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Abstract—In this paper, a robust reconfiguration approach
based on Mixed Integer Programming (MIP) is proposed to
minimize loss in distribution systems. A Depth-First Search
(DFS) algorithm to enumerate possible loops provides radiality
constraint. This provides a general solution to the radiality
constraint for distribution system reconfiguration/expansion
problems. Still, imprecision and ambiguity in net loads, i.e.
load minus renewable generation, due to lack of sufficient
measurements and high utilization of demand response pro-
grams and renewable resources, creates challenges for effective
reconfiguration. Deterministic optimization of reconfiguration
may no lead to optimal/feasible results. Two methods to address
these uncertainties are introduced in this paper: one, based
on a stochastic MIP (SMIP) formulation and two, based on
a fuzzy MIP (FMIP) formulation. Case studies demonstrate
the robustness and efficiency of the proposed reconfiguration
methods.

Keywords-Distribution System Reconfiguration (DSR),
Depth-First Search (DFS), Fuzzy Mixed Integer Programming
(FMIP), Stochastic Mixed Integer Programming (SMIP).

NOMENCLATURE

P fj , Q
f
j Active and reactive power flow on branch j.

P bi , Q
b
i Active and reactive power output of the bat-

tery on bus i.
Xj Status of the switch on line j (0: off, 1: on)
rj , xj Resistance and reactance of line j.
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P f , Qf Vectors of active and reactive power flow on
lines.

P , Q Vectors of active and reactive power net
loads.

P b, Qb Active and reactive power output of battery
units.

Ij Current on line j.
Imaxj Thermal limit of line j.
Vi Voltage magnitude on node i.
V maxi Maximum acceptable voltage magnitude on

node i.
V mini Minimum acceptable voltage magnitude on

node i.
∆Vmax Maximum allowed voltage deviation from

substation voltage level.
αik kth path reaching bus i from substation s.
N i
k Number of switches in path αik.

Nl Number of switches in loop l.
∆P ,∆Q Maximum variation of active and reactive

power load.
A Reduced node incidence matrix.
P chmax, P

dc
max Maximum charge and discharge rates of a

battery.
PF b,mini Minimum acceptable power factor of the

battery storage unit i.
SCbi , C

b
i State of charge and capacity of the battery

storage unit i.
dbi Acceptable depth of discharge of battery i.
t Charging or discharging time.
nj Number of lines in system.
nb Number of batteries in the system.
nω Number of scenarios used for stochastic op-

timization.
ω Index of load scenario in the stochastic opti-

mization.
πω Probability of scenario ω in the stochastic

optimization.
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µ Membership function in the fuzzy optimiza-
tion.

j Index of branches.
i Index of buses.
l Index of loops/meshes.

I. INTRODUCTION

RECONFIGURATION is used worldwide as the pre-
ferred technique to reduce power loss [1]- [14], restore-

out-of-service zones, and decrease network overloading by
altering the topological structures of distribution feeders
[15]. However, optimization of DSR is incredibly difficult
due to the structures of the distribution networks which are
mainly radial and include open and closed switches whose
status would be controlled to achieve the aforementioned
desired outcomes. If exact optimization techniques such
as MIP are employed, the radiality constraints must be
explicitly represented in the mathematical modeling. This is
not the case, however, when heuristic or meta-heuristic tech-
niques are used, where the radiality constraints are controlled
implicitly [16]. Nevertheless, these solutions suffer from
a number of shortcomings, including scalability, and the
possibility of a suboptimal solution and poor convergence.

Another problem that exists in DSR is because of high
level of uncertainty in net loads as a direct result of poor
measurements and increasing penetration of controllable
loads and renewable resources. Therefore, deterministic op-
timization of DSR may not lead to optimal or even feasible
results which respect the operational constraints.

A modified linear programming formulation is proposed
in [1], to minimize loss through penalizing high power flows
on the lines with high resistance. The drawback in this
method is that the linear formulation of the loss minimiza-
tion problem only gives the sub-optimal solution. An optimal
power flow (OPF)-based DSR using MIP is presented in [2].
However, the formulation does not guarantee radiality.

Different heuristic algorithms are presented in [3]-[6]
to solve the DSR problem. The process begins with a
completely meshed network. In each step of the heuristic
algorithm, a branch is opened to maintain a radial topology.
These algorithms apply different sensitivity analyses to
perform switching operations in each iteration.

Population-based optimization algorithms are used in [7]
and [12] to find the optimal configuration with minimum
loss. Reference [13] employs a simulated annealing meta-
heuristic technique for loss minimization-based DSR. This
work expands on these prior efforts to address system
uncertainties.

Reference [17] proposes a reliability-oriented reconfigu-
ration method that includes load uncertainties. The method
uses interval analysis to quantify the impact of uncertain data
and to maximize the possibility of reliability improvement
and/or loss reduction. A procedure for supply restoration
in distribution networks based on fuzzy risk management

is proposed in [18]. The method models uncertainty in
recognizing consumer loads by describing them with fuzzy
numbers. The approach proposed in [19] considers both
system reliability and loss in the reconfiguration. A clonal
selection algorithm is used to deal with uncertainty of the
random parameters.

The net load uncertainty has been rarely considered in
the DSR papers. As mentioned before, a feasible/optimal
reconfiguration cannot be guaranteed by deterministic ap-
proaches. In this paper, a general approach based on MIP
is proposed to formulate DSR in the presence of load
uncertainty. This study considers distributed battery units in
the DSR problem. This is because of the increasing attention
to these devices which is mainly due to their performance in
reducing equipment loading during peak hours and helping
with renewable energy resource integration [20].

SMIP and FMIP are used to obtain optimal solutions
which are robust under different net loads. The study shows
that relatively minor increase in robustness from SMIP over
FMIP requires far more computation. This suggests that
the developed FMIP approach would be preferred for real-
time applications. Hereafter in this paper the word “load”
represents “net load”.

II. PROBLEM FORMULATION

In this section, a deterministic MIP formulation of DSR
is described. The proposed FMIP and SMIP formulations
are then presented to solve the reconfiguration problem with
load uncertainty.

A. MIP-Based DSR

The DSR optimization problem considered in this study is
given as the minimization of active power loss subject to a
set of constraints including power balance, thermal limits of
the lines, voltage limit, radiality of the system, and battery
units’ constraints. Specifically,

min

nj∑
j=1

rj

[(
P fj

)2
+
(
Qfi

)2]
+

nb∑
i=1

(
P bi
)2

(1)

Subject to:
- Power flow constraints

ATP f = P − P b (2)

ATQf = Q−Qb (3)

- Line thermal limit constraint

Ij ≤ XjI
max
j (4)

- Voltage constraint

V mini ≤ Vi ≤ V maxi (5)
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- Radiality constraint

Nl∑
j=1

Xj ≤ Nl − 1 ,∀l (6)

- Battery constraint

−(1− SCbi )Cbi ≤ P bi t ≤ Cbi SCbi − dbi (7)

−P chmax ≤ P bi ≤ P dcmax (8)

PF bi > PF b,mini (9)

Xjε{0, 1}

where Xj = 0 and Xj = 1 represent an open switch and
closed switch, respectively. The first term in the objective
function minimizes system active power loss while the
second term captures the damaging effect of fast charging
and discharging of the battery units to prolong the battery
life. It is worth noting that the formulation of active power
loss assumes the voltage magnitude to be one per-unit.

Constraints (2)-(3) are active and reactive power balance
equations. The thermal limit constraint of distribution lines
and cables is guaranteed by (4). Radiality of the reconfigured
system is preserved by satisfying (6). The radiality constraint
is formulated based on a cycle detection approach which
is separate from the optimization. In this algorithm it is
assumed that all the switches in the system are closed.
Then, a DFS-based algorithm is employed to detect all the
cycles and loops in the system [15]. The radiality constraint
(6) guarantees that there is at least one open switch in
any possible loop, l. Voltage limits are provided by (5).
Charging/discharging rate constraints of the battery units
are formulated in (7)-(9). According to (9) the battery units
should operate with a power factor which is higher than a
specified threshold, PF b,mini .

A linear formulation of the voltage constraint based on
deviation of the voltage on a node from substation voltage
is used since the key is assessing impact of a particular
configuration on the voltage profile and the precise voltage is
not typically needed. As shown in [21], voltage constraint for
every node can be formulated by a linear formulation based
on active and reactive power flows on the lines reaching the
node from the substation, s:

2
∑
jεαi

k

(rjPj + xjQj) ≤ δmax, ∀i (10)

where δmax = ∆Vmax(2Vs−∆Vmax). Modification to (10)
needs to be made in order to prevent the constraint from
being binding for any inactive path corresponding to bus j
(an inactive path is a path from substation to the node in

which there is one or more open branches). Therefore, an
additional term is added to the right hand side of (10) as
follows:

2
∑
jεαi

k

(rjPj + xjQj) ≤ δmax +M(N i
k −

∑
Xj

jεαi
k

), ∀i

(11)

where M is an arbitrary large positive number, e.g. 1E10.

B. Reconfiguration with Load Uncertainty

Load uncertainties affect both feasibility and optimality.
In this paper, two different approaches are proposed to
formulate the reconfiguration problem with uncertain data.
In the first approach, DSR is formulated as a stochastic
optimization problem based on load probability distribution
functions (PDF). The second approach is based on a FMIP
in which the objective function and constraints are converted
to fuzzy or interval relations. This means that the constraints
are allowed to be violated with some margin as defined by
their membership functions. The goal is to compare the two
algorithms in terms of speed and robustness. Speed is par-
ticularly important for objectives such as system restoration
after faults.

1) SMIP-Based DSR: The traditional two-stage integer
programming approach is used to solve the SMIP-based
DSR. Status of the switches and batteries output power
are first stage variables while power flows on the lines
and voltage magnitude on the nodes are considered as the
second stage variables. This formulation makes sure that the
obtained topology and scheduled battery outputs are feasible
for various scenarios.

The two-stage SMIP model is formulated as:

min

nω∑
ω=1

πω

 nj∑
j=1

rj

[(
P fjω

)2
+
(
Qfjω

)2]
+

nb∑
i=1

(
P bi
)2
(12)

Subject to:
- Power flow constraints

ATP f
ω = Pω − P b (13)

ATQf
ω = Qω −Qb (14)

- Line thermal limit constrain

Ijω ≤ XjI
max
j (15)

- Voltage constraint

V mini ≤ Viω ≤ V maxi (16)

- Radiality constraint
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Nl∑
j=1

Xj ≤ Nl − 1 ,∀l (17)

- Battery constraints

−(1− SCbi )Cbi ≤ P bi t ≤ Cbi SCbi − dbi (18)

−P chmax ≤ P bi ≤ P dcmax (19)
PF > PFmin (20)

Xjε{0, 1}

An appropriate scenario set is critical to the SMIP model.
Traditionally, in power system research studies, the fore-
tasted load is modeled as a Gaussian probability distribution
function with nominal load as the mean value and a standard
deviation [22]-[25]. Then, Monte Carlo method is used
to generate a discrete scenario set, which approximates
the continuous distribution function of the foretasted load.
Although the uncertainty model of the foretasted load will be
more precise with higher number of scenarios, it increases
the computational intensity of the problem. Therefore, an
effective scenario reduction method is essential for solving
large scale problems. Efficient algorithms based on back-
ward and fast forward methods have been developed to
determine the optimal scenario set.

In this paper, Monte Carlo algorithm is used to produce
discrete scenarios based on Gaussian probability functions
considered for the loads. The backward reduction described
in [25] is used to efficiently reduce the number of scenarios.

2) FMIP-Based DSR: Since stochastic optimization ap-
proach is time consuming, an approximation of the uncer-
tainties based on linear intervals or possibility ranges is
introduced. Specifically, we assume that the load forecast
is an interval number of the form:

Plε[P−4P,P +4P]

Qlε[Q−4Q,Q +4Q]
(21)

In order to convert the deterministic optimization prob-
lem (1)-(9) into a fuzzy optimization, the power balance
constraint (2)-(3), line flow limits (4), and voltage limits
(11) constraints can be expressed as soft relations. Dif-
ferent membership functions are developed for the above
constraints and objective function which are described in
the following.

Power flow constraints: The optimum configuration
should be able to tolerate severe loading scenarios. Because
of the radial structure of distribution systems if load on every
node increases, the line flows increase and there will be
a higher possibility of violation in line flow and voltage
limit constraints. The membership function considered for

fuzzy active power balance constraints is depicted in Fig.
1. A constant power factor is considered for loads on
every bus. The membership function, µp indicates that it
is more desirable if power balance equations are satisfied
for maximum loading cases. Although this is a conservative
approach, the obtained results will be feasible for a wider
range of loading scenarios.

Figure 1. Membership function of the active power balance constraint

Line thermal limit constraints: Line flow limit constraint
can also be modeled by a soft constraint. The membership
function considered for this constraint is shown in Fig. 2.
µI indicates that the configuration becomes less acceptable
as the line power flows violate the thermal limits.

Figure 2. Membership function of line thermal limit constraint

Voltage limit constraints: Voltage limits (11) are also
converted to a soft constraint to account for load uncertainty.
The membership function for voltage constraint is similar to
the one assigned for line thermal limit.

Based on the symmetric approach, the objective function
(1), should be essentially smaller than or equal to some
aspiration level, Z0. Membership function for the objective
function, µZ , can be modeled by Fig. 3. The aspiration level

3225



represents the ideal system configuration with minimum loss
and optimal battery output. A configuration becomes less
acceptable as the system loss increases above the ideal value
as indicated by the reduced membership in Fig. 3. One good
candidate for Z0 is the result of optimization problem (1)
with nominal load values.

Figure 3. Membership function of the objective function

Since the constraints and objective function are repre-
sented by membership functions, min-max method can be
used to solve the optimization. This is given by:

λ∗ = max min(µZ , µP , µI , µV ) (22)

Consequently, the following equivalent parametric model
can be used:

max λ (23)
s.t. (24)

µZ , µP , µV , µI ≥ λ (25)
(6)− (9) (26)

0 ≤ λ ≤ 1, Xjε{0, 1}

The problem reduces to maximizing a scaler value λ that
represents the least satisfied constraint or objective function.
In the solution, all membership values are greater than or
equal to this λ.

Two cases for the FMIP-based reconfiguration are consid-
ered in this study. The first case which is called FMIP with
soft constraints (SC FMIP) allows the operational constraints
(4) and (11) to violate with some degree based on their
membership functions. In other words, 4Imax and 4Vmax
are non-zero values. These values can be determined by the
operator depending on the desired robustness level of the
solution. In the second case, FMIP with hard constraints
(HC FMIP), no violation in the thermal limit and voltage

constraint is allowed. Obviously, HC FMIP is a more con-
servative approach which allows for less flexibility in the
constraints.

III. SIMULATION RESULTS

Simulations are performed on a 2.66 GHz, 4 GB RAM
PC. The software tools used to solve the MIP problems are
MATLAB 2011b and ILOG CPLEX 12.2 under a 64-bit op-
erating system. Two different electrical systems are studied
to show the effectiveness of the proposed approaches.

A. 32-Bus Test System

The first system which is depicted in Fig. 4 is the 37-
bracnh test system used in [14]. The dashed lines represent
open lines in the original configuration (normally open
switches). Five battery units are located on buses 9, 17, 18,
22, and 30. The batteries capacity, maximum discharge rate,
and minimum power factor are 75 kW, 25 kW, and 0.9,
respectively. It is also assumed that the batteries are full
before the reconfiguration process.

Before starting the optimization, the DFS-based cycle
detection approach is performed on the adjacency matrix of
the system graph assuming that all the switches are closed,
which finds 26 cycles. The branches making different cycles
are then identified and according to (6), there will be at
least one open switch in each detected loop. For example,
2, 3, 4, 5, 6, 7, 8, 21, 20, 19, 2 is a sequence of vertexes
which creates one potential loop. Number of switches in
this cycle, Nl, is 10. Since Xj = 1 represents a close
switch,

∑10
j=1Xj ≤ 9 constraint avoids this loop in the

reconfiguration process.
1) Deterministic DSR: In the deterministic optimization,

we assume no uncertainty in the loads. The nominal loads
in [14] are considered as loads in this optimization.

Table I and Table II show the result obtained by the de-
terministic reconfiguration. As shown in the tables, the new
topology obtained by MIP-based DSR reduces system loss
by 31%. Obviously, injections from battery units reduces
the system loss even more. Reference [15] discusses that
the distributed storage units can also change the resulted
configuration through changing the line flows and voltage
levels (constraints (4) and (11)).

2) DSR with load uncertainty: SMIP and FMIP ap-
proaches are now applied to solve the reconfiguration prob-
lem in the presence of load uncertainty. For SMIP reconfig-
uration, the foretasted load is modeled as a Gaussian proba-
bility distribution function with nominal load in [14] as the
mean value and standard deviation, σ, of 6%. It is assumed
that the load changes in the range of P ±3.5σ. Monte Carlo
simulation is used to generate 5000 scenarios. Number of
the scenarios is reduced to 200 using the backward reduction
technique mentioned in section II-B.

For FMIP, it is assumed that the load varies in the
range [P − ∆P,P + ∆P] where P is the nominal load
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Figure 4: 32-bus test system

TABLE I
DETERMINISTIC RECONFIGURATION

32-BUS SYSTEM

Parameter MIQP

Optimal solution-
open switches

7-8,9-10,
14-15,
25-29,
32-33

Loss- new
configuration,

without battery (kW)
139.55

Loss- new
configuration, with

battery (kW)
131.42

Loss- original
configuration (kW) 202.5

TABLE II
BATTERY SCHEDULED POWER

32-BUS SYSTEM

Bus kW

9 15.63
17 11.53
18 19.28
22 19.66
30 23.89

in [14] and ∆P is assumed to be 21% of the nominal
load as an example of large uncertainty (The load variation
is in the same range for SMIP and FMIP). A constant
power factor is considered for the loads on every node.
As mentioned in section II-B, two cases for the FMIP-
based reconfiguration are considered: SC FMIP, in which the
operational constraints (4) and (11) are allowed to violate up
to 10% (4Imax = 1.1Imax and 4Vmax = 1.1Vmax ), and
HC FMIP which does not allow for any constraint violations
(4Imax = 4Vmax = 0).

Table III and Table IV show the reconfiguration result
obtained by SMIP and FMIP. The third row in Table III
shows the active power loss for the configurations and
batteries output power obtained by different algorithms when
the system nominal load is considered. As observed in Table
, both FMIP and SMIP lead to configurations with higher
losses compared to the deterministic case. This is because
these approaches seek conservative solutions that are feasible
for many different load conditions.

The configurations and scheduled output power from the
batteries calculated by the deterministic MIP, SC FMIP, HC
FMIP, and SMIP are evaluated for the full 5000 scenarios to
to identify the percentage of scenarios leading to constraint
violations. This shows the robustness level of the different
solutions against variations of loads. As observed in Table
V, although HC FMIP and SMIP lead to a similar robustness
level, HC FMIP is much faster (HC FMIP leads to a
slightly more conservative solution relying on more power
extraction from battery units). It is worth noting that because
of the radial structure of distribution systems, higher loads
directly lead to higher flows on the lines. Therefore, line
flow limit and voltage limit constraints are more likely to
be violated. This feature is considered in the membership
function considered for the power balance constraints and
that is the reason that FMIP leads to a reasonably robust
result with such reduced computation.

TABLE III
RECONFIGURATION WITH UNCERTAINTY

32-BUS SYSTEM

SC FMIP HC FMIP SMIP

Optimal solution-
open switches

7-8,11-
12,14-
15,18-

33,25-29

7-8,11-
12,14-
15,17-

18,25-29

7-8,11-
12,14-
15,17-

18,25-29
loss

(nominal load) 134.47 138.30 138.94

B. 86-bus Test System

The second test system, depicted in Fig. 5, contains 86
load buses, three supply buses, and 96 branches [3]. Only
28 branches are equipped with switches. The lines with
blank boxes show normally open switches. The system
includes 9 battery storage units on buses 23, 28, 51, 52, 63,
70. 76, 81, and 87. The batteries’ capacity and maximum
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TABLE IV
BATTERY DISCHARGE WITH UNCERTAINTY

32-BUS SYSTEM

SC FMIP HC FMIP SMIP
Bus kW

9 18.71 16.99 15.02
17 12.69 12.18 10.76
18 22.56 19.87 17.54
22 22.96 25 24.84
30 24.87 25 22.90

TABLE V
COMPARISON OF THE APPROACHES

32-BUS SYSTEM

Deterministic SC FMIP HC FMIP SMIP
Infeasible
scenarios

(%)
54 20.2 4.49 4.52

Computation
time (s) 0.5 1.32 49

charge/discharge rates are 150 kWh and 100 kW, respec-
tively. These values are considered based on the system
nominal load in [3]. Similar to the previous example, the
DFS-based cycle detection approach is employed to detect
possible loops assuming that all the switches are closed and
1949 loops are detected.

1) Deterministic DSR: System nominal load in [3] is
used for the deterministic optimization. The optimal system
configuration and scheduled output power from batteries
obtained by deterministic MIP are exhibited in Table VI.
Table VI includes two calculated system loss: new configu-
ration with and without battery units. The obtained topology
reduces the active power loss by 18.4%.

TABLE VI
DETERMINISTIC RECONFIGURATION

86-BUS SYSTEM

Parameter Result

Optimal solution- open
switches

12-61,13-76,14-
17,15-19,18-
34,20-24,20-
36,23-25,39-
43,48-69,50-

51,52-85,70-86
Total battery output

(kW) 711.57

Loss- configuration,
without battery 1691.6

Loss- new
configuration, with

battery (kW)
1630.9

Loss- original system
(kW) 2070.7

2) DSR with load uncertainty: The same load uncertainty
characteristics explained in section III-A-2 are considered
for this test system as well. Table VII shows the reconfigu-
ration results obtained by SC FMIP, HC FMIP, and SMIP.
Power flow is run for the results obtained by these algorithms
(system topology and batteries scheduled output power)
when the system nominal load is used. The calculated active

power loss is shown in Table VII. HC FMIP and SMIP give
the same configuration with minor differences in battery
discharges. The results are tested on 5000 scenarios with
different loads. As shown in Table VIII, HC FMIP and SMIP
have a similar level of robustness (HC FMIP gives a slightly
more robust solution with more power extracted from the
batteries). Given the fact that HC FMIP is much faster than
SMIP, it is recommended to use this approach for real-time
applications.

TABLE VII
RECONFIGURATION WITH UNCERTAINTY

86-BUS SYSTEM

Parameter SC FMIP HC FMIP SMIP

Optimal solution-
open switches

12-61,13-
76,14-
17,15-
19,20-
24,23-
25,23-
26,38-
64,39-
43,40-
46,50-
51,52-

85,70-86

12-61,13-
76,14-
17,15-
19,18-
34,20-
24,23-
26,23-
27,38-
64,40-
46,50-
51,52-

85,70-86

12-61,13-
76,14-
17,15-
19,18-
34,20-
24,23-
26,23-
27,38-
64,40-
46,50-
51,52-

85,70-86
Total battery output

(kW) 730.69 785.19 768.15

loss
(nominal load) 1662.6 1811.8 1818.8

TABLE VIII
COMPARISON OF THE APPROACHES

86-BUS SYSTEM

Deterministic SC FMIP HC FMIP SMIP
Infeasible
scenarios

(%)
35.6 12.7 3.3 3.34

Computation
time (s) 1.3 2.6 650

IV. CONCLUSION

This paper presents a robust MIP-based reconfiguration
method to minimize loss in distribution systems. Radial-
ity constraint is guaranteed by employing a DFS-based
approach. This algorithm detects all the possible cycles
assuming all the switches are closed in the system. Then, the
optimization can guarantee the radiality of the distribution
system by opening at least one switch in each loop. This
leads to fast reconfiguration optimization even for large
systems since the cycle detection approach is performed in
off-line. Since distributed battery storage units are getting
increased attention in distribution networks, mainly due to
renewable integration and peak shaving purposes, this study
analyzes the reconfiguration process assuming that there are
battery storage units in the system. Due to insufficient mea-
surements and increasing deployment of renewable resources
and demand response programs in distribution grids, uncer-
tainty in loads will be an important challenge for practical
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Figure 5. 86-bus test system

reliable distribution reconfiguration. Two different methods
based on FMIP and SMIP are proposed to obtain robust
topologies which are feasible for various load scenarios. It
is shown that SMIP and FMIP both lead to more robust
results, which are feasible for most possible load scenarios.
The FMIP achieves nearly identical robustness with far less
computation time and as such it may be preferable to use
this approach for real-time applications. It is worth noting
that the loss minimization DSR can also be expanded over
a larger simulation period, e.g. 24 hours. In this case, the
optimal configuration and battery scheduling (charging and
discharging) will be calculated so that the total system loss
will be minimized over 24 hours. This will be investigated
in the authors’ future work.
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