
Anti-Pattern Specification and Correction Recommendations for Semantic
Cloud Services

Molka Rekik1, Khoulou Boukadi1, Walid Gaaloul2, Hanêne Ben-Abdallah3

1Mir@cl Laboratory, Sfax University, Tunisia
2Telecom SudParis, Samovar, France

3Mir@cl Laboratory, King Abdulaziz University, KSA
1{molka.rekik, khouloud.boukadi}@gmail.com

2walid.gaaloul@mines-telecom.fr, 3hbenabdallah@kau.edu.sa

Abstract
The lack of standardized descriptions of cloud ser-

vices hinders their discovery. In an effort to standard-
ize cloud service descriptions, several works propose to
use ontologies. Nevertheless, the adoption of any of the
proposed ontologies calls for an evaluation to show its
efficiency in cloud service discovery. Indeed, the exist-
ing cloud providers describe, their similar offered ser-
vices in different ways. Thus, various existing works
aim at standardizing the representation of cloud com-
puting services by proposing ontologies. Since the ex-
isting proposals were not evaluated, they might be less
adopted and considered. Indeed, the ontology evalu-
ation has a direct impact on its understandability and
reusability. In this paper, we propose an evaluation ap-
proach to validate our proposed Cloud Service Ontology
(CSO), to guarantee an adequate cloud service discov-
ery. To this end, this paper has a three-fold contribution.
First, we specify a set of patterns and anti-patterns in
order to evaluate our CSO. Second, we define an anti-
pattern detection algorithm based on SPARQL queries
which provides a set of correction recommendations to
help ontologists revise their ontology. Finally, tests were
conducted in relation to: (i) the algorithm efficiency and
(ii) anti-pattern detection of design anomalies as well as
taxonomic and domain errors within CSO.

1. Introduction

Over the last years, cloud computing has become an
attractive strategy for the users thanks to its on-demand

computing services provisioned and released with mini-
mal management effort. Cloud computing offers its ben-
efits through three types of services, namely, Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). However, the wide range
adoption of this computing paradigm is hindered by the
lack of a standard language for describing providers’ of-
fers making it difficult for users to discover appropri-
ate services. Indeed, cloud providers describe similar
services in different manners (different pricing policies,
different quality of services, etc.). This motivated the
proposition to standardize the description of cloud ser-
vices by introducing ontologies [3][11][7]. However,
the absence of an evaluation of the so-far proposed on-
tologies did not encourage their adoption. Indeed, while
developing the ontology, ontologists may commit errors,
such as redundancy, missing information, inconsistency,
etc. (for example, error regarding CPU missing part of
virtual machine). Moreover, while populating the ontol-
ogy, by automatically extracting information from the
providers’ catalogs and the cloud registries, some miss-
ing descriptions, hierarchical errors and redundant in-
stances can be inserted (for example, error regarding
missing to indicate the operating system of the virtual
machine). Consequently, it is necessary to evaluate the
ontology concept to ensure the consistency maintenance
and the redundancy elimination. Usually, the ontology
evaluation is an integral part of its development lifecy-
cle. A set of tools known as reasoners have been pro-
posed in the literature to get rid of errors in ontologies.
According to [4], ”a reasoner is a program that pro-
vides automated support for reasoning tasks, such as

1

4231

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41672
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

classification, debugging and querying”. Researchers
in [2][5] identified new error types not covered by the
traditional evaluation techniques. In fact, reasoners,
such as FaCT++ [12], HermiT [10], Pellet [?]. can not
deal with the inconsistency, the incompleteness and the
redundancy errors. Evaluating such errors is a very dif-
ficult task [6].

In this paper, we define a novel ontology evaluation
approach which considers the cloud domain to enhance
the previously proposed CSO quality [7]. We denote that
our approach is the building block for an adequate ser-
vice discovery. To do so, we take profit from the existing
reasoners and overcome their limitations by introducing
a set of patterns and anti-patterns. In fact, the introduc-
tion of patterns represents a good solution to the recur-
rent design problems as they help to create and maintain
correct ontologies [1]. Moreover, patterns help to create
rigorous ontologies with the least effort. In opposition
to the patterns, anti-patterns check the errors in order to
correct them and consequently achieve our CSO correct-
ness.

The rest of the paper is organized as follows. Section
2 overviews ontology evaluation techniques. Section 3
briefly describes our proposed CSO. Section 4 defines
the ontology evaluation approach by demonstrating the
limitations of the existing reasoners and presenting our
anti-pattern detection algorithm. Section 5 describes the
evaluation of both the anti-pattern detection algorithm
and CSO and discusses the experimental results. Finally,
we summarize the presented work the paper and present
some future endeavors.

2. Related Work

Several techniques for ontology evaluation exist in
the literature among which we can cite the use of De-
scription Logics reasoners and anti-pattern techniques.

The authors in [2] proposed an evaluation framework
of ontolingua ontologies. They suppose that the pres-
ence of partition problems lead to an inconsistent ontol-
ogy. Thus, they identified a set of taxonomic errors that
can occur within an ontology. This set was revised and
new errors were added like disjointedness error, func-
tional property omission for a single valued property and
redundancy of disjoint relation error.

The authors in [6], criticized the DL reasoner perfor-
mance by evaluating their consistency in a case study
of automobile ontology. They proved that the reasoners
such as Racer, Pellet and FaCT++ could not detect vari-
ous types of errors, such as circulatory errors, semantic
inconsistency errors and some types of redundancy er-
rors like disjoint relation and identical formal definition.

To overcome this limit of reasoner-based evaluation,

Figure 1. The Top Level Concepts

anti-patterns were introduced [1]. In [8], the authors
identified an anti-pattern catalogue which is defined with
DL expressions. In [9], the authors proposed an anti-
pattern detection approach based on SPARQL queries
for the OIL anti-pattern. They showed how this anti-
pattern could not be detected by the reasoners.
In [9], the authors defined a detection method based
on ontology transformations to simulate the reasoner’s
work.

In summary, reasoners can not detect the taxonomic
errors as well as the domain errors. In addition, starting
from scratch is not a good solution. To optimize the
effort, it is better to reuse and benefit from the existing
reasoners and cover their limitations by a set of anti-
patterns. In order to evaluate our CSO [7], we combine,
in this work, the two evaluation techniques, the reasoner
and anti-patterns, to identify and correct the redundancy,
the incompleteness and the domain knowledge missing
of the ontology.

3. Cloud Service Ontology: CSO

Our CSO building process was based on cloud stan-
dards, such as NIST 1, OCCI 2, CIMI 3. For more
details about CSO, we refer the reader to [7]. In
this section, we present the important CSO’s con-
cepts and axioms. Among the main concepts in CSO,
we cite: Actor, Service, Essential Characteristic and
CloudFederation, as shown in Figure 1. The Actor
class presents the different actors which participate in
the cloud. In Figure 2, we distinguish between: the
user, the provider and the broker. The Provider class
includes three subclasses, Provider IaaS, Provider PaaS
and Provider SaaS. Each cloud provider offers three dif-
ferent service types which are: (i) IaaS including the
Storage and the Virtual Machine resources, (ii) PaaS
covering the Platform resource and (iii) SaaS encom-
passing the Software resource as CRM, mailing list,
video gaming, etc.

1http://www.nist.gov/itl/cloud
2http://occi-wg.org
3https://www.dmtf.org/standards/cloud

4232

Figure 2. An extract of CSO

Table 1. CSO important axioms
Axiom

Broker v Actor;User v Actor;Provider v Actor;
Broker u Provider u User v ⊥;

User IaaS u User PaaS u User SaaS v ⊥;
Provider ≡ Provider IaaS t Provider PaaS t Provider SaaS;

IaaS v Service;PaaS v Service;SaaS v Service;
IaaS u PaaS u SaaS v ⊥;

Storage v IaaS;V irtual Machine v IaaS;
Platform v PaaS;
Software v SaaS;

OnDemand Service v Essential Characteristic;
Reserved Service v Essential Characteristic;
OnDemand Service uReserved Service v ⊥;

ComputeCapability ContainsCpu ≡ cpuIsPartOf−;
ComputeCapability ContainsMemory ≡ memoryIsPartOf−;

Table 1 identifies the set of axioms which cover the
specialization, the disjoint and the union relations be-
tween the important concepts within CSO. Each Vir-
tual Machine (VM) has specific characteristics depend-
ing on its type. The object property hasVMType links be-
tween the two concepts Virtual Machine and VMType,
as shown in Table 2.

The Provider IaaS offers a wide range of virtual ma-
chine types, such as small, medium and large. Each
VMType has an essential characteristic which is either
on demand self-service (OnDemand Service), which is
a prime feature of most cloud offerings where the user
pays for use, or on reserved service (Reserved Service)
where the user will get a discount after a service is used
for a specific amount of time. Moreover, each VM-
Type should have a compute capability which includes
two characteristics: CPU and memory. We admit that
the two characteristics could not exist without a com-
pute capability. The object properties cpuIsPartOf and
memoryIsPartOf are the inverse of the object proper-
ties ComputeCapability ContainsCpu and ComputeCa-

pability ContainsMemory respectively, as shown in the
two last lines in Table 1.

Figure 3 shows the CloudFederation concept. In a
cloud federation, the services are provisioned by a group
of cloud providers that collaborate together to share re-
sources. The property interconnected represents the
different members of a cloud federation. Each feder-
ation has an architecture hasFederationArchitecture, a
type hasFederationType and a network hasNetwork, as
shown in Table 2. The federation architecture can be in-
stalled with broker, FederationArchitecture Centralized,
where there is a central broker that performs and fa-
cilitates the resource allocation or without broker, Fed-
erationArchitecture Decentralized. The federation type
can be vertical which spans multiple levels, horizontal
which takes place on one level of the cloud stack, hybrid
which covers both vertical and horizontal or delegation.
It is worth noting that tables 1 and 2 present the axioms
which are useful in the evaluation process, particularly,
in the anti-pattern detection phase.

4233

Figure 3. Cloud Federation Description

Table 2. Object properties in CSO
Object property domain range

hasVMType Virtual Machine VMType
hasEssentialCharacteristic VMType Essential Characteristic

ComputeCapability ContainsCpu Compute Capability CPU
cpuIsPartOf CPU Compute Capability

ComputeCapability ContainsMemory Compute Capability Memory
memoryIsPartOf Memory Compute Capability

hasFederationArchitecture CloudFederation FederationArchitecture
hasFederationType CloudFederation FederationType

hasNetwork CloudFederation Network
interconnected CloudFederation Provider

4. Ontology Evaluation Approach

The evaluation is an important phase in the ontology
lifecycle. According to Gómez-Pérez, ontology evalua-
tion ”is a technical judgment of the content of the ontol-
ogy” [2]. The main goal is to detect the errors within an
ontology and then correct them in order to increase the
ontology quality and consequently to guarantee its uti-
lization. In this section, we present an overview of our
CSO evaluation approach (see Figure 4). Our approach
is composed of two phases:

• Evaluation process
In order to validate CSO’s consistency, we choose
the DL reasoner FaCT++, developed at the Univer-
sity of Manchester and designed as a platform for
experimenting through tableaux algorithms and op-
timization techniques. It is an open source, free and
available with Protégé. Besides, in order to vali-
date CSO cloud standard conformity, we define a
set of patterns and anti-patterns. The detection of
ontology anti-patterns contributes to ontology qual-
ity assessment [9].

Figure 4. Ontology evaluation approach

As shown in Figure 4, this phase includes the fol-
lowing three steps:

– Consistency Verification: we use the
FaCT++ reasoner in order to validate the con-
sistency of CSO. According to [2], ”a given

4234

definition is consistent if and only if the indi-
vidual definition is consistent and no contra-
dictory knowledge can be inferred from other
definitions and axioms”. If ontology is incon-
sistent, then the correction phase should be
applied and the reasoner’s application should
be repeated. Otherwise, the next step, namely
anti-pattern detection, will be triggered.

– Anti-pattern detection: this step consists
in detecting the errors undiscovered by the
FaCT++ by using a set of proposed anti-
patterns (see Sect. 4.2). If no error is detected,
ontology is considered as evaluated. Other-
wise, the recommendations for the detected
errors and anomalies will be triggered.

– Recommendations: in this step, we use
the anti-pattern catalogue which associates
correction recommendations for each anti-
pattern.
The proposed recommendations can be taken
into consideration by ontologists, and in this
case, the correction phase will be triggered.
After that, we restart the evaluation process.
If the recommendations are ignored by the
ontologists, who consider that the errors are
not relevant, the evaluation process is termi-
nated.

• Ontology correction
This manual phase aims at changing the ontology
in order to correct the errors detected by either the
reasoner or by following the recommendations pro-
posed by the anti-patterns.

4.1. Pattern Definition

As defined in [1], the Ontology Design Pattern (ODP)
is a modeling solution to a recurrent ontology design
problem. In our work, the pattern definition is mainly
based on taxonomy.

In general, taxonomy hierarchically organizes classes
and instances within an ontology [2]. In the cloud do-
main, taxonomy can be identified based on standards,
such as NIST 1, OCCI 2, CIMI 3, which hierarchically
present cloud service characteristics. We define the fol-
lowing generic decomposition pattern, which a common
pattern, in order to guarantee cloud computing taxon-
omy. It is worth mentioning that the following pattern is
generic that can be applied to any ontology treating any
domain.

The decomposition pattern: to respect the cloud
standards, the hierarchy definition should meet one of
the following decomposition manners.

Figure 5. Disjoint Decomposition Pattern

Figure 6. Exhaustive Decomposition Pat-
tern

Figure 7. Partition Pattern: Disjoint Ex-
haustive Decomposition

• Disjoint decomposition: this pattern defines a set
of disjoint subclasses of class C. This classification
implies that each instance can belong directly to
class C or to one of the subclasses of C, as shown
in Figure 5. This pattern is expressed through DL
as follows:

C1 v C;C2 v C;C3 v C;C1 u C2 u C3 v ⊥;
(1)

• Exhaustive decomposition: this pattern defines
a complete classification of subclasses of class C.
These subclasses are not necessarily disjoint. In-
deed, each instance of class C should be an instance
of one or more of the subclasses as shown in Fig-
ure 6. This pattern is expressed through DL as fol-
lows:

C1 v C;C2 v C;C3 v C;C1 t C2 t C3 ≡ C;
(2)

• Partition: this pattern defines a set of disjoint sub-
classes of class C. This classification is also com-
plete and class C is the union of all the subclasses.
Each instance of class C should be an instance of
only one subclass, hence no shared instances are
allowed. Figure 7 shows the partition pattern. This

4235

pattern is expressed through DL as follows:

C1 v C;C2 v C;C3 v C;

C1 u C2 u C3 v ⊥;C1 t C2 t C3 ≡ C; (3)

4.2. Anti-Pattern Definition

The anti-pattern is similar to a pattern, ”except that
instead of a solution, it gives something that looks su-
perficially like a solution, but it is not” [13].

In our work, we propose three anti-pattern categories:
taxonomic errors, design anomalies and domain errors.
Each category includes a set of anti-patterns. It is worth
noting that taxonomic errors and design anomalies are
generic and can be used with others ontologies in dif-
ferent domains. However, domain errors are specific to
our CSO. The reason behind the proposal of taxonomic
and domain errors is to cover, respectively, the errors
related to the ontology concepts as well as to the ontol-
ogy instances. Besides the errors, we propose the design
anomaly category. In fact, anomalies removal is neces-
sary to improve ontology usability [6]. We present in
what follows, the anti-pattern definitions using the DL
expressions.

4.2.1 Generic Taxonomic Errors

In this category, we aim at detecting possible violations
of the set of patterns already defined in Sect. 4.1. Re-
ferring to the work of Gómez-Pérez [2], we identify dif-
ferent error types that occur when modeling taxonomic
knowledge within an ontology. In this context, these er-
rors specify :

• Inconsistency
The inconsistency errors occur when there are
external instances in a complete classification or
when the disjoint relation is defined between
classes with different hierarchies.

– External instances in exhaustive decompo-
sition and partition: these errors occur when
there are one or more instances of the class
that do not belong to any subclass. This anti-
pattern is expressed through DL as follows:

C(Individual 1);C1 v C;C2 v C;

C3 v C;C1 t C2 t C3 ≡ C; (4)

– Partition Error: this error appears when a
class is disjoint with the sibling of its super
class instead of being disjoint with its sibling
classes. This anti-pattern can be expressed

through DL as follows:

C1 v C;C2 v C;C3 v C1;

C2 u C3 v ⊥; (5)

• Incompleteness
This kind of error occurs when the ontologists omit
the definition of disjoint relation or the union rela-
tion. In fact, the information about the super class
or the subclasses is missing.

– Decomposition knowledge Omission: this
error covers two types of omission whenever
identifying a decomposition of a concept: (i)
the omission of which subclasses are disjoint
or (ii) the omission, which it is the union of all
its subclasses. This anti-pattern is expressed
through DL as follows:

C1 v C;C2 v C; (6)

• Redundancy
A redundancy error appears when two object prop-
erties have the same formal definition or when the
disjoint relation is duplicated. The redundancy er-
ror covers:

– Identical formal definition of object prop-
erties: this error occurs when different ob-
ject properties have the same formal defini-
tion, i.e. they have the same couple (domain,
range), although they have different names.
This anti-pattern is expressed through DL as
follows:

∃R.> v C1;> v ∀R.C2;

∃R1.> v C1;> v ∀R1.C2; (7)

– Redundancy of Disjoint Relation: it is the
fact of defining a concept as disjoint with
other concepts more than once, i.e. classes
that have more than one disjoint relation. The
DL expression shows that the disjoint relation
between subclasses C3 and C4 is repeated
since they already inherit it from their base
classes C1 and C2.

C3 v C1;C4 v C2;C1 u C2 v ⊥;
C3 u C4 v ⊥; (8)

4.2.2 Generic Design Anomalies

Likewise, we identify the design anomalies within on-
tology. The correction of these anomalies guarantees the
usability of an ontology [6]. Actually, these anomalies
include:

4236

• Lazy Concept: is an instantiated concept of which
all the datatype properties are not defined. This
anti-pattern is expressed through DL as follows:

¬∃T.d ≡ ∀T.¬d; (9)

• Weak Lazy Concept: is an instantiated concept
of which the datatype properties are not defined.
This anti-pattern can be expressed through DL as
follows:

¬∀T.d ≡ ∃T.¬d; (10)

• Weak Concept Definition: this refers to the situa-
tion when an instantiated concept has all or some of
its object properties not defined. This anti-pattern
is expressed through DL as follows:

¬∀R.C;¬∃R.C; (11)

4.2.3 Domain Errors

The previous cited anti-patterns are generic, which
can be useful in different domains. However, our
objective is to evaluate a cloud service description
ontology. For this reason, the following set of
anti-patterns focuses on cloud service description er-
rors. It is worth noting that due to space limi-
tations, we choose only the following set of anti-
patterns and we can refer the reader to our website
https://sites.google.com/site/csoevaluation/home in or-
der to find the complete list illustrated with examples.

• Invalid VMType Characteristic: each VM type
must have at least an essential characteristic and
a compute capability. Such anti-pattern occurs, as
shown in the DL expression, when these two char-
acteristics are not defined.

¬∃hasEssentialCharacteristic.

Essential Characteristic;

¬∃Compute Capability Attachment.

Compute Capability; (12)

• Invalid Provider Description: each provider fol-
lows a deployment model, has a hosting type, a
pricing model and a set of service capabilities. The
omission of one or more of the information leads to
an invalid provider description.

¬∃hasDeploymentModel.Deployment Model;

¬∃hasHostingType.HostingType;

¬∃hasPricingModel.PricingModel;

¬∃Provider ServiceCapabilities.

Provider Capability; (13)

• Invalid Compute Capability Definition: each
virtual machine type must have a compute capa-
bility. This capability includes two characteristics:
CPU and memory. We admit that these two char-
acteristics could not exist without a compute ca-
pability. The following DL expression shows the
verification in both directions.

¬∃cpuIsPartOf.Compute Capability;

¬∃Compute Capability ContainsCPU.CPU ;

¬∃memoryIsPartOf.Compute Capability;

¬∃Compute Capability ContainsMemory.

Memory; (14)

• Invalid Service Capability Description: each
service must have a set of capabilities. For ex-
ample, the storage and network capacities must be
provided by the IaaS service. The following DL
expression shows the capabilities that should be of-
fered by each service type.

¬∃Platform Capabilities.Functional Capability;

¬∃Software Capabilities.Functional Capability;

¬∃Storage Capabilities.Functional Capability;

¬∃Network Capabilities.Functional Capability; (15)

• Faulty Value: the previous set of domain errors
considers object properties. In the following part,
we focus on the datatype properties. The val-
ues used in the two following anti-patterns are ex-
tracted from the three giant cloud provider cata-
logues, namely AWS Cloud 4, Google Cloud 5 and
Microsoft Azure 6.

– Faulty Value CPU RAM: each cloud
provider offers a specific capability of a core
number and memory size. This anti-pattern
occurs, as shown in the DL expression, when
one or more datatype properties violate the
restrictions of each provider.

Provider IaaS(Microsoft Azure);

∃Cores. < 1; ∃Cores. > 32;

∃MemorySize. < 0.75;∃MemorySize. > 448;

Provider IaaS(Google Cloud);

∃Cores. < 1; ∃Cores. > 32;

∃MemorySize. < 0.6;∃MemorySize. > 208;

4https://aws.amazon.com/
5https://cloud.google.com/
6https://azure.microsoft.com/

4237

Provider IaaS(AWS);

∃Cores. < 1;∃Cores. > 40;

∃MemorySize. < 0.5;∃MemorySize. > 244; (16)

4.3. Consistency Verification

In order to investigate how FaCT++ handles various
errors, we load CSO in Protégé and introduce some il-
lustrating errors, such as:

• we define an instance ”IaaS 1” and link it directly
to class IaaS instead of IaaS’s subclasses. This in-
troduces an external instance in exhaustive decom-
position and partition error,

• we add a disjoint relation between the class Bro-
ker and the subclass User IaaS in order to make a
partition error,

• we omit the union relation of the class
Provider Capability. Due to the absence
of disjoint relation between the subclass
Functional Capability and the subclass
Non Functional Capability, a decomposition
knowledge omission error will occur,

• in order to introduce an identical formal defini-
tion object properties error, we define a new object
property named hasArchitectureFederation that has
the same couple (domain, range) of hasFederation-
Architecture which is (FederationCloud, Architec-
tureFederation) and

• we add a disjoint relation between the two Platform
and the Software subclasses, yet, we have already
one between PaaS and SaaS. This new disjoint re-
lation introduces redundancy of disjoint relation.

Thereafter, we execute the FaCT++ reasoner which con-
siders our definition of the instance ”IaaS 1” as a normal
one, and gives no error or warning. Furthermore, it does
not detect any errors from these, previously, introduced
ones.

In summary, the FaCT++ reasoner is not able to de-
tect the problems related to the taxonomic errors defined
in Sect. 4.2. To the best of our knowledge, there is no
existing reasoner able to detect the design anomalies and
the domain errors.

4.4. Anti-Pattern Detection and Recommenda-
tions

According to the results obtained through the
FaCT++ reasoner, it seems necessary to apply the
anti-patterns defined in Sect. 4.2. We propose an

anti-pattern detection algorithm based on SPARQL
queries. Due to space limitations, we present only
the SPARQL query of the invalid VMType charac-
teristic anti-pattern and its correction recommenda-
tion. A complete description of the queries and
the recommendations is available in our website
https://sites.google.com/site/csoevaluation/home.

Invalid VMType Characteristic: the query in list-
ing 1 returns each type of virtual machine (?VMt)
that is instantiated, but its definition is missing an es-
sential characteristic (?E C) and a compute capability
(?compC).

Listing 1. SPARQL Query: Invalid VMType
Characteristic

1 SELECT ?VMt ?E_C ?compC
2 WHERE
3 {?VMt rdf:type ns:VMType
4 OPTIONAL
5 {?VMt ns:hasEssentialCharacteristic ?E_C}
6 OPTIONAL
7 {?VMt ns:Compute_Capability_Attachment
8 ?compC}
9 FILTER ((!bound(?E_C))||(!bound(?compC)))

10 }

Once this anti-pattern is detected, the following correc-
tion recommendation is displayed in order to guide the
ontologists to correct the error, ”Please complete the
description of the VM type class by defining these two
object properties: hasEssentialCharacteristic and Com-
pute Capability Attachment !”.

4.4.1 The anti-pattern detection algorithm

The proposed Algorithm 2, which is responsible for per-
forming the anti-pattern detection, takes as input CSO
and the list of SPARQL queries. As an output, it shows
the detected errors and guides the ontologists to cor-
rect these errors by providing a set of recommendations.
During execution, the following cycle happens: (i) se-
lect a query from the list; (ii) execute the query and (iii)
once the anti-pattern is detected, the error appears with
a list of correction recommendations.

Listing 2. The anti-pattern detection algo-
rithm

1 Input:CSO.owl,SPARQL_query_antipattern_list
2 Output:Detected Errors and Recommendations
3 for each anti-pattern
4 Begin
5 for (each query in
6 SPARQL_query_antipattern_list) do

4238

Figure 8. Detected Taxonomic Errors

7 {
8 result=Execute(query)
9 if(Exist(result)) then

10 Display("Recommendation Text!")
11 }
12 End

To verify the anti-pattern detection algorithm effi-
ciency, we implement it and we test its performance on
a test data (i.e. CSO modified by the taxonomic error
introduction). The algorithm is implemented using the
apache jena 7.

5. Experimentation: Algorithm evaluation
and Detecting anti-patterns in CSO

A modified CSO integrating several taxonomic er-
rors, which are presented in Sect. 4.3, is taken as a test
data. First, we run the algorithm on this ontology to ver-
ify its efficiency (Sect. 5.1). Then, we test the algorithm
on the real CSO (Sect. 5.2).

5.1. Algorithm evaluation

We qualify the algorithm as efficient when it suc-
cessfully detects the introduced errors. Figure 8 shows
that the proposed algorithm detects the taxonomic errors
as well as the design anomalies and the domain errors
within the modified CSO.

Table 3 presents the three anti-pattern categories used
for our evaluation. For each category, this table indicates
the number of the detected errors by the anti-pattern de-
tection algorithm. The precision measures the ratio of
correctly found anti-patterns over the total number of de-
tected anti-patterns. The last column indicates the recall
which infers the ratio of correctly found anti-patterns

7https://jena.apache.org/

over the total number of proposed anti-patterns. Results
from Table 3 are encouraging. In fact, the anti-pattern
detection algorithm covers the limitations of FaCT++
reasoner. Indeed, the set of SPARQL queries is suffi-
cient for detecting the three anti-pattern categories, such
as, taxonomic errors, design anomalies and domain er-
rors.

5.2. CSO’s evaluation

After the efficiency verification, the algorithm was
applied on CSO to detect the existing errors. We no-
tice that the taxonomic errors are not detected in CSO
which is mainly based on the patterns (see Sect. 4.1).
Besides the design anomalies, the anti-pattern detection
algorithm found some domain errors, as shown in Ta-
ble 4.

These results prove that the classification of CSO
concepts is well-defined since the absence of taxonomic
errors. However, the presence of the design anomalies
and the domain errors can be explained by several rea-
sons. The main reason is related to the ontology pop-
ulation process. In fact, CSO population is based on
the providers’ catalogues and the cloud registries. Due
to standard unconformity, these data resources can in-
clude some errors on their textual content. Moreover,
they do not provide a complete cloud service descrip-
tion. This is the reason why concepts, such as VMType
and Service Capability, have some missing information
within CSO. Figure 9 shows the anti-pattern detected er-
rors, namely Invalid VMType Characteristic, and its cor-
rection recommendations. A complete demonstration of
the CSO evaluation can be found in 8.

6. Conclusion and Future Work

Ontology evaluation is an active research domain
which is mainly necessary to improve the ontology qual-
ity. In fact, only a well defined ontology is utilized. In
this paper, we proposed an ontology evaluation approach
composed of two phases: evaluation process and ontol-
ogy correction. We applied the FaCT++ reasoner to val-
idate the consistency of the previously proposed CSO.
After that, we applied the anti-pattern detection algo-
rithm based on SPARQL queries in order to detect er-
rors and anomalies not covered by this reasoner. To help
ontologists revise CSO, the algorithm provided a set of
correction recommendations. The experimental results
showed that our algorithm is consistent and efficient as
it can detect errors within CSO and present correction
recommendations.

8https://sites.google.com/site/csoevaluation/cso-evaluation-s-
demonstration

4239

Table 3. Algorithm’s evaluation results
Category Number of Detected Errors Precision Recall

Taxonomic Errors 5 5/5 5/5
Design Anomalies 3 3/3 3/3

Domain Errors 5 8/8 8/8
Total 13 16/16 16/16

Table 4. Errors detected within CSO per category
Errors Number of Detected Errors Percentage of CSO’s Errors

Taxonomic Errors 0/5 0%
Design Anomalies 3/3 100%

Domain Errors 2/8 25%
Total 5/16 31.25%

Figure 9. Detected Invalid VMType Charac-
teristic Error

As future work, we plan to extend our proposed pat-
terns and anti-patterns by proposing ones dealing with
semantic evaluation. In addition, we intend to integrate
CSO in a cloud federation environment and then inter-
rogate it with the users’ requirements.

References

[1] V. P. Aldo Gangemi. Handbook on Ontologies, chap-
ter Ontology Design Patterns, pages 221–243. Inter-
national Handbooks on Information Systems. Springer
Berlin Heidelberg, 2 edition, 2009.

[2] M. M. F.-L. P. M. O. C. M. a. Asuncin Gmez-Prez PhD,
MSc. Ontological Engineering: With Examples from the
Areas of Knowledge Management, e-Commerce and the
Semantic Web. Advanced Information and Knowledge
Processing. Springer-Verlag London, 1 edition, 2004.

[3] A. V. Dastjerd, S. K. Garg, F. R. Omer, and R. Buyya.
Cloudpick: a framework for qos-aware and ontology-
based service deployment across clouds. Softw., Pract.
Exper., 45(2):197–231, 2015.

[4] K. Dentler, R. Cornet, A. Ten Teije, and N. De Keizer.
Comparison of reasoners for large ontologies in the owl
2 el profile. Semantic Web, 2(2):71–87, 2011.

[5] M. Fahad, M. A. Qadir, and M. W. Noshairwan. Onto-
logical errors-inconsistency, incompleteness and redun-
dancy. In ICEIS (3-2), pages 253–285, 2008.

[6] M. Fahad, M. A. Qadir, and S. A. H. Shah. Evaluation of
ontologies and DL reasoners. In Intelligent Information
Processing IV, 5th IFIP International Conference on In-
telligent Information Processing, October 19-22, 2008,
Beijing, China, pages 17–27, 2008.

[7] M. Rekik, K. Boukadi, and H. Ben-abdallah. Cloud de-
scription ontology for service discovery and selection.
In Proceedings of the 10th International Conference on
Software Engineering and Applications, pages 26–36,
2015.

[8] C. Roussey, O. Corcho, and L. M. Vilches-Blázquez. A
catalogue of owl ontology antipatterns. In Proceedings
of the fifth international conference on Knowledge cap-
ture, pages 205–206. ACM, 2009.

[9] C. Roussey and O. Zamazal. Antipattern detection: how
to debug an ontology without a reasoner. In Proceed-
ings of the Second International Workshop on Debug-
ging Ontologies and Ontology Mappings, Montpellier,
France, May 27, 2013, pages 45–56, 2013.

[10] R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly-
efficient owl reasoner. In OWLED, volume 432, page 91,
2008.

[11] A. Souza, N. Cacho, T. Batista, and F. Lopes. Cloud
query manager: Using semantic web concepts to avoid
iaas cloud lock-in. In IEEE 8th International Conference
on Cloud Computing, pages 702–709, June 2015.

[12] D. Tsarkov and I. Horrocks. Fact++ description logic
reasoner: System description. In Automated reasoning,
pages 292–297. Springer, 2006.

[13] D. Vrandečić. Ontology evaluation. Springer, 2009.

4240

