.e., not currently 

dead or winning but may change to one these states 

depending on future bids. This is substantially different 

from single-item auctions where a bid can only be either 

winning or dead. Bids on non-overlapping bundles that 

create the highest revenue are winning bids, which are 

recalculated upon any new incoming bid. Given the 

three possible states of a bid, there are naturally two 

important bidding levels for any bundle b at any given 

time in an auction: deadness level (DL) and winning 

level (WL), where 𝐷𝐿(𝑏)  ≤  𝑊𝐿(𝑏). A bid amount 

above the WL will make a bid winning, below the DL 

will result in a dead bid, and a bid amount in-between 

DL and WL will result in a live bid. Auction revenue 
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(or auctioneer revenue) is the amount obtained by the 

auctioneer via the winning bids, which equals the sum 

of winning bids’ amounts in a first-price auction 

mechanism. Another important auction outcome is 

allocative efficiency, which measures how optimally 

items are distributed at the end of an auction and is 

defined as: 
Total Valuation of Auction Winners

Maximum Possible Total Valuation 
. 

Higher allocative efficiency is often stated as a desirable 

goal in auction literature, because it leads to greater 

social welfare [1].  The reason for this is that allocative 

efficiency is maximized when items are acquired by 

bidders who value them the most.   

In this paper we use the following experimental 

continuous combinatorial auction (CCA) setup first 

introduced by Adomavicius and Gupta [13] as well as 

the dataset collected in their study [14], referred to as 

the “baseline experimental data” in the rest of the paper, 

to illustrate the proposed agent-based approach. In this 

setup, three bidders compete to acquire six items, 

representing six real-estate properties around a lake. A 

systematic valuation scheme is used where each bidder 

is designated a focal item, which has the highest value 

for that bidder among all items. The remaining items’ 

value decreases by 50% the farther they are from the 

focal item (Figure 1). Complementarities are defined 

among items by adding a super-additive valuation of 

10% for each adjoining item in a bundle. For example, 

if a bundle consists of focal item A ($100 value), its 

neighbor item B ($50 value), and B’s neighbor C ($25 

value), then the valuation for bundle “ABC” is ($100 +
$50 + $25) × (1 + 0.1 + 0.1) = $210, since there are 

two adjoining items in this bundle. Bidders are provided 

comprehensive information feedback throughout the 

auction, i.e., they can see bids placed so far in the 

auction, the provisional winning allocation at the current 

auction state, and the WL and DL for any bundle of 

interest. Since there are six items in each auction there 

are 63 possible bundles, i.e., all possible subsets of 6 

items except for the empty set.  

Using cluster analysis of bids and clicks generated 

by bidders, three stable bidder strategies/types have 

been identified in prior work [14], namely: Analyzers 

(A), Participators (P), and Explorers (E). These bidder 

types were shown to exhibit different behaviors in terms 

of several bidder-specific outcome variables (see Table 

1 for cluster means and standard deviations): 

 Bids: the number of bids placed by a bidder 

throughout the auction;  

 Spans: the number of distinct bundles a bidder bids on 

throughout the auction;  

 Surplus: the difference between a bidder’s valuation 

and his/her winning bids upon auction end, i.e., a 

bidder’s valuation for the won bundles minus the 

amount s/he has to pay for them; 

 Effort: average number of clicks per bid during an 

auction, representing the level of information seeking 

effort by the bidder prior to submitting a bid (e.g., in 

terms of looking at DLs and WLs of various potential 

bundles of interest). 

Analyzers (A) are the most rational bidders who 

spend more effort on analyzing the auction progress. 

Compared to the other two bidder types, a typical 

Analyzer places fewer bids on a smaller set of bundles 

for which s/he has higher valuation, and derives higher 

surplus as a result. Participators (P) do not spend much 

effort investigating the auction progress and maintain a 

participatory behavior. A typical Participator places 

more bids than Analyzers on a wider variety of bundles 

and derives a lower surplus than Analyzers, but higher 

surplus than Explorers. Explorers (E) spent the least 

effort on analyzing the auction environment and can 

display very random behavior. Compared to the other 

two types, a typical Explorer places the most bids on 

wider variety of bundles and derives the lowest surplus.  

Since three bidders can participate in each auction 

and there are three different bidder types (A, P, and E), 

there can be 10 different possible bidder type 

combinations in a simple auction; we refer to these 

combinations of competing bidders as competition 

types. Only 3 out of these 10 possible competition types 

had enough observations in the baseline experimental 

CCAs to be included in statistical analysis. 

 

3. Modeling canonical bidder behaviors  
 

In a typical CCA, at any time in the auction a bidder 

can select a bundle s/he is interested in, check the DL 

and WL for the selected bundle, and decide to either 

place a bid of a certain monetary amount on the selected 

bundle or to not bid at this time. By analyzing the 

experimental bid-level and clickstream-level data, we 

observe different temporal bidding patterns for the three 

bidder types and characterize these behaviors in terms 

of “how often they bid at any auction state” (bidding 

frequency), “what they bid on” (bundle selection), and 

“how much they bid on a selected bundle” (bid 

amount). Other possible criteria were examined as well, 

   
Bidder 1 with 

focal item A 

Bidder 2 with 

focal item C 

Bidder 3 with 

focal item E 

Figure 1. Symmetric valuation setup 
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but were ruled out for the purposes of this study, since 

they were either explainable in terms of the three above 

criteria or did not add significant value for our modeling 

purposes in terms of explaining the observed behavior. 

For example, bidders’ “effort” is not explicitly modeled 

as a factor because the number of clicks indicates effort 

that has been exerted by a human bidder in order to 

explore the bidding environment before placing a bid, 

whereas the bidding environment is straightforwardly 

available to software agents. Or, “how quickly” a bid is 

placed is not included in the modelling of bidding agents 

because the overall bidding patterns are already 

captured by the bidding frequency parameter. This is 

advantageous, because it allows to straightforwardly 

scale the bidding dynamics to any desired auction 

duration. This feature is especially important for auction 

experiments that involve human participants as some of 

the bidders. For pure simulation-based experiments 

reported in this paper (i.e., where all auction participants 

are software agents), the actual “real-world” auction 

duration is not as meaningful. It is important to note that 

we model for the three distinct behaviors and the 

differences in temporal bidding patterns, not merely the 

bidder-specific outcome variables (i.e., Bids, Spans, and 

Surplus) that were used to identify, a posteriori, 

different bidding strategies. The bidding agents are 

expected to generate comparable bidder-specific 

outcomes, which will be verified as part of our 

validation. 

To model each bidder type (Analyzer, Participator, 

and Explorer) in terms of the above behavioral aspects, 

we aggregate bidding data for bidders of the same type 

across all auctions. Since bidder behavior is likely

 

dependent on the current state of the auction, we want 

to parameterize auction progress. Time is only one 

possible indicator of an auction state (e.g., represented 

as early, mid, and late portions of the auction), but it has 

certain limitations. A point of time is not a consistent 

indicator of auction progress (or auction state) across 

different auctions. This is because the duration of 

auctions varies significantly and mere passing of time 

does not always translate into bidder activity; e.g., 

bidders may not place any bids for some period of time 

during the auction. We propose to use auction revenue 

as a proxy for time and discretize the temporal bidding 

data based on revenue (revenue is increasing with time 

in any auction). Auction revenue is a time-invariant 

parameter that uniquely indicates auction state in the 

CCA context. Note that information about the DL and 

WL of any bundle is updated upon any new bid, and is 

available from the auction framework to any bidder who 

knows the current revenue. 

 
3.1 Bidding frequency 

 

To derive a dataset from which we can extract the 

dynamic bidding frequency aspect, we use the following 

steps to discretize and aggregate the experimental 

baseline data based on revenue: 

 Define a revenue binwidth parameter and specify a 

width, e.g., 𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ = $25. 

 For each bidder, calculate the number of bids s/he has 

placed within each bin’s revenue range; this is the 

bidder’s bidding frequency at each revenue bin. For 

example, if a bidder has placed four bids when auction 

revenue is between $25 and $50 (i.e., within the 2nd 

bin’s revenue range when using binwidth=$25), his 

bidding frequency equals 4 for the 2nd bin.  

 For each bidder type (A, P, and E), calculate the 

average bidding frequency and standard deviation at 

each bin by aggregating the bidding frequency values 

of all same-type bidders for that bin. E.g., if three 

Analyzers have the bidding frequency values of 4, 5, 

and 6 for the 2nd bin, the average bidding frequency 

value for Analyzers at the 2nd bin equals 5, with a 

(bidding frequency) standard deviation of 1.  

The result is average bidding frequency and standard 

deviation series for each bidder type, which represent 

how bidding frequency changes with auction state. To 

model these three distinct bidding frequency patterns, 

we fit a function on these series. For each bidder type, 

 
Figure 2. Comparing average bidding frequency 

functions for different bidder types 

 

Table 1. Mean and standard deviation for bidder specific variables in baseline experimental data 

Bidder Type Number of Instances Bids Spans Surplus Effort 

Analyzer 4 15.50 (6.61) 8.00 (3.56) 77.50 (50.08) 32.97 (26.20) 

Participator 34 23.06 (8.84) 9.88 (3.67) 47.26 (44.65) 17.45 (8.61) 

Explorer 7 52.86 (16.88) 21.57 (4.89) 31.79 (28.45) 11.15 (3.86) 
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the function fitted on the average bidding frequency 

series models the bidding frequency of a typical bidder 

of that type. The function fitted on the standard 

deviation series models the difference among bidders of 

the same type. Since binwidth choice affects the 

resulting series and fitted functions, the above procedure 

is repeated for several different binwidth values ($10, 

$15 … $40) and various fitting functions.  The most 

suitable parameterization is derived for each bidder type 

based on goodness of fit and the expert-based 

understanding of bidder behavior. The resulting 

functions for the three bidder types are plotted in Figure 

2. A linear fit is used for all standard deviation 

functions, which represents a rough one standard 

deviation confidence interval around the mean (the 

confidence intervals are not shown in Figure 2).  

 
3.2 Bundle selection 

 

Bidders’ interest in different bundles depends on 

their valuation for the items, which does not change with 

auction state (is static). However, given the same 

valuation scheme and identical focal items, the three 

bidder types vary in their propensity to bid on different 

bundles. For example, Analyzers are much more likely 

to bid on a bundle that consists of all six items compared 

to Participators and Explorers. To model the bundle 

selection aspect, we use the aggregated bidding data 

across all auctions for each bidder type and derive 

discrete probability distributions that specify the 

likelihood of a bundle being selected. We derive a 

probability mass function for each bidder type. A 

bidding agent determines which bundle to bid on by 

making a random pick from its bundle selection 

distribution given its focal item.  

 
3.3 Bid amount 

 

To model how much different bidder types bid on 

bundles across different auctions, we need to take care 

of the changing WL and DL of bundles as the auctions 

proceed. We introduce a bid-level variable that 

represents the amount bid on a bundle relative to the 

bundle’s WL and DL, and calculate it for every bid as 

following:   

 If WL = DL: bid-level= bid-amount / DL;  

 If WL > DL: bid-level=(bid-amount - DL)/(WL - DL); 

 If WL and/or DL are not yet set for the bundle (i.e., in 

the beginning of the auction), the initial bid-amounts 

are used to establish separate starting-bid 

distributions, which are used to determine an amount 

for the first bids placed by bidding agents.  

This bid-level variable allows us to meaningfully 

analyze the bid-amount aspect of the three bidder types 

across different auctions and across different auction 

states. We discretize and aggregate the bid-levels we 

have derived for each bidder type (using steps similar to 

what we explained for bidding frequency) and derive 

average bid-level and standard deviation series that 

represent how bid-level changes with auction state. To 

model the distinct patterns for the three different bidder 

types, we repeat the process using several revenue 

binwidths to derive the series, use various fitting 

functions, and select the best fit (the approach is similar 

to what we did for bidding frequency). The difference 

between the resulting functions for the three bidder 

types are shown in Figure 3. To model the difference 

among bidders of the same type in terms of bid-level, 

we use a linear fit on the standard deviation series.   

A bidding agent determines the amount it bids on a 

selected bundle by specifying a bid-level and knowing 

the WL and DL for the bundle at any given auction state.  

 
3.4 Agent-based auction simulations  

 

Each of the three main aspects of bidder behavior 

(bidding frequency, bid amount, and bundle selection) 

are implemented in our agents as separate modules. The 

fourth, bid-decision module determines the agent’s final 

decision of whether or not to bid, after combining values 

returned by the three above modules and considering the 

agent’s bidding history so far. When an auction 

simulation starts, each agent determines the expected 

number of bids it is going to place at the current auction 

state via its bidding frequency module. Each time an 

agent intends to bid, it selects a specific bundle and a 

corresponding bid-amount, as determined by its Bundle 

Selection and Bid Amount modules. Based on the 

agent’s valuation for the selected bundle, the intended 

bid amount, and the bids placed so far, it decides 

whether or not to place the current bid using its bid-

decision module. In experimental CCAs, the auction 

ends when none of the bidders places a bid for an 

extended period of time (e.g., 5 minutes). In the 

simulation environment, we model this soft stopping 

 
Figure 3. Comparing average bid-level functions 
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rule by defining a non-activity parameter. When an 

agent decides to not place the bid the non-activity count 

is increased by one, which models bidders’ inactivity in 

experimental CCAs as implied by effort that does not 

lead to placing a bid. When the aggregate non-activity 

count reaches a certain threshold the auction simulation 

stops. The value for this stopping threshold models the 

extended inactivity time that ends real auctions.  

4. Data-driven validation of agent-based 

simulations 
 

In designing our bidding agents, we postulated that 

three main aspects (namely, bidding frequency, bundle 

selection, and bid amount) characterize different 

bidding behaviors. In this section we verify whether our 

bidding agents, built based on the aforementioned 

assumptions, correctly replicate human bidders’ 

behavior under similar conditions (i.e., under the same 

competition types) by statistically comparing outcome 

variables generated by our simulation model with 

outcome variables from experimental CCAs. We assess 

the validity of our agent-based simulations in terms of 

matched bidder-specific variables (Bids, Spans, and 

Surplus) and auction outcome (revenue), by replicating 

competition types observed in experimental CCAs, 

namely APP, EPP, and PPP. Our approach follows the 

recommended practices for verification and validation 

of simulation models by leveraging the notions and 

frameworks of model output behavior, point validity, 

distributional validity, and pattern validity [7, 15-17].  

 
4.1. Replicating bundle diversity and Bids 

 

Figures 4 and 5 show the side-by-side comparison of 

Bids (number of bids) and Spans (diversity of bundles) 

variables between human bidders and bidding agents, 

respectively. The horizontal axis indicates the human 

bidder or bidding agent type (e.g., “E Agent” stands for 

Explorer type bidding agents). We use t-tests, Wilcoxon 

rank-sum (WRS aka. Mann-Whitney U) tests, and 

Kolmogorov-Smirnov (KS) tests to compare the data 

generated by our bidding agents in simulated auctions 

with data from experimental auctions generated by 

human bidders. When t-tests and WRS tests indicate no 

significant difference, this provides evidence with 

respect to point validity; i.e., the means and medians of 

 
Figure 4. Comparing Bids variable between human 

bidders and bidding agents 

 

 
Figure 5. Comparing Spans variable between 

human bidders and bidding agents 

 

Table 2. Comparing bidder specific variables between human bidders and bidding agents 

H0: Human = Agent 

H: Human ≠ Agent  
Wilcox Rank Sum t-test 

Kolmogorov 

Smirnov 

 
Comparing Human vs. Bidding Agent 

of Type 
W p-value T p-value D p-value 

Bids 

Analyzer 25.5 0.277 -1.296 0.26 0.45 0.5095 

Explorer 109.5 0.876 0.49 0.6394 0.395 0.3379 

Participator 3325 0.2782 1.266 0.2128 0.125 0.7635 

Spans 

Analyzer 31.5 0.532 -0.73 0.5113 0.25 0.9853 

Explorer 98.5 0.814 -0.243 0.815 0.295 0.7056 

Participator 2096.5** 0.0062 -2.499* 0.0166 0.342** 0.0026 

Participators broken down by 

competition type 

P in APP  123.5 0.3146 -1.517 0.1703 0.5+ 0.0713 

P in EPP  269.5 0.3368 -0.832 0.4197 0.212 0.797 

P in PPP  348.5* 0.0198 -1.814+
 0.087 0.387* 0.0476 

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1 
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the compared variables are not significantly different. 

We also run two-sample KS tests to verify whether 

variables generated by humans and bidding agents have 

the same distribution. When the KS test does not show 

a significant difference, this provides evidence with 

respect to distributional validity for the compared 

variable. Table 2 shows the comparison of Bids and 

Spans variables between human bidders and bidding 

agents of the same type. Validation in terms of Surplus 

is excluded to save space; the simulation model 

demonstrates pattern validity in terms of Surplus.  

Based on these results, all three bidding agent types 

generate comparable number of bids (i.e., captured by 

Bids variable) as human bidders. Since none of the tests 

show a significant difference in Bids for any of the three 

bidder types, our simulation model has distributional 

validity in terms of Bids. The bundle diversity (i.e., 

Spans variable) generated by Analyzer and Explorer 

type bidding agents has the same distribution (as well as 

the same mean and median) as Spans generated by 

human bidders. Participator type bidding agents seem to 

slightly differ from human bidders; i.e., Spans 

difference is significant at the 1% level (p-values close 

to 0.01 for all three tests). However, by looking at 

Participator data broken down by competition, we see 

that the difference in Spans is only marginally 

significant when Participators compete against other 

Participators (i.e., in auctions with PPP type 

competition); there is no significant difference in Spans 

between Participator type human bidders and bidding 

agents in auctions with EPP and APP competitions. 

Nevertheless, the relative difference in bundle diversity 

among different bidding agent types always matches 

those generated by human bidders. 

 
4.2 Replicating auction outcomes  

 

We compare auction revenue between simulated and 

experimental auctions with identical competition types 

to verify the similarity of auction-specific outcomes. We 

use WRS tests to compare revenue between auctions 

with different competition types in Table 3. The results

 

show that auction revenue has a similar pattern in both 

experimental and simulated auctions (i.e., APP ≈ EPP < 

PPP), even though average revenue is different between 

experimental and simulated auctions with the same type 

of competition. This difference is because our bidding 

agents do not stop bidding pre-maturely as is the case in 

a few experimental auctions with APP and EPP 

competition type, as well as, the small sample size in 

experimental auctions (as implied by the very large 

standard deviation for APP and EPP in Table 3).  

In summary, the validation shows that our agent-

based simulation model has at least pattern validity 

when we assess our model in terms of bidder specific 

outcome variables (i.e., Bids, Spans, and Surplus) and 

auction outcome (i.e., revenue). Pattern validity is 

sufficient to leverage our model for studying dynamics 

of bidder behavior and consequent auction outcomes 

using agent-based simulations.  

 

5. Leveraging bidding agents 
 

Our agent-based auction simulations allow us to 

explore the effect of competition on the dynamics of 

bidder behavior and auction outcomes. Note that agents 

are not explicitly programmed to behave differently 

based on the competition they face. Instead, we are 

interested in finding out whether the bidding dynamics 

that result from different competitions, while the bidder 

agents bid based on the coded canonical behaviors, 

provide interesting insights into potential auction 

outcomes through “emergent” behaviors of the agents 

under different competitive environments. We run 100 

auction simulations for each of the 10 possible 

competition types (total of 1000 auction simulations) for 

this part of the study, using the same valuation setup 

used in experimental CCAs. Even though the simulation 

platform allows us to run auctions with more than 3 

bidding agents (e.g., 6 bidders), in this study we have 

focused on running simulations with 3 bidding agents in 

each auction so that the results can be compared with 

results from experimental auctions.  

 
5.1. Effect of competition on bidder behavior 

 

Each bidder can face 6 types of competition based 

on the composition of bidding strategies it encounters in 

the auction, namely: AA (competing against two 

Analyzers), AP (competing against an Analyzer and a 

Participator), AE, PP, EP, and EE. Even if we assume 

that bidders’ behavior is endowed, we can clearly 

hypothesize that the type of competition a bidder faces 

affects his/her behavior, including both the number of 

placed bids (the Bids variable) and the diversity of 

bundles bid on (the Spans variable). We use ANOVA 

 

Table 3. Comparing auction revenue across 
competitions observed in experimental auctions 

 Revenue in Competition of Type: 

Experimental 

Auctions 
APP ≈ EPP <* PPP 

Mean (stdev) 258 (141)  333.7 (66.6)  381.6 (49.9) 

Auction 

Simulations 
APP ≈ EPP <*** PPP 

Mean (stdev) 468 (22.8)  463.4 (21.7)  482 (22.1) 

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1,       

≈ no significant difference 
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(see Table 4) to study how bidders’ own type, the 

competition type they face, and the possible interaction 

of these two factors affect each of these bidder-specific 

outcome variables (Bids, Spans, and Surplus).  

The models are highly significant (p-value ≤ 0.001) with 

a high explanation of variance (adjusted R2 > 75%). This 

tells us that bidding agents’ own strategy and the 

competition type they face both significantly affect the 

number of bids, the diversity of bundles they bid on, and 

their economic welfare (as measured by surplus). The 

significant interactions indicate that the effect of 

competition type on agent behavior depends upon the 

agent’s bidding strategy. We use interaction plots to 

uncover the patterns of these interactions in Figures 6 

and 7. Each point shows the group mean for a certain 

agent type facing a specific competition (e.g., Analyzers 

facing AP competition), and the error bars indicate 95% 

confidence intervals. These plots provide a guideline for 

further post-hoc tests to verify significant differences.  

The general differences among the three bidding 

agent types (Participator, Analyzer, and Explorer) in 

Figure 6 are consistent with the differences among the 

three bidding strategies observed in experimental CCAs 

(Figures 4 and 5). To study these patterns, we use 

pairwise t-tests and WRS tests (when we suspect non-

normal distributions) to compare Bids and Spans 

between any two types of competition, for each bidder 

type. Tables 5, 6, and 7 report the mean values for these 

variables under different competition types as well as 

significant differences for each of the three bidding 

agent types (when the t-test and WRS test results have 

different significance levels, the less significant test is 

shown). Figure 7 shows that Analyzers generally derive 

the highest surplus and Explorers derive the lowest 

surplus, irrespective of the type of competition they 

face.  

For Explorers, as the competition changes from AA 

to AP to PP, there is a significant and consistent drop in 

both the overall number of bids they place (Bids), and 

the overall variety of bundles they bid on (Spans); see 

Table 5. Interestingly, Explorers surplus drops and 

becomes more negative (Figure 7) while we initially 

expected Surplus to drop with Bids and Spans. This 

implies that a single Explorer benefits from tougher 

competition (i.e., AA) by losing less. Once there are two 

Explorers in the competition, the third bidder’s strategy 

doesn’t significantly affect Explorers’ bidding behavior 

in terms of Bids and Spans (EP vs EE competition types) 

unless the third bidder is an Analyzer (AE competition 

type), which makes for a slightly tougher competition 

where Explorers place slightly more bids on more 

various bundles.  

For Participators’, competing against two 

Analyzers is the toughest they have the highest Bids and 

Spans (Table 6), while having the lowest surplus, under 

this competition (Figure 7). Competition intensity 

reduces once one of the Analyzers is replaced by a 

Participator. Bidding against PP or AE competition 

types make for a moderate competition, based on 

Participators’ Bids and Spans, but they make more 

surplus under the AE competition. Participators place 

the least number of bids on the fewest number of distinct 

bundles when they bid against EP competition type, 

while deriving higher surplus, which implies a weak 

competition. Interestingly, bidding against two 

Table 4. ANOVA of factors influencing bidding 
agents' behavior and surplus 

 
Bids Spans Surplus 

F F F 

Bidder Type 816.01*** 1058.4*** 46.1*** 

Comp. Type  54.4*** 13.3*** 11.1*** 

Bidder Type × 

Comp. Type 
13.3*** 14.8*** 5.4*** 

R2 0.7742 0.7956 0.1867 

Adj. R2 0.7729 0.7944 0.1821 

 
F(17,2982) 

=601.5 *** 

F(17,2982) 

=682.6 *** 

F(17,2982) 

=40.28 *** 

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1 

  

 
Figure 6. Effect of competition on bidding agent behavior under different bidding strategies 
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Explorers makes Participators place more bids on more 

various bundles, probably in response to the frequent 

random bids placed by Explorers on various bundles.  

Analyzers are the most rational among the three 

bidder types who make the most effort to place smarter 

bids that maximize their surplus. Competing against two 

Analyzers is considered the toughest competition other 

bidders can face (including an Analyzer). The bidding 

agents’ behavior supports this hypothesis, as indicated 

by the highest Bids and Spans for all three agent types 

when they face competition of type AA (see Figure 6). 

Analyzers’ Bids and Spans both significantly decrease, 

while their surplus increases (Figure 7) when one of the 

Analyzers is substituted with a Participator. Analyzer 

type agents place less bids when facing AE, PP, or EP 

competitions compared to auctions with AP competition 

type, but the variety of bundles they bid on (Spans) does 

not significantly decrease (Table 7). Analyzers’ derive 

the highest surplus when facing AE competition, where 

both Analyzers are exploiting the random behavior of a 

single Explorer. For Analyzers, EP competition is not 

significantly different from AE and PP competitions in 

terms of Bids and Spans, while it is the least intense for 

Explorers and Participators. Competing against two 

Explorers seems to confuse Analyzer agents as they 

behave similar to when they face AA and AP 

competition types, even though EE competition type is 

expected to be less demanding. Under EE competition, 

a Analyzer agents ends up placing more bids on more 

various bundles trying to make sense of, and respond to, 

the rather random behavior of Explorers and derive a 

highly uncertain surplus (as implied by Analyzers fat-

tailed surplus distribution under EE competition:  

mean=15.7, median=1, skew=0.94, kurtosis= -0.39). 

Our analysis of agents’ emerging behaviors provides 

insights into human bidders’ probable behaviors under 

similar competitions. Participation of Analyzers in an 

auction generally makes for a tougher competition. 

Other bidder types, including another Analyzer, place 

more bids (higher Bids) on a wider variety of bundles 

(higher Spans) in the presence of Analyzers. Explorers 

generally make for a weaker competition. Other bidder 

types, including another Explorer, generally bid less 

frequently on less various bundles when competing with 

Explorers. However, Explorers’ rather unexpected 

behavior in terms of placing random bids on various 

bundles can also confuse other bidders and makes for 

more uncertain outcomes in terms of surplus. When the 

majority of bidders are Explorer types, other bidders 

(i.e., bidders facing EE competition type) can get 

confused if they overanalyze Explorers’ random 

 

 
Figure 7. Effect of competition on bidder surplus  

Table 5. Comparing Explorer behavior across different competition types 

  Explorer Facing Competition of Type: 

Bids 
 AA >*** AP >*** PP ≈ AE >*** EP ≈ EE 

Mean 62.04  56.64  49.98  51.37  45.655  45.303 

Spans 
 AA >*** AP >*** PP >+ AE >*** EP ≈ EE 

Mean 24.5  22.87  21.82  21.26  20.225  20.377 

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1,  ≈ no significant difference 

Table 6. Comparing Participator behavior across different competition types 

  Participator Facing Competition of Type: 

Bids 
 AA >*** AP >** AE >* EE ≈ PP >*** EP 

Mean 32.72  26.19  23.39  20.77  21.457  18.07 

Spans 
 AA >*** AP >* AE ≈ EE ≈ PP >* EP 

Mean 14.72  13.205  12.44  11.91  11.44  10.845 

Table 7. Comparing Analyzer behavior across different competition types 

  Analyzer Facing Competition of Type: 

Bids 
 AA >*** EE ≈ AP >*** AE ≈ PP ≈ EP 

Mean 27.35  20.63  20.09  18.31  18.71  17.45 

Spans 
 AA >** EE >** AP ≈ AE >+ PP ≈ EP 

Mean 11.01  10.59  9.645  9.77  9.32  9.52 
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behavior and may place more bids on more diverse 

bundles as a result, even though the competition is not 

necessarily tougher. Analyzers, due to their more 

investigative nature, are more likely to be affected in 

this way than Participators. Participators are the 

middle ground in terms of bidding frequency and bundle 

diversity. They are less competitive than Analyzers but 

more competitive than Explorers, without Explorers’ 

random bidding behavior. Their participatory behavior 

can neutralize the effect of Analyzers’ competitiveness 

and Explorers’ random behavior (e.g., in auctions with 

APE competition).  

Based on our analysis, we characterize competition 

types as follows: AA – intense, AP – strong, PP – 

consistent moderate, AE – uncertain moderate (or, 

moderate but uncertain), EP – weak, EE – confusing 

weak (or, weak but confusing); sorted by intensity and 

uncertainty in decreasing order we have: AA, AP, PP, 

AE, EP, and EE. 

 
5.2. Effect of competition on auction outcomes  

 

Our results in Table 8 indicate that bidding agents’ 

emergent behaviors under different competition types 

lead to significant differences in auction revenue and 

allocative efficiency. Table 9 shows the overall trend in 

auction revenue across all different competitions as well 

as results of pairwise comparisons using t-tests to verify 

significant differences in auction revenue; Table 10 

shows these trends and comparisons for allocative 

efficiency. Auctions with PPP competition type, which 

produce the highest auction revenue, also make for 

consistently higher allocative efficiency, due to 

Participators’ moderate behavior in absence of other 

bidder types. Based on these results, we can argue that 

Explorer agents’ random behavior provides other bidder 

types a better opportunity to derive higher surplus. The 

auctioneer derives the lowest average revenue in 

auctions with EAA competition, where two Analyzer 

agents derive the highest surplus by exploiting the 

random behavior of a single Explorer agent. Under EEA 

competition type, there is only one Analyzer agent who 

exploits the randomness of Explorer agents, leaving the 

auctioneer with relatively higher revenue (as compared 

to auctions with EAA competition). Participator agents 

can also take advantage of opportunities created by 

Explorers (i.e., EPP and EEP competition types) but 

cannot exploit them like Analyzers do (i.e., EAA, EEA, 

and APE competition types). Analyzer agents not only 

exploit Explorers’ random behavior but can also exploit 

opportunities created by Participators (i.e., APE, PAA 

and APP competition types). There is no significant 

difference in Participators’ surplus when facing EP or 

EE competitions which leads to a similar revenue in 

auctions with EPP or EEP competition. 

 

6. Discussion & Conclusion  
 

The key contributions of this paper are three-fold. 

First, we propose and design a data-driven approach for 

developing software agents that are able to replicate 

multi-faceted human bidder behavior in complex 

decision environments of CCAs, which are important, 

sophisticated market mechanisms that are becoming 

increasingly used in various business applications. Our 

study is the first to use an agent-based modeling 

approach for this purpose. The validity of our agents is 

demonstrated by replicating bidder specific variables 

and auction parameters that were observed in 

experimental CCAs with real users. Second, we 

successfully leverage these agents to better understand 

dynamics of bidder behavior and explore competition 

types not observed in experimental auctions. The 

simulations indicate how different competition types 

Table 8. ANOVA for effect of competition types on 
auction outcomes in auction simulations 

 
Auction Revenue 

Allocative 

Efficiency 

F F 

Competition Type 168.37*** 51.764*** 

R2 0.3363 0.1348 

Adj. R2 0.3343 0.1322 

 
F(9,2990) = 

168.4 *** 

F(9,2990) = 

51.76 *** 

Significance levels:  *** 0.001,  ** 0.01, * 0.05, + 0.1 

 

Table 9. Comparing revenue across different competition types 

Revenue under Competition Type 

EAA <*** EEA ≈ APE ≈ PAA <* AAA <*** EEE <* EPP ≈ APP ≈ EEP <*** PPP 

  EEA <* PAA      EPP ≈ EEP   

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1,  ≈ no significant difference 
 

Table 10. Comparing allocative efficiency across different competition types 

Allocative efficiency under Competition Type 

EEA <* APE ≈ EAA <*** EPP ≈ EEE ≈ EEP ≈ PAA ≈ APP <* AAA <*** PPP 

    EPP    <*   APP    

Significance levels:  *** 0.001,  ** 0.01, * 0.05,  + 0.1,  ≈ no significant difference 
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affect auction outcomes, such as revenue, and show that 

different bidder types are affected differently by the type 

of competition they face in ways that are not always 

intuitive. We analyzed bidding agents’ emergent 

behaviors under different competition types and 

explained the probable underlying mechanisms that lead 

to these different behaviors and welfare outcomes. The 

same arguments allowed us to consistently explain 

differences in auction outcomes, which further supports 

the consistency of our agent-based modeling approach 

in simulating human bidder behavior. We would expect 

actual bidders’ behavior to change consistent with our 

agents’ emergent behaviors under similar competitions. 

This understanding is necessary for possible customer 

segmentation and market designs to attract different 

participant types to certain auctions (designing incentive 

mechanisms). And third, the capabilities of our 

modeling approach allow us to design future 

experimental studies to analyze how human bidder 

behavior and auction outcomes are affected under 

different competition scenarios. A unique outcome of 

this work is that it enables controlled experiments where 

human participants compete with software agents that 

exhibit bidding strategies of our choice, which allows us 

to address interesting questions that could not otherwise 

be answered. For example, whether bidders’ behavior is 

indeed endowed or learned? And if bidders can learn, 

what are the most effective learning paths to encourage 

certain types of behavior? Our proposed approach 

provides unique opportunities to further our 

understanding of bidder behavior in a complex, 

competitive, and dynamic decision environment.  

Our study has implications for the design and 

implementation of combinatorial auctions in digital 

marketplaces. We show how heterogeneity in auction 

outcomes is (partly) driven by competition; for example, 

certain competition types (i.e., composition of Analyzer 

and Explorer type behaviors) lead to lower auctioneer 

revenue as well as suboptimal allocative efficiency (i.e., 

low on average, with high variability). Auctioneers can 

utilize this understanding to incentivize participants to 

adopt different strategies (e.g., changing exploratory 

behavior to participatory behavior) that would benefit 

bidders as well as auctioneers. Moreover, participants’ 

experience in those auctions in terms of surplus and/or 

the possible frustration from having a bad experience 

(e.g., spending a lot of effort without winning the 

desired items or unexpectedly deriving lower surplus), 

as a result of the competition they face, can affect their 

future decision of whether or not to participate in such 

markets (e.g., affecting sustainability these markets). 

Our findings can be utilized to design market 

mechanisms that would discourage or prevent 

exploratory behavior that leads to undesired types of 

competition. Lastly, we also contribute to the design of 

more user-centric artificial bidding agents by 

developing software agents that demonstrate strategic 

and human-like behavior in a complex market 

environment.  
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