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Abstract
Many infrastructure networks, such as power,

water, and natural gas systems, have similar properties
governing flows. However, these systems have distinctly
different sizes and topological structures. This paper
seeks to understand how these different features
can emerge from relatively simple design principles.
Specifically, we work to understand the conditions
under which it is optimal to build small decentralized
network infrastructures, such as a microgrid, rather
than centralized ones, such as a large high-voltage
power system. While our method is simple it is useful
in explaining why sometimes, but not always, it is
economical to build large, interconnected networks and
in other cases it is preferable to use smaller, distributed
systems. The results indicate that there is not a single
set of infrastructure cost conditions that cause a
transition from centralized networks being optimal, to
decentralized architectures. Instead, as capital costs
increase network sizes decrease gradually, according
to a power-law. And, as the value of reliability
increases, network sizes increase abruptly—there is
a threshold at which large, highly interconnected
networks are preferable to decentralized ones.

1 Introduction
Water, natural gas, and electric power networks

share the following operating principle: all of the
product flow that goes into a node must also come
out. While there are differences in the physics of flow
in these networks (most notably in their relative time
scales), similarities in the underlying physics can result
in similar design principles and thus similar topological
properties. For example, all three network types some-
times use meshed topological designs, which provide
redundancy, and sometimes use tree-like structures that
allow only one path between sources and sinks.

On the other hand, there are substantial differences
in the average sizes and typical structures for these net-
works. Consider, for example, electric power and water
distribution networks. In the United States alone there
are more than 150,000 public drinking water networks
that serve at least 25 people [1]. In contrast, the conti-
nental U.S. has only three major power networks: the
Eastern, Western, and Texas interconnections. The U.S.

natural gas network lies between these two extremes
with the U.S. system divided into around 200 distinct
networks [2]. Why is it that in the case of drinking
water, smaller, more decentralized networks seem to be
optimal, whereas for electric power, larger systems that
span continents seem to be preferable? Both systems
have similar physical properties that govern flows.
Both systems transport largely interchangeable goods:
one electron is as good as another, just as one water
molecule is as good as another (given appropriate
standards for cleanliness). However, these two systems
have fundamentally different size scales. A drinking
water system serves, on average, 2000 people. A power
network serves, on average, 100,000,000 people.

In addition to differences in existing networks, two
distinct transitions are pushing infrastructure systems
toward, or away from, centralized architectures.

The first transition is the growing push toward
decentralized, “local” systems in more developed coun-
tries. The energy infrastructures in most industrialized
countries have evolved into large, complex networks [3]
that depend heavily on large centrally-located power
plants. However the growing movement toward the
use of local resources (e.g, microgrids) is a push
back toward small, relatively independent systems [4].
The historical case for large interconnected systems
(economies of scale in generation and transmission)
and increased redundancy through interconnection is
being challenged by falling costs for distributed power
generation [5], increased interest in smart microgrids,
and the insight that distributed systems may offer
improved local reliability in some cases [6].

The second transition is the rapid growth of infras-
tructure, including electric power, water, transportation
and natural gas, in less developed countries [7]. Prior
work has argued that for political, geographic and
economic reasons, the greenfield build-out of highly
interconnected electric power infrastructure may not be
desirable in developing-nation contexts, particularly in
locations that are subject to elevated levels of stress [8].
However, international development projects often fo-
cus on the design of large networks that depend on
central power plants [9].

While the contexts for infrastructure decisions in
more-developed and less-developed nations differ, the
basic question remains the same: given the need to meet
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growing demand for infrastructure products (water,
electricity, gas), what mix of small-scale versus large-
scale system architectures will most effectively balance
cost and reliability? Under what assumptions about
cost, reliability and other factors would it be more
advantageous to use a decentralized architecture? This
work seeks to describe the conditions under which
the transformation of large-scale systems into multiple
smaller-scale systems, or the greenfield construction
of multiple smaller-scale systems to serve a large
geographic area, would yield improvements in cost and
reliability.

This paper builds on prior work focused on the
optimal planning of networks that deliver services or
otherwise provide connectivity over physical space. Our
approach is to model a single planner making optimal
resource decisions, which differs from game-theoretic
approaches of network generation or the literature in
random generation of synthetic networks [10], [11].
While the design of infrastructure networks has been
of interest to geographers since the 1960s [12], [13],
spatial network design has emerged only more recently
as an area of scientific research [14]. Many applica-
tions of spatial network analysis focus on traffic or
transportation networks [15], [14], [16], [17], [18] or
physical infrastructures that deliver information, such
as the internet or mobile telephony [14], [19]. Oth-
ers find that the constraints of geographic space can
dramatically change the implications found in abstract
network models [20], [21]. A recent study of a complex
systems model of cascading blackouts [22] suggested
that there are optimal sizes for infrastructure networks
in which the risk posed by outages is balanced by the
benefit given the redundancies that are possible in larger
networks.

Research on the spatial aspects of network design
has largely focused on two areas. The first is how
the cost of adding edges or otherwise connecting
nodes in space influences network structure and design
choices [14], [23]. The second strand uses known or
theoretical spatial properties of networks to understand
their performance in the case of attacks, failures or
other contingency events [6], [18], [24].

We build on this extensive body of work, and add to
its relevance for electrical networks, in two ways. The
first is to integrate some of the most salient properties
of electric power networks (namely Kirchhoff’s Current
Law) into the cost-driven spatial network design prob-
lems discussed in [14] and [23]. These properties are
important for electric power networks specifically be-
cause while expansion costs may be straightforward to
parametrize in terms of spatial distance, actual network
flows are not so simply represented. Further, production
costs in real electrical networks are heterogeneous by
technology and in space, because of regional varia-
tions in resource endowments and technology choices.
The second is to consider a design objective that
incorporates the costs of network operation, network

expansion, and network (un)reliability. While joint
planning and operations models have been devised for
incremental expansion decisions [25], [26], [27], and
for optimal topology control applications (e.g., [28],
[29]), our approach is different in its consideration of
a flexible greenfield infrastructure build problem that
does not, for example, restrict infrastructure expansion
options to pre-defined paths or represent branches as
binary integer variables. Detailed approaches such as
the above are useful for solving particular engineering
problems, but the results do not often reveal statistical
insight that could lead to the discovery of more general
principles underlying the design of optimal networks.
It is our conjecture that simpler models, such as the
attachment patterns of slime mold [30] or the approach
proposed in this paper, may be helpful in uncovering
such general design principles.

2 Notation
This paper uses the following notational conven-

tions. Bold lower-case symbols, x, represent column
vectors and non-bold symbols with single subscripts,
xi, represent elements of those vectors. Matrices
are represented by upper-case bold letters, Y, with
subscripted bold lower-case letters, yi, representing
columns of those matrices; scalar elements of matrices
are represented by lower-case script, yij . This paper
simultaneously co-optimize the design of infrastruc-
ture networks and the operation of those networks.
To clarify this distinction in our notation, variables
representing the quantity of infrastructure to build are
written with an overscore, z and those representing
the operating state of a particular element are not, z

or zi. Sets of indices are indicated with upper-case
italic symbols, Q and elements of those sets with
corresponding lower-case letters, q.

3 Optimal Infrastructure Network
Design: Cost alone

To start our exploration of optimal network design,
let us consider a system planner who has the task
of designing (or modifying) an infrastructure system
to provide a particular infrastructure product (water,
natural gas, electricity, etc.) for a set of n locations
(towns, buildings, etc.). Each location (vertex) v has
some known demand for the product dv and also has the
ability to produce this product locally with a production
cost that varies with geography. In order to satisfy the
demand at node v one can either produce dv locally or
build an interconnection to some nearby node that can
produce less expensively.

Given a model of this sort we can ask a number
of important questions. Under what conditions is it
optimal to produce locally, rather than building inter-
connections? If the goal of the planner is to minimize
overall cost, what type of network would one want
to build? Should one build many small networks or
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one large one? Should the planner build a meshed
network that allows redundancy, or a radial network
that provides only one path between sources and sinks?

In this section we study a model that seeks to
understand what types of infrastructure networks one
should build if we solely care about minimize cost.
Section 3 extends the study to add reliability to the
objective. Both models use a “greenfield” approach, in
which we assume that there is no existing infrastructure
and then seek to find the optimal network that satisfies
the total demand.

3.1 Formulation
Let us assume that each of the n locations is a vertex

(v 2 V ) that has coordinates xv, yv in some 2d space,
known demand dv , and a per unit cost for production
�v . This production cost term combines the marginal
cost of producing one unit of the good cv , and the
levelized cost of the production capacity v needed to
produce at a rate of one unit per unit time at vertex v:
�v = cv +v . For example, if a particular power plant
technology costs $1000/kW to build, it would have a
levelized capacity cost of v = $80 per kW-year when
amortized over a 20-year horizon at a 5% discount rate.
If its production cost were $10 per MWh, it would
have a annual production cost of cv = $88/kW-year. In
addition assume that there is a maximum feasible set
of undirected edges e 2 E that one might choose to
build. For example, one might allow into E all possible
vertex pairs, thus allowing at most n(n � 1)/2 edges.
To represent this maximum feasible network in our
optimization problem, we transform E into a sparse
m⇥n edge matrix E, with m representing the number
of feasible edges. The matrix E has single entries of 1
and -1 on each row indicating the end points of each
edge. The cost of building any one particular edge
ei$j depends on two factors: the length of the edge
`ei$j =

�
(xi � xj)2 + (yi � yj)2

�1/2 and the cost of
one unit length-capacity of edge construction, w.

Given these input data, the following formulation
allows one to compute an “optimal” infrastructure
network design.

min
f ,f ,g,g

X

v2V

(cvgv + vgv) + w

p
n

X

e2E

`efe (1a)

s.t. 0  gv  gv, 8v (1b)
fe � 0, 8e (1c)
� fe  fe  fe, 8e (1d)
g � d = E

|
f (1e)

where fe and fe are the undirected flow capacity and
actual directed flow on edge e, gv is the actual amount
of production at vertex v, w

p
n is an interconnection

cost parameter (cost per-unit length·capacity), and E

is an m ⇥ n edge matrix that comes from the set of
feasible edges E.

The objective (1a) is to minimize the combined cost
of production, c

|
g + |

g, and interconnection, `|f ,
while satisfying constraints (1b)-(1e). Constraint (1b)
defines locational production limits; (1c) ensures that
we do not build negative quantities of interconnection
capacity; (1d) constrains flows to be less than the
chosen flow limits; and (1e) ensures that the net flow
into and out of each vertex must be zero (Kirchhoff’s
Current Law for electrical networks). Because there
is, in this case, no cost advantage to building surplus
capacity, the amount of capacity built will be the same
as the operating state: g = g, and the absolute edge
flow will be equal to the edge flow capacity: f = ||f ||.
As a result the incremental and capital production cost
terms can be combined into a single cost term

P
v �vgv

and an optimal solution can be found without explicitly
solving for g.

Because we are interested to find properties of this
system that do not depend on the number of nodes,
the cost function (1a) is designed so that both the pro-
duction and the edge construction terms grow linearly
with n. In order to implement this, we first observe
that (at least for the case of uniformly distributed node
locations) the distances between randomly selected
node pairs decreases according to: `e ⇠ n

�1/2.1 As
a result, ensuring linear growth of the edge cost term
requires that we scale the second cost term by

p
n.

This allows us to study different spatial scales with the
same formulation: a large country with many nodes, or
a small city with fewer nodes.

Implied in this formulation are a number of im-
portant assumptions. First, we assume that interconnec-
tions can be built at any size scale and that construction
costs scale linearly with the capacity of the edge. It
is certainly possible to think of particular examples,
such as transmission line construction, where costs
exhibit returns to scale, such that building a 1 MW
transmission line is more than 1/100 of the cost of
building a 100 MW transmission line. However, if
we consider that the edge might be either a large
transmission line or a small distribution line, this
assumption is not as obviously incorrect. Modeling
scale economies of this sort would require knowledge
about the details of a particular infrastructure system
at a particular place and time. In this paper we are
more interested to identify general trends that appear
in optimal infrastructure designs. Second, formulation
(1) models a single snapshot of demand, whereas all
real infrastructure systems have demand that varies in
time. This allows us to combine the two production
cost terms cv and v in a way that melds together the
capital and operating costs associated with supplying

1This can be derived by first observing that the number of points
per unit area is n. Thus each point occupies a space that would be
(if it were square) A = 1

n = 1p
n

1p
n

. Thus as n ! 1 the distance
between a point and its nearest neighbor is approximately n�1/2. A
more formal derivation of this remains for future work.
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Fig. 1. Illustrative results for random placement of “towns” on a 2d plane. Panel A shows an initial,

maximum feasible graph for a n = 200 network, with node colors indicating the production/capacity cost,

�v , at each “town.” Panel B shows the optimal network configuration, after solving (1a)-(1e) for w = 0.001,

with node colors indicating the amount of production at each node, gv , and edge thicknesses indicating

the flow capacity. This optimal network has two connected components and thus an average component

size of < ns >= n/2 = 100.

the demand dv . If this assumption were relaxed and
time-varying demand added to the problem, the results
from (2) would likely be similar in many ways, except
that the optimal network would need to have some
surplus capacity to allow for peak demand, and thus it
would no longer be the case that gv = gv and |fe| = fe

Finally, we make the assumption that nodes do not
include any storage, leading us to include constraint
(1e), which is equivalent to Kirchhoff’s Current Law.
While some types of infrastructure networks, such as
water and natural gas, tend to have some storage at
some nodes, even with storage the long-run average net
flow out of a node must sum to zero. In this way our
model effectively captures the average long-run patterns
of flows through a network.

3.2 Cost only results
To explore the properties of networks that result

from (1) consider n nodes randomly located within a
1 ⇥ 1 2d square, such that each node location xv, yv

is a uniform random variable in [0, 1]. Each of these
nodes has a production cost �v : cv = v = �v/2
that is also a uniform random variable in [0, 1], and
a demand dv = 1. The set of feasible edges that we
might decide to build (the feasible graph E) comes
from initially setting E to be a modified form of the
random geometric graph [31]. Whereas in the con-
ventional random geometric graph nodes are typically
connected to other nodes that lie within some pre-
specified radius, we instead connect each node i to
i’s k nearest (Euclidian) neighbors, while avoiding
the addition of duplicate edges. Because it is possible
that j is one of i’s k nearest neighbors, but i is not
one of j’s k nearest neighbors, the resulting E has
an average degree that is slightly larger than k. If
one were to set k = n � 1 the result would be the
full graph of n(n � 1)/2 possible edges. However,

allowing this many potential edges into E makes the
optimization problem computationally impractical for
all but the smallest problems. Instead the results in this
section come from choosing k = 5. We found, via
experimentation, that the key statistical properties of
the resulting networks did not change substantially by
increasing k above 5.

Figure 1 illustrates the application of this approach
to a system with n = 200 nodes and w = 10�3.
From this figure a few observation can be made. First,
we see that the algorithm tends to produce tree-like
graphs in which the number of edges in each connected
component, ms, is one less than the number of nodes in
that component ns. The reason for this is fairly straight-
forward: creating a loop means that there are redundant
paths between node pairs. Given a network with a loop,
one can always reduce the edge-construction cost term
w

p
n

P
e2E `efe by removing one edge in the loop,

without loss of functionality. As a result the graphs
that result from (1) are always treelike, with precisely
ms = ns � 1 edges in each component. Secondly, we
see that there are two connected components in the
optimal network and thus an average of < ns >=
n/2 = 100 nodes per component. In this illustration
the two least-expensive production nodes had costs
of cv1 = 0.0003 and cv2 = 0.0046, with the less
expensive node supplying the larger sub-component.
While it would have been feasible to connect the two
components with a fairly short additional edge, supply-
ing the whole network from the less expensive node v1

would have required building additional capacity along
the spidery path from v1 to v2. Doing so would have
cost more than the additional cost of supplying the
second component from the more expensive unit, a cost
of ns2(cv2 � cv1) = 0.149. For comparison purposes,
the cost of building a length `e = 1 edge that could
supply the whole of the 35 node second component
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�2/3
.

would be 35w

p
n = 0.495. This result illustrates a

property that occurs in all of the optimal networks
resulting from (1): each of the subgraphs (components)
in the network is supplied by precisely one production
plant. Since there are no losses in formulation (1) the
cost of transportation is independent of distance and
there no reason to build more than one supply node in
each sub-network.

Given that this approach can determine “optimal”
network sizes, it is natural to ask how those network
sizes change as the cost of building network infras-
tructure changes. For example, as w increases one
might expect to see a relatively sudden phase transition
from optimal networks that span the entire network
to optimal networks with many small, decentralized
sub-systems. In order to investigate this further and
understand the cost conditions under which centralized,
or decentralized, networks are optimal, we performed
the following experiment. For several values of n,
we computed optimal infrastructure networks using (1)
over a range of w from 10�4 to 1. For each value of w

we re-initialized the random node locations, the feasible
network E and production costs �v , and computed
the optimal network configuration using (1) 200 times.
Then we recorded the mean size of the connected
components < ns > over the 200 optimal networks.

Figure 2 shows the resulting relationship between
the edge construction cost, w and optimal component
sizes, ns. As one would expect, as network construc-
tion costs increase the optimal network sizes decrease.
However, what is less obvious is that the change
from large networks to small networks does not occur
suddenly as does the first-order phase transition from a
solid ice to liquid water. Instead, this transition occurs
gradually over several orders of magnitude in w. In fact,
fitting the data in Figure 2 to a power-law distribution

indicates that mean component sizes fall as

< ns >⇠ w

�0.648 ⇠ w

�2/3
. (2)

4 Optimal Infrastructure Network
Design: Adding reliability

An obvious limitation in formulation (1) is the
omission of reliability from the design criteria. Re-
liability has an enormous role in the design of in-
frastructure systems. In power systems, for example,
electric utilities frequently argue in rate-case filings that
the construction of a new transmission line is justified
purely on reliability grounds. It is thus useful to un-
derstand what impact reliability considerations have on
the topological structure of infrastructure networks.

In order to model the impact of reliability we add
a third term to the original objective function (1a)
to capture the cost of (un)reliability. Specifically, we
measure the cost of not serving demand in response to
a set of node or link outages (perturbations), P . These
costs are assumed to be a linear function of the amount
of unserved load over all perturbations. Unserved load
is represented by a n ⇥ |P | matrix, �D with non-
positive elements. In addition to �D, we introduce
matrices �G and �F into the set of decision variables
to represent the changes in production and flow after
each of the the possible outages in P . Introducing these
three matrices allows the optimizer to determine how
the network ‘should’ react to each of the disturbances
modeled. As in (2), we separate the production cost
term �v into separate terms for capital and operating
costs, however in this case one will sometimes want to
build surplus capacity to prepare for plausible failures.
With these additions we get the following formulation.

min
f ,f ,g,g

�{D,G,F}

X

v2V

(cvgv + vgv) + w

p
n

X

e2E

fele

� r

n

X

p2P

1

|�dp (3a)

s.t. 0  gv  gv, 8v 2 V (3b)
0  |fe|  fe, 8e 2 E (3c)
g � d = E

|
f (3d)

�gv,pv = �gv, 8v 2 V (3e)
�fe,pe = �fe, 8e 2 E (3f)
|fe + �fe,p|  fe, 8p 2 P, 8e 2 E (3g)
0  gv + �gv,p  gv, 8p 2 P, 8v 2 V

(3h)
� dv  �dv,p  0, 8p 2 P, 8v 2 V

(3i)
(g + �gp) � (d + �dp)

= E

| (f + �fp) , 8p 2 P (3j)

In this formulation, (3a) is the modified objective,
which now includes the reliability term, and r is a
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Fig. 3. Illustrating the impact of adding reliability to the optimal network construction formulation. Panel A

shows the full feasible network E, with colors indicating production costs �v . Panel B shows the optimal

network for w = 0.01 and r = 0.1, which is identical to the tree-like network that results from the simple

model. Panel C shows the optimal network for w = 0.01 and r = 1, which shows the emergence of a

meshed topology and substantial supply redundancy. Colors in panels B and C indicate the amount of

production capacity at each node.

reliability cost parameter that allows us to adjust the
relative importance of reliability. �dp is the change
(loss) of demand that results from perturbation p, which
is one of the set of all perturbations, P . As with with
the second term in (1a), we divide the reliability term
by n so that this term also roughly increases linearly
with n. Eqs. (3b) and (3d) are equivalent to (1b)-(1e)
in (1). Eqs. (3e) and (3f) cause the specific node, pv ,
and edge, pe, failures that together make up the set of
all perturbations, P , by forcing the nodal production
or edge flow to be zero for the a particular component
outage in P . Eq. (3g) ensures that all flows are below
edge capacities, after all perturbations. As a result
there are m(n + m) constraints of this type within
the formulation. Similarly, (3h) constrains production at
every node after each perturbation (a total of n(m+n)
constraints), to be below the chosen production capac-
ities for each node. Eq. (3i) ensures that demand can
only decrease, and only up to the total demand at node
v, as a result of each p. Finally, (3j) enforces a nodal
supply/demand balance after each perturbation. This
forces the optimizer to compute production, demand
loss, and flow patterns that obey Kirchhoff’s Current
Law for each disturbance in P .

This approach allows us to include a wide variety
of disturbances in P . However, a limiting factor is the
fact that the size of the linear program grows rapidly
with both the number of disturbances included and with
the size of the network. Specifically, the total number
of constraints in (3) is 3n + 3m + 3|P |n + 2|P |m,
where |P | is the size of the set P . If we start with
a feasible network E with a fixed degree such that
m = kn/2, and we include within P only the single
edge and node outages, then the problem will have
3(0.5k + 1)n + (0.5k

2 + 2.5k + 3)n2 constraints. To
illustrate, solving (3) for a network with n = 200
and k = 5 will require 1 122 100 constraints. Thus, in
order to manage the computational complexity of this
problem, we include in P only the single node and

edge outages.2
As a whole this formulation allows us to observe

how network size and structure changes as we increase
the relative importance of reliability. If r = 0, de-
mand losses are effectively deemed irrelevant, and the
problem will produce results that are identical to those
obtained from (1). On the other hand, as r increases
we hypothesize that networks are likely to become
more meshed (rather than tree-like) and more likely to
include surplus production capacity. It is not obvious,
ex ante, how r will impact optimal network sizes.
On the one hand, small, local networks will be more
robust to edge failures and thus may be more optimal
when reliability is very important. On the other hand,
large interconnected systems provide a high level of
redundancy, which also has tremendous value. In the
results that follow we explore this tradeoff.

4.1 Reliability results
This section aims to understand how the results

from the cost-only model (1) change after adding
reliability costs as in (3). As in the cost-only model,
we consider nodes scattered uniformly on a 2d plane.
Also as before, we assume that each location has
an overall production cost that is a uniform random
variable in [0, 1] and we assume that the production
cost is split evenly between marginal and capital costs,
cv = v = 0.5�v . Here we restrict our attention to the
case of networks with n = 100 nodes, since solving (3)
for larger systems leads to prohibitively large solution
times.

Figure 3 shows illustrative results for a n = 50
node network, which clearly show the importance of
reliability to network structure. For small values of
r the solutions are nearly identical to what we get

2Note that the majority of runs of the reliability model in this paper
were run with n = 100 nodes. These runs required approximately 4-
8 hours of computer time and 2-4 GB of memory using the CPLEX
solver on a single Intel Xeon CPU.
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Fig. 4. Statistical results from the reliability model. Panels A and B show mean component sizes as a

function of the reliability cost and interconnection cost parameters, r and w. Panels C and D show the

average number of edges in the optimal network, also as a function of r and w.

from the simple model: tree-like networks that satisfy
demand with no redundancy. However as r increases,
we find a (rather sudden) transition to meshed networks
that include substantial supply redundancy. For the
example in Fig. 3, the system builds a network with
total generation capacity equal to

P
v2V gv = 82.2,

much more than what is needed to supply the 50 nodes
in the system.

Next we computed optimal networks for several
different values of the reliability parameter r and in-
terconnection costs w for 100 node networks. For each
value of w and r the random variables (xv, yv and
cv) were re-initialized 100 times in order to minimize
variance.3

Figure 4 shows the resulting mean component sizes
for various values of w and r. Fig. 4A describes the
sensitivity of the mean component size to the relative
value of reliability while holding the relative cost of
interconnection fixed. For w  0.001 and w � 0.1
the network sizes do not change substantially with r.
In particular, for the smallest values of w the mean
component size is at or near the size of the network,
while for the larger values of w (w � 0.1) the size of
the mean component is 5 nodes or fewer (for the case
w = 1 it is hardly optimal to build any interconnection).
For the intermediate case w = 0.01, however, we see
a jump in optimal component size, to 100 nodes (the

3A few of these cases failed to solve, which means that a few of
the results are averaged over fewer than 100 trials.

size of the whole network) once r becomes larger than
0.1.

We do, however, see a more sensitive relationship
between component sizes < ns > and w when r is
held fixed. Fig. 4B shows that for any value of r, a
very small cost of interconnection yields a complete
network (mean component size = 100), which is similar
to the results in Fig. 4A. As r increases beyond 0.001,
the mean component size begins to decline as the
interconnection cost w becomes larger than 0.001. The
transition point and rate of decline is identical for
r  0.01, and the rate of decline is also identical for
all values of r once w exceeds 0.1 (where the mean
component size declines to < ns >

⇠= 4, indicating that
little interconnection is built). For r � 0.1 we observe
that an order of magnitude increase in r (from 0.1 to
1) corresponds to an order of magnitude increase in
the value of w (roughly 0.015 to 0.15) at which the
transition occurs.

Not only do the optimal network sizes change, but
the level of redundancy also changes with r and w.
One way to measure the level of redundancy is by the
number of edges constructed in the optimal network.
In the tree-like networks that result from the simple
model there are always fewer than n edges. But, as
shown in Figs. 4C and 4D, as r increases the number of
edges in the optimal networks also increase, increasing
redundancy. Unlike with the relationship between w

and < ns >, this increase becomes quite abrupt for
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Fig. 5. Application of the optimal network design model to the geographic distribution of electricity

demand centers in Senegal. Panel A shows the existing high and medium voltage network together with

the geographic distribution of the mobile phone towers (adopted from [32]). Panel B shows the optimal

network for w = 0.01, given random production costs and ignoring reliability.

sufficiently small values of w.
Taken together, Fig. 4A-D suggest several lessons

concerning the scope of optimal infrastructure net-
works. First, very small interconnection costs yield
highly connected networks; this is invariant to the value
of reliability. Second, even when the value of relia-
bility is large in our simulations, the construction of
additional local supply has lower costs than increased
interconnection except when the interconnection cost is
orders of magnitude smaller than the value of reliability.
Third, when the value of reliability is high relative
to the cost of interconnection the extent of intercon-
nection redundancy increases (Fig. 4C) even in highly
connected networks. Fourth, only when the value of re-
liability and the cost of interconnection are both large is
it sensible to build redundancy through additional local
supply rather than through interconnection (Fig. 4B and
D).

5 Senegal application
As a real-world case study, we applied the in-

frastructure network design model to the geographic
distribution of cities and rural towns in Senegal. About
half of the countries’ population still has no access to
electricity, and the electrification rate in rural areas is as
low as 28% [32]. In contrast to Senegal’s electric power
grid, the mobile communication infrastructure is highly
developed, with 1666 mobile phone towers distributed
across the country and a mobile phone penetration rate
of almost 100%. This allows for the use of data from
the mobile communication system to accurately pre-
dict the geographic distribution of electricity demand
(see [32]). Data on the mobile phone infrastructure has
been made available by ORANGE / SONATEL within
the framework of the D4D Challenge [33]. Figure 5A
depicts both the existing electricity infrastructure and
the location of the mobile phone towers.

In order to use data from the communication system
to model demand for electricity, we first partitioned the
country into a rectangular grid with cell size 5km ⇥
5km. Following the approach in [32] we then used the
number of cell phone towers that are located in each
grid cell as a proxy for the relative electricity demand
within that cell, dv . Note that for the purpose of our
analysis we are not interested in estimating absolute de-
mand, but rather the relative amount of electricity that
might be consumed in a particular location. The center
points of the grid cells were used as locations xv, yv

for the load nodes. As with the uniformly distributed
vertices, we randomly assigned production costs to
each node in the network, using the load locations
described above, using uniform random variables over
[0, 1].

Figure 5B shows the result of applying the basic
optimization model (1) for the case of w = 0.01.
Without reliability constraints, our model produces
tree-like networks that are similar in structure to what
we found with randomly distributed vertices in Sec 3.2.
The network realization resembles the spatial topology
of the existing electricity grid in Senegal, indicating low
reliability standards. Moreover, we find that the optimal
component sizes for this real-world system (Fig. 6)
scale in the same way as was found for synthetically
generated load points in Eq. (2). This suggests that the
power law decay in optimal network sizes also holds
for real-world settings where the geographic location
of load centers is far from being random.
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for Senegal.

Application of the reliability model (3) to the Sene-
gal system remains for future work.

6 Discussion and Conclusions
This paper presents results from a model of op-

timal infrastructure network design, with which we
aim to better understand the conditions under which
small decentralized infrastructure networks are prefer-
able to large systems that depend on a centralized
architecture. Several interesting observations emerge
from this work. First we find, unsurprisingly, that
as network construction costs increase the optimal
size of infrastructure networks decreases and the local
provision of services becomes preferable. In the case
where cost is the primary network design objective and
reliability is not important, we unsurprisingly find that
optimal topologies always have a tree structure. More
surprising, however, is that the decrease in optimal
network size occurs gradually, over several orders of
magnitude in the relative cost of network infrastructure,
w. More specifically, we find that optimal network
sizes decrease with the power-law ⇠ w

�2/3. This same
scaling property appears both in the random graphs
that we generated for simulation purposes and when
we apply our infrastructure design model to a spatial
distribution of demand centers taken from data from the
country of Senegal. This suggests that when cost is the
primary design criterion there is no single optimal size
for infrastructure networks; different sizes are likely
to be optimal for different locations. Whether local or
global networks are preferable depends critically on
local conditions.

We do find that this gradual scaling becomes a
more sudden transition once reliability is added to the
design objectives. When the failure to supply demand
after vertex or edge outages is deemed costly (large r),
the optimal network is a single interconnected system

that spans all nodes for a wide range of values for
infrastructure costs w. However, in this case small
increases in network costs w can cause a rapid return to
small networks being optimal. Also, as the importance
of reliability increases, the optimal network topology
transitions from being a tree, in which there are no
duplicate paths, to a meshed system with substantial
redundancy.

Clearly, the model that we used to reach these
conclusions is simple and the results leave open a
number of questions to be addressed in future work.
This model neglects many of the engineering details
that are important to particular networks, such as volt-
ages in power networks and the non-linear relationships
between demand and flow in traffic networks. Our
reliability formulation models only single component
outages and does not include a model of restoration,
whereas both multiple outages and restoration are
important components of resilience—an increasingly
important design criteria in modern infrastructure sys-
tems. Expanding the model beyond single-component
outages would also be important to consider how
the possibility of cyber-attacks would change design
decisions.

Yet, a key characteristic of complex systems re-
search is to identify simple models that can be studied
statistically to reveal useful insight about challenging
problems. Hopefully the simple models presented here
can be improved in future work to reveal additional
properties about the conditions under which differ-
ent network structures are preferable. This approach
might be modified to understand when it would be
preferable to operate certain portions of a network as
independent microgrids rather than as large intercon-
nected networks. Some version of this approach might
also help one to understand why existing large-scale
networks have the structures that they do. Assuming
that larger networks can be synthesized using this
method, it would be valuable to compare the statistical
characteristics of the networks resulting from our model
to those of actual large-scale power systems, such as
the US Eastern Interconnect. Also, it would be valuable
in future work to relax our assumption that demand
does not vary in time in order to understand how time-
varying demand impacts optimal infrastructure network
designs. A particularly important goal for future work
is to provide analytical results that better explain the be-
haviors that we see, such as the power-law relationship
between transmission cost, w, and network component
size, < ns >. Another goal is to modify the model to
help us to understand when it would be preferable to
operate certain portions of a network as an independent
system (such as a microgrid) rather than as a large
interconnected network.

One of our original motivations for this work
was to explain why different infrastructure networks,
such as water and power, often have dramatically
different structures. While far from conclusive these
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results provide some insights regarding the optimality
of different topological configurations, under different
cost and reliability conditions. For example, our model
suggests that building a highly connected power grid
is an optimal design choice only when transmission
costs are very small relative to the cost of local power
production, or if the value of reliability is very high.
The same logic would hold for water distribution
networks, in which the value of reliability is also high
(but outage probabilities are low), and transportation
is very expensive (because water typically needs to
be pumped to be transported over long distances).
Such networks thus exhibit predominantly local scope,
except in extreme cases like Southern California, where
local water supplies are scarce, increasing the value of
interconnection. The tendency for high cost areas to
build long connections to remote regions also appears
in our model (see Figure 1). A detailed comparison of
the structure of existing water and power networks to
the statistics of our model remains for future work.
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