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Abstract 
Demand response is a key mechanism for 

accommodating renewable power in the electric grid. 

Models of loads in demand response programs are 

typically assumed to be known a priori, leaving the load 

aggregator the task of choosing the best command. 

However, accurate load models are often hard to 

obtain. To address this problem, we propose an online 

learning algorithm that performs demand response 

while learning the model of an aggregation of 

thermostatically controlled loads. Specifically, we 

combine an adversarial multi-armed bandit framework 

with a standard formulation of load-shifting. We 

develop an Exp3-like algorithm to solve the learning 

problems. Numerical examples based on Ontario load 

data confirm that the algorithm achieves sub-linear 

regret and performs within 1% of the ideal case when 

the load is perfectly known. 

 

 

1. Introduction  

 
The random nature of wind and solar power 

necessitates new sources of flexibility in power systems. 

Demand response, paying loads to modify their 

consumption to benefit the power system, can help 

accommodate renewables, improve power system 

efficiency, and ensure that supply and demand balance 

at all times [1]–[3]. Therefore, efficient and easy-to-use 

demand response (DR) models are a key development 

to average the demand and, thus, add flexibility to the 

power grid. In this work, we use thermostatically 

controlled loads (TCLs) to flatten the total power 

demand over time [4]–[6]. 

However, a fundamental challenge arises in DR: one 

must precisely know the model of the loads. 

Characterizing loads is difficult for several reasons, 

such as high number of the load, remoteness and 

inability to perform pilot studies. To address this 

challenge, we propose an online learning algorithm [7], 

[8] that learns the parameters of TCLs while using them 

for DR. Our approach allows, therefore, the aggregator 

to avoid any on-site measurement which would require 

an important deployment of resources. 

The proposed approach is based on the multi-armed 

bandit framework [9], [10]. More precisely, the 

adversarial version [11] of the multi-armed bandit 

framework is used to determine which model or 

combination of models best fits the load. In this setting, 

each arm represents a potential model (set of thermal 

parameters of the load). The aggregator’s or player’s 

task is to simultaneously shift load while determining 

which arm yields to the best performance. We quantify 

performance in terms of a loss function, defined as the 

deviation from the predicted total power consumption to 

the observed one. This is the only observation that the 

aggregator has access to. Consequently, the aggregator 

does not have access to the feedback for all his potential 

model (arms), but only for the selected one. This limited 

feedback corresponds to the bandit setting, as opposed 

to the full information expert framework [9].  

The multi-armed bandit was first formulated in [12] 

and later solved by the same author in [13]. Since the 

first formulation, the original problem has been divided 

into several families of bandit problem [10] which all 

express the exploration-exploitation tradeoff according 

to a different type of arm. In the stochastic bandit, the 

arms are characterized by an unknown probability 

distribution function and the player is looking to 

maximize its expected gain. The player’s best strategy 

is then to build a policy based on the experimental mean 

gain using to the UCB family of algorithms [14]. On the 

other hand, in the adversarial bandit the gain (or loss) is 

fixed (randomly or deterministically) by an opponent or 

Nature. In this case, the best strategy can be found using 

the Exp3 family of algorithms [11]. Here we employ 

this version of the bandit problem. Finally, the third 

family of bandit is the Markovian bandit.  The classical 

Markovian bandit and its restless extension can be 

solved using index policies derived respectively in [15] 

and [16]. 

More recently, these theoretical frameworks have 

been applied to demand response. For example, in [17], 
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[18], Markovian bandits were used to obtain a policy for 

curtailing TCLs. Then, in [19], the stochastic bandit was 

used to learn the curtailment signal response by the 

consumer. Online convex optimization has also been 

used in the demand response literature [20]–[23]. The 

proposed online formulation differs from all mentioned 

work and uses the adversarial bandit to directly learn 

load parameters which are central to the DR problem. 

The novel contributions of our approach are: 

 We apply bandit learning to load-shifting with 

TCLs. Specifically, we learn their models while 

utilizing them for DR. 

 We invoke theoretical regret bounds from the 

literature that guarantee the performance of our 

approach. 

 Our approach can flexibly accommodate a 

variety of load models.  

 

2. Background 

 
2.1. Load parameters 

 
A TCL is characterized by the following thermal 

parameters [4]–[6]: 

(i.) 𝑅, the thermal resistance [C/kW]; 

(ii.) 𝐶, the thermal capacitance [kWh/C]; 

(iii.) 𝜂, the coefficient of performance (COP); 

(iv.) 𝑃𝑟 , the thermal transfer power rate [kW]. 

Let 𝑦(𝑡) denote the control variable of the cooling or 

heating system. 

 

2.2. Load power consumption 

 
Let 𝑁 denote the number of TCLs and 𝑀 be the 

number of time instants of length ℎ in a day. Let 𝑝𝑛 =
ℎ 𝑃𝑟𝑛

/𝜂𝑛 and 𝐩 ∈ ℝ𝑁, be the vector 

[
ℎ𝑃𝑟1

𝜂1
,

ℎ𝑃𝑟2

𝜂2
, … ,

ℎ𝑃𝑛

𝜂𝑛
]

T

. Finally for the controls, let 𝑦𝑛 =

[𝑦𝑛(0)  𝑦𝑛(1)  … 𝑦𝑛(𝑀 − 1)]T denote the control 

vector for the 𝑛-th TCL. Then, the set of controls for all 

TCLs is expressed by 𝐘 ∈ ℝ𝑀×𝑁 and is given by, 

 𝐘 =  [

| | … |
𝐲1 𝐲2 … 𝐲𝑁

| | … |
]. (1) 

The power consumption at time 𝑡 of the 𝑛-th TCL is, 

 𝐶𝑛(𝑡) = 𝑦𝑛(𝑡)𝑝𝑛, (2) 

and the total power consumption in the grid at each time 

instance is given by the following equation. 

 𝐶(𝑡) =  ∑ 𝑦𝑛(𝑡)𝑝𝑛

𝑁

𝑛=1

+ 𝑏(𝑡), (3) 

for all 𝑡 = 1, 2, … 𝑀 − 1 where 𝑏(𝑡) is the inflexible 

baseload at time 𝑡. Equivalently, 

 𝐂 = 𝐘𝐩 + 𝐛, (4) 

where 𝐛 ∈ ℝ𝑀 is the base-load vector.  

 

2.3. Load constraints 
 

The temperature of a thermostatically controlled 

load like a house or commercial building is constrained 

by its occupants’ comfort requirements. This is often 

represented as a dead-band around a nominal desired 

temperature [4], [5], [24]. Let 𝜃𝑑 be the desired 

temperature and Δ be the dead-band width. Let 𝜃− and 

𝜃+ be respectively the lower and upper bounds of the 

dead band defined as, 

 𝜃− = 𝜃𝑑 − Δ ,          𝜃+ =  𝜃𝑑.   (5) 

Next, the discrete-time model developed by [25]–

[27] is used to model the temperature inside the TCLs 

subject to ambient temperature changes and to the 

operation of the cooling system. This model is given by 

 
𝜃𝑛(𝑡 + 1) =  𝑎 𝜃𝑛(𝑡) +  (1 − 𝑎)[𝜃𝑎𝑚𝑏𝑛

(𝑡)  

   − 𝑦(𝑡)𝑅𝑛𝑃𝑟𝑛
] +  𝑤(𝑡), 

(6) 

where 𝑎 = e
−

ℎ

𝑅𝑛𝐶𝑛, 𝑤(𝑡) represents system noise, 𝜃𝑎𝑚𝑏  

is the ambient (outside) temperature. Finally, 𝑦(𝑡) ∈
{0,1} is the control variable sent to the cooling system. 

For further comparison, let 𝑦𝑁𝑜𝐷𝑅(𝑡) be the control 

variable when no DR is attempted. [25] defined this 

control variable as, 

 𝑦𝑁𝑜𝐷𝑅(𝑡 + 1) = {

0, if  𝜃(𝑡 + 1) <  𝜃−

𝑦𝑁𝑜𝐷𝑅(𝑡), if 𝜃(𝑡 + 1) ∈ [𝜃−, 𝜃+]

1, if  𝜃(𝑡 + 1) >  𝜃+

. (7) 

 

2.4. Optimal offline load-shifting 

 
In this section, a DR model is presented. This DR model 

aims at flattening the load while ensuring that the 

temperature of each TCLs is at all time inside its dead-

band. This model uses the aggregated power 

consumption and the base-load instead of listed prices 

as used in [4] to directly target load averaging instead of 

financial savings. 

Given the base-load 𝐛 of the time period and all 

thermal parameters of the TCLs, the set of controls Y 

that averages the power demand and ensures a 

temperature inside the dead-band is the optimum of the 

following problem: 

 

      min
𝐘∈ℝ𝑁×𝑀

      || 𝐘𝐩 + 𝐛||2  

subject to     𝟎 ≤ 𝐘 ≤ 𝟏 

                           𝜽− ≤ �̂�𝜽(0) +
                                        𝓧�̅�𝑎𝑚𝑏 + 𝓐𝐘 ≤  𝜽+ 

(8) 

where the over-line over a matrix is the unfolding 

operator (all columns of the matrix are stacked to form 

a vector).  
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In this optimization problem, the 𝐿2-norm is used to 

discourage variation in the power consumption and 

hence fill valleys in the base-load. The second constraint 

is the vector version of (6) for all time-steps and all 

TCLs. Finally, the first constraint is a relaxed version of 

the previously stated definition of the set of controls. In 

this relaxation, the convex hull is considered and all 

values inside the 0-1 interval are permitted for the 𝐘 

variable. Note that this relaxation is not required to fit 

the theoretical framework and that a non-convex 

programs could still be used in the bandit framework. 

This relaxation is used in our simulation to allow the 

optimization problem to be convex and hence to be 

efficiently solved numerically using cvx [28], [29] and 

MOSEK [30]. In the context of TCLs, this relaxation 

means that one can set the intensity of the cooling 

system rather than only turning it on or off. 

 

3. Optimal online load-shifting 

 
Our objective is to optimally flatten the load to the 

best of the aggregator’s knowledge while, at each round, 

improving his knowledge of the load. Indeed, at each 

time step (round) a prediction of the actual parameters 

of the TCLs is made and then using the feedback from 

the load, the prediction is improved for the next round. 

Hence, to handle an uncharacterized load, an online 

learning algorithm can be deployed. 

In the following sections, since the power 

consumption of a load can be easily accessed by the 

aggregator, the focus will be given on learning the 

thermal transfer rate 𝑃𝑟  which is directly related to the 

TCL power consumption (cf. equation (2) and (3)). 

For the present online model, the following 

assumptions are made, 

Assumption 1. the aggregator has access to an 

accurate estimate of the next day 

base-load b; 

Assumption 2. the aggregator has access to an 

accurate estimate of the next day 

ambient temperature 𝜃𝑎𝑚𝑏; 

Assumption 3. the thermal capacitance C and 

thermal resistance R of the TCLs 

are known and constant; 

Assumption 4. the aggregator observes the 

aggregated power consumption 

of all TCLs. 

Note that Assumption 3 could be dropped in future 

extensions where the aggregator has access to a 

feedback on the temperature. Alternatively, a learning 

algorithm could be applied to learn these two parameters 

as well. 

Due to the non-convex loss function that will be 

given in the next section, an expert-like approach is 

used. Let 𝐾 be the number of arms and 𝜅 be the set of 

arms. Then, each arm represents a potential model for 

the load. The algorithm must then choose which one 

yields to the minimum loss when playing it. Multi-

armed bandit problems balance the tradeoff between 

exploration, in this case testing different arms, and 

exploitation, using the arms that appears best at present 

[10]. In this context, the aggregator has to look for the 

model that best represents the loads while trying to 

flatten the power usage. This is opposed to the full 

information settings where the loss for each model 

would be observed [9]. Indeed, since the only feedback 

is the power usage which is a function of the model, only 

the power consumption of the computed control with 

respect to the predicted model can be observed.  

Hence, this problem can be modeled as an 

adversarial bandit where the adversary fixes the loss for 

each model at each time instant without knowledge of 

the player’s strategy. This makes the process an 

oblivious game. Therefore, a natural choice of algorithm 

to shift load while learning the model of the load is 

based on the Exponential weights for Exploration and 

Exploitation algorithm (Exp3) [10], [11]. This 

algorithm enjoys sublinear regret bounds and uses 

randomization to deal with the exploration and 

exploitation tradeoff. The algorithm functions by 

evolving a probability distribution over the arms, and in 

each time period sampling an arm from the distribution. 

 

Remark 1. (Time-scale) Note that our approach uses 

two different time-scales. The first one is the intra-day 

load-shifting time step and is represented by ℎ. This 

time-scale is only used by the DR optimization problem 

and is used for load flattening. The second time-scale 

represents rounds 𝑡 for the online learning algorithm and 

has a length of a day. 

 

Remark 2. (State reset) To ensure that all the bandit 

framework’s assumptions are respected, the state 

(temperature) is reset between each round to the initial 

temperature which corresponds to the dead-band upper 

bound. This mathematical assumption is made to make 

sure that each round is not a function of the previous 

ones and hence to ensure that the adversary is oblivious. 

Note that in the TCLs setting, the reset has only a very 

small influence since the final temperature should be 

approximatively given by the dead-band upper bound.  

 

3.1. Regret 

 
The performance of an online algorithm is defined 

by its cumulative regret. This regret represents the loss 

incurred by the player's choice compared to the minimal 

loss suffered if the best arm (model) was always picked. 

Let 𝑅𝑇 be the cumulative regret at round 𝑇, 
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 𝑅𝑇 = ∑ ℓ(𝐼𝑡 , 𝑍𝑡) − min
𝑖∈𝜅

∑ ℓ(𝑖, 𝑍𝑡)

𝑇

𝑡=1

𝑇

𝑡=1

, (9) 

where ℓ is the loss function, 𝐼𝑡 the choice of arm at time 

𝑡 and 𝑍𝑡 is the observation following Nature’s choice of 

model. This choice corresponds to the actual load 

parameters and can be indirectly observed as the 

aggregated power used at round 𝑡. Taking into 

consideration the randomization of the player, the 

expected regret is, 

 𝔼[𝑅𝑇] = 𝔼 [∑ ℓ(𝐼𝑡 , 𝑍𝑡)

𝑇

𝑡=1

] −  min
𝑖∈𝜅

∑ ℓ(𝑖, 𝑍𝑡).

𝑇

𝑡=1

 (10) 

Observe that the adversary is oblivious because 

Nature always selects the observation 𝑍𝑡 using the true 

load model. Also, note that Nature’s strategy is 

deterministic (for each round there exists a one-to-one 

mapping from the chosen arm to a unique loss value). 

For this reason, the expected regret can be expressed as 

(10). Hence only 𝐼𝑡 is a random variable and the 

expected value is computed with respect to the 

randomized strategy. We seek an online learning 

algorithm that achieves sublinear regret, which implies 

that it improves with each time step. 

 

3.2. Loss function 

 
We quantify the performance of the algorithm in 

each time step with the loss function 

 ℓ(𝑖𝑡 , 𝑍𝑡) = 1 − exp [
−|𝟏T𝐘(𝑖𝑡)𝐩(𝑖𝑡) − 𝑍𝑡|

𝛼
] , (11) 

with 𝛼 > 0 and where 𝑍𝑡 = 𝟏T𝐘(𝑖𝑡)𝐩real represents the 

observed power consumption. 𝑖𝑡 denotes the selected 

arm at time 𝑡 and is an element of 𝜅. This value will be 

discussed in the next section. 𝛼 is a positive tuning 

factor for controlling the size of the loss function. Note 

that ℓ(𝑖𝑡 , 𝑍𝑡) ∈ [0,1] ∀ (𝑖𝑡 , 𝑍𝑡). Then, the optimal load 

shifting strategy for the arm 𝑖𝑡 is given by, 

 𝐘(𝑖𝑡) = argmin
𝐕∈ℱ(𝑖𝑡)

|| 𝐕𝐩(𝑖𝑡) + 𝐛||2, (12) 

where the feasible set is as discussed in Section 2: 

 
ℱ(𝑖𝑡) = {𝐘 ∈  ℝ𝑀×𝑁 | 𝟎 ≤ 𝐘 ≤ 𝟏, 

            𝜽− ≤ �̂�𝜽(0) + 𝓧�̅�𝑎𝑚𝑏 + 𝓐(𝑖𝑡)𝐘 ≤  𝜽+}. 
(13) 

 

Remark 3. (Choice of approach) The online problem as 

stated is not convex in 𝐩 (the learned parameter) and 

hence other online approaches like online gradient 

descent [31] or online mirror descent [7] cannot be used. 

To overcome this problem, an expert-like or bandit 

algorithm is used.  
 

We also make use of estimates of the loss function 

for unselected arms. We use the unbiased estimator 

proposed in [10]: 

 ℓ̃(𝑖, 𝑍𝑡) =
ℓ(𝑖, 𝑍𝑡)

𝑞𝑖(𝑡)
𝕀𝐼𝑡,𝑖, ∀ 𝑖 = 1, 2, … , 𝐾, (14) 

where 𝕀𝐼𝑡,𝑖 is an indicator function and 𝑞𝑖(𝑡) is the 

probability mass associated with the 𝑖-th model.  

 

3.3. Models (a.k.a. arms) 

 
Each arm is a candidate set of parameters that 

models the load aggregation. Here, each TCL has an 

unknown parameter 𝑃𝑟  which lies in the interval 

[𝑃𝑟𝑚𝑖𝑛
, 𝑃𝑟𝑚𝑎𝑥

] [6], [32]. This approach is similar to [24], 

in which experts represent different models of TCL 

aggregations. Each of the 𝐾 arms is given by 

 𝐴𝑟𝑚𝑘 = [𝑢1
𝑘   𝑢2

𝑘  …  𝑢𝑁
𝑘 ] , (15) 

where 𝑢𝑖
𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[𝑃𝑟𝑚𝑖𝑛

, 𝑃𝑟𝑚𝑎𝑥
] . 

Note that more arms, i.e. a larger value of 𝐾, 

increases the chances that there is a better model in the 

set of arms, but also increases the time needed for the 

algorithm to converge to the best arm or combination of 

arms. 

 

3.4. Proposed algorithm for DR  

 
We now give the algorithm, Exp3 for DR, for 

learning while load-shifting. Then, theoretical bounds 

on the regret are given in Proposition 1 and in 

Proposition 2. 

 

Remark 4. (Exp3 for DR is an Exp3 algorithm) The DR 

problem with a partially uncharacterized load described 

here fits the multi-armed bandit framework which can 

be solved, with sub-linear regret, using the Exp3 

algorithm [9]–[11]. The application of Exp3 to the DR 

context respects all assumptions and hence is an Exp3 

algorithm. 

 

Proposition 1. (Bounded regret of Exp3 for DR) Let 𝐾 

be the number of models, 𝑡 the rounds and T the time 

horizon. If 𝜂𝑡 = √
ln 𝐾

𝑡𝐾
, the expected regret of  Exp3 for 

DR is bounded by, 

 𝔼[𝑅𝑇] ≤  2√𝑇𝐾 ln 𝐾. (16) 

The proof is given in [10] for the Exp3 algorithm for the 

pseudo-regret �̅�𝑇. Then, [33] showed that 𝔼[𝑅𝑇] = �̅�𝑇 

when the adversary is deterministic, yielding to the 

previous result.  

Proposition 1 implies that the proposed algorithm 

asymptotically converges to the best probability 

distribution over the arms. This implies that the 

aggregator will asymptotically achieve optimal 

averaging with respect to the sampled models without 

any prior knowledge of the load power transfer rate. 
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Exp3 for DR is also subject to a lower bound in its 

regret. In other words, Exp3 for DR will always commit 

a certain error yielding to a regret always greater than a 

certain constant. This is a consequence of the 

randomization of the forecaster [10]. The result is given 

in Proposition 2. 

 

Algorithm 1. Exp3 for DR 

Parameters: Given 𝑅 and 𝐶 for all TCLs, the base-

load 𝐛𝑡  ∀ 𝑡 = 1, 2, … and 𝐾 the number of models. 

Initialization: Sample the set of models  𝜅, set 

𝑞𝑖(0) =
1

𝐾
  ∀  𝑖 =  1, 2, … , 𝐾 and set the learning 

rate 𝜂1 = √
ln 𝐾

𝐾
. 

 

for 𝑡 = 1, 2, … do  

 Sample a model 𝐼𝑡 according from the 

probability distribution 𝑞𝑖(𝑡); 

 Solve the DR optimization problem with 

model 𝐼𝑡, 

𝐘(𝐼𝑡) = argmin
𝐕∈ℱ(𝐼𝑡)

|| 𝐕𝐩(𝐼𝑡) + 𝐛||2 

and send the control to the load. 

 Observe the power usage of the aggregated 

load 𝑍𝑡 

 Compute the estimated loss of each model, 

ℓ̃(𝑖, 𝑍𝑡) =
ℓ(𝑖, 𝑍𝑡)

𝑞𝑖(𝑡)
𝕀𝐼𝑡,𝑖 , ∀ 𝑖 = 1, 2, … , 𝐾 

with ℓ(𝑖, 𝑍𝑡) = 1 − exp [−|𝟏T𝐘(𝑖)𝐩(𝑖) −
𝑍𝑡|/𝛼] 

 Update the cumulative estimated loss for all 

model 𝑖, 

�̃�𝑖(𝑡) = �̃�𝑖(𝑡 − 1) + ℓ̃(𝑖, 𝑍𝑡) 

 Decrease the learning rate, 𝜂𝑡 = √
ln 𝐾

𝑡𝐾
 

 Update the probability distribution over all 

models, 

𝑞𝑖(𝑡 + 1) =
e−𝜂𝑡�̃�𝑖(𝑡)

∑ e−𝜂𝑡�̃�𝑗(𝑡)
𝑗∈𝜅

 

end 

 

 

Proposition 2. (Minimax lower bound of Exp3 for DR) 

Let 𝐾 be the number of models and 𝑇 the time horizon, 

then the expected cumulative regret is lower bounded 

by, 

 𝔼[𝑅𝑇] ≥  
1

20
√𝑇𝐾. (17) 

The proof is given in [10] for Exp3.  

 

Remark 5. (Dynamical Model) Due to the 

randomization, the exploration phase is always present 

in the player’s strategy. This allows the online model to 

dynamically adapt its strategy if there is a change in the 

load parameters (e.g. due to seasonal change or to a 

broken cooling system). 

 

4. Numerical example 

 
We now present numerical results obtained with the 

proposed model. Ontario's base-load is used to simulate 

real values for 𝐛. Note that the base-load is scaled down 

by a factor of 2500 since only a few TCLs are used in 

this simulation. For the following simulation, 𝐾 the 

number of models, is fixed to 20 and the number of 

TCLs is fixed to 𝑁 = 10. The optimal load shifting 

algorithm is executed for each day using an arm selected 

by the learning algorithm. Each day corresponds to an 

iteration of the learning algorithm and the simulation is 

computed over a period of 730 days with a load-shifting 

time step ℎ = 5 minutes. 

We limit the population to 10 TCLs so that we can 

run the simulation for two years with a reasonable 

amount of computation time. In a real implementation, 

there would be one iteration per day, and thus we could 

accommodate a far larger population of TCLs. 

For the TCL, the 𝑅, 𝐶 and 𝜂 values are fixed to 

3C/kW, 12 kWh/°C and 2.5 respectively for all units 

and 𝑤(𝑡) is omitted. The 𝑃𝑟  are sampled randomly using 

the same prior distribution as the models with 𝑃𝑟𝑚𝑖𝑛
=

10 kW and 𝑃𝑟𝑚𝑎𝑥
= 18 kW. Lastly, we fix 𝜃𝑑 = 23℃ 

and Δ = 1℃ for all TCLs. All TCL parameters are fixed 

according to [32]. 

To represent the variation in temperature throughout 

the day, a simplified version of [34] is used for the 

ambient temperature. The simplified model is given by, 

 𝜃𝑎𝑚𝑏(𝑡) = 𝜃𝑚𝑎𝑥 |sin
2𝜋𝑡

2𝑀
| + 𝜃𝑚𝑖𝑛 , (18) 

with 𝜃𝑚𝑎𝑥 = 10℃, 𝜃𝑚𝑖𝑛 = 21℃ and recall that 𝑀 is the 

number of load-shifting time step in a day and is equal 

to 288. Finally, we fix the loss function tuning parameter 

𝛼 = 4. 

 

4.1. Regret analysis  

 
We plot the estimated cumulative regret of the 

proposed model is first presented in Figure 1 with its 

lower and upper bounds. Figure 1 shows that the 

cumulative regret is sub-linear and, therefore, as stated 

in Section 3.4, will converge to the best sampled model. 

 

4.2. Demand response performance analysis 

 
We now compare the performance of the learning 

algorithm to the case where the true parameters are 

known by the optimal load-shifting routine. A metric is 
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defined to allow this comparison. The relative demand 

flattening ratio, Δ, is given by, 

 Δ =
‖𝐘𝑐𝑜𝑚𝑝𝐩 + 𝐛‖

2
− ‖𝐘𝐸𝑥𝑝3 𝑓𝑜𝑟 𝐷𝑅𝐩 + 𝐛‖

2

‖𝐘𝑐𝑜𝑚𝑝𝐩 + 𝐛‖
2 , (19) 

where the subscript 𝑐𝑜𝑚𝑝 stands for the case to which 

the algorithm is compared to. Table 1 compares the 

performance of the algorithm with this indicator for two 

cases. First against the ideal case where the real TCLs 

parameters are known and second against the case 

where no DR is attempted. 

 

 
Figure 1. Estimated cumulative regret of 

Exp3 for DR 

 
Table 1. DR performance for the proposed 

learning algorithm 

Comparison Δ 

vs. ideal case 0.35% 

vs. No DR -11.50% 

 
The ideal case comparison in Table 1 shows that the 

performance of the algorithm is similar to the DR 

problem in which all parameters are known. This 

motivates thus the use of such an algorithm for demand 

response instead of other algorithms that required a 

significant amount of on-site measurement. Using a 

better prior when sampling the models could improve 

performance further. Nevertheless, a non-zero deviation 

is unavoidable since at some point the algorithm will, in 

its exploration phase, test high-loss models. Therefore, 

asymptotically, one will perform as well as the best arm 

or combination of arms available from the sampling 

step. 

The averaging performance indicator with respect to 

the no DR case is high which shows the averaging 

ability of the approach. However, note that (19) is a 

function of the base-load which has been scaled down 

to better represent the ratio of power used by TCLs on 

the base-load. Therefore, such an indicator will be a 

function of the scaling factor and of the number of 

considered TCLs. 

To illustrate the power usage and demand averaging 

in the grid, two figures are presented here. In Figure 2, 

the power usage of the TCLs is shown for the three 

stated scenarios: the proposed bandit-learning approach, 

the ideal case when all parameters are known exactly 

and finally for the scenario where no DR is attempted. 

These three scenarios are respectively labeled bandit, 

ideal and NoDR. 

 

 
Figure 2. Power usage of the TCLs for the 

last five days of the simulation 
 

 
Figure 3. Total power usage (TCLs + base-

load) for the five last days 
 

Figure 2 shows that similarity of the ideal and bandit 

curves is high and that the approach avoids daily peaks 

encountered in the no-DR case. Figure 3 shows the 

averaging ability of the model. In both figures, the ideal 

and bandit curves are almost perfectly superimposed 

reflecting the learning performance. Note that the model 
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shifts daytime loads to the night time valleys in the base-

load.  

Lastly, Figures 4 and 5 show the exploration-

exploitation process underlying the multi-armed bandit. 

We see that the 16th arm has the largest probability and 

has been selected the most often after 730 iterations of 

the learning algorithm. This is then illustrated by the 

high probability of the 16th arm presented in Figure 5. 

 
Figure 4. Distribution of the chosen models 

after 730 rounds (2 years) 
 

 
Figure 5. Probability mass distribution 𝑞𝑖(𝑡) 

of the models after 730 rounds (2 years) 
 

 

5. Conclusion  

 
In this work, we address load uncertainty in demand 

response. By using an adversarial multi-armed bandit 

framework, the aggregator can select the best model 

from an arbitrary set of candidate models. In the present 

case, the aggregator goal is to average the power 

demand. Numerical simulations showed the advantage 

of using this approach. 

In future works, the online model will be extended 

to address the problem of a totally uncharacterized load 

by adding feedback on the temperature of the load and 

extending sampled models to other load parameters. 
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