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Abstract

The evolution of the power system to the reliable, ef-
ficient and sustainable system of the future will involve
development of both demand- and supply-side technology
and operations. The use of demand response to counterbal-
ance the intermittency of renewable generation brings the
consumer into the spotlight. Though individual consumers
are interconnected at the low-voltage distribution system,
these resources are typically modeled as variables at the
transmission network level. In this paper, a vision for co-
optimized interaction of distribution systems, or microgrids,
with the high-voltage transmission system is described.
In this framework, microgrids encompass consumers, dis-
tributed renewables and storage. The energy management
system of the microgrid can also sell (buy) excess (neces-
sary) energy from the transmission system. Preliminary work
explores price mechanisms to manage the microgrid and its
interactions with the transmission system.

Wholesale market operations are addressed through the
development of scalable stochastic optimization methods
that provide the ability to co-optimize interactions between
the transmission and distribution systems. Modeling chal-
lenges of the co-optimization are addressed via solution
methods for large-scale stochastic optimization, including
decomposition and stochastic dual dynamic programming.

Index Terms—renewable energy, microgrid, responsive de-
mand, stochastic optimization

1. Introduction

Power system operation involves scheduling generating
technologies, differing in capacity and capability, to meet
demand that is distributed across the network. The risk
and uncertainty associated with system operation increases
with the introduction of new generation and consumer-based
technologies. Additionally, system operation is constrained
by line power transfer capabilities, generator minimum and
maximum output limits, ramping capabilities, and the prob-
ability of contingencies. The integration of intermittent re-
newable generating technologies increases the uncertainty in
the operation of the network (adding to existing uncertainty
from demand, and generator and line outages, for example).
The introduction of consumer-based (distributed) generation

and the increasing presence of microgrids further affect the
historical net-load patterns that utilities have relied upon for
planning purposes. Stochastic optimization offers a rigorous
method to address optimal management in power system
economic dispatch, unit commitment, and investment plan-
ning processes.

The uncertainty and variability of renewable power gen-
eration can be characterized through sophisticated resource
forecasting followed by modeling the aggregated power
output from wind farms and solar fields. However, it is
difficult to accurately represent the underlying stochastic
processes of renewable resources. In addition to the mathe-
matical challenge, inadequate representation of uncertainty
can lead to costly or infeasible decisions based on erroneous
information [1]. Other technologies in the power system
must be available for mitigating the varying power output
from intermittent renewables.

Initial efforts to balance variability or renewable re-
sources have relied upon varying the output of conventional
generating technologies. More recently, responsive demand
is being included as an important network resource that
can mitigate renewables’ variability. Responsive demand has
the benefit of being distributed throughout the network and
being capable of rapid deployment, as well as requiring
little additional infrastructure. Due to these advantages, the
use of responsive demand for uncertainty management has
been explored in many recent works, including [2], [3],
[4], [5], [6], [7], [8]. These projects share the commonality
of integrating responsive demand and renewables into the
transmission system operations (and have paid less attention
to the distribution system level).

The power system modeling framework introduced in
this paper relies upon the fact that a significant portion of
flexible loads are managed within the energy management
system of the distribution system, potentially organized into
microgrids, in which commercial and residential consumers
are interconnected with distributed generation. To date there
has been little work in the co-optimization of the high- and
low-voltage systems with renewables and responsive loads.
Therefore, the vision presented here is the development of a
comprehensive co-optimization framework that incorporates
the generation and transmission system with microgrids that
include responsive loads, distributed generation, intermittent
generation and storage. The interaction of these two complex
systems can be leveraged to manage the risk and uncertainty
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inherent in the future power system with a high penetration
of intermittent and distributed resources.

The modeling and simulation framework has four ele-
ments. The first element focuses on developing multi-area
renewable resource modeling methods that preserve both
spatial and serial correlations. This element incorporates
statistical- and optimization-based methods to generate sce-
narios for various classes of renewables, correctly correlated
in space and time. The second element investigates demand
response strategies to mitigate the impacts of renewables’
intermittency on operation costs through micro-grid model-
ing, that integrates the energy management of the microgrid
with the demand response strategies. The third element in-
vestigates the interaction between the low- and high-voltage
grids to manage congestion in the network and alleviate the
impact of intermittent renewables. This element incorporates
microgrid dynamics with the operational models of the
transmission grid, and investigates optimal locations and
interactions for microgrids in terms of transmission system
operation. The fourth element pulls from all elements in
the framework to develop a comprehensive stochastic co-
optimization framework that incorporates renewables, de-
mand response and storage with judicious decomposition
methods that ensure reliable solutions that are scalable to
large networks.

2. Background

2.1. Wholesale Electricity Markets for High- and
Low-Voltage Systems

The uncertainty and variability of renewables in the
future electric grid will require new paradigms for system
operation and management. The flexibility inherent in re-
sponsive loads is significant in enabling the use of these
environmentally benign technologies. However, the majority
of the existing research conducted on responsive loads has
focused either on the transmission system or the distribution
system. The framework presented here focuses on demand
response integration at the distribution level, coordinated
with operations at the transmission level, in order to best
understand the efficacy of these resources and the various
implementation programs under consideration.

Since the majority of renewable and traditional gener-
ation resources are controlled by independent system op-
erators at the transmission level, it is critical to incorporate
both levels of the power system into comprehensive analyses
of the use of responsive demand for managing risk and
uncertainty in the electric grid. The vision presented here
is novel in that it proposes large-scale co-optimization of
transmission- and distribution- level systems to allow accu-
rate modeling of the technology interactions. Participation of
microgrids and flexible distribution systems in the wholesale
electricity market will be a significant and enabling structure
for effective demand side participation.

Initial results are presented here and the broader frame-
work is designed to facilitate the co-operative optimization

of micro- and macro-grids. The framework will be tested
via case studies on increasingly large networks, with larger
networks representing different markets and regions. These
networks will be chosen for various characteristics and for
the purposes of testing scalability. The formulation and
solution methods developed as part of this project will be
generally applicable to different market structures across
North America.

2.2. Microgrids and the Smart Grid

The power system is built upon the interconnections of
generation, transmission and distribution, potentially orga-
nized as microgrids [9]. As continuous efforts are deployed
to build robust, reliable and resilient power networks to
mitigate the consequences of uncertain events, distribution
networks, the starting point of a significant proportion of
network failure, require special attention [9]. The future of
the existing power grid relies on moving toward a self-
healing system accommodating a variety of supply- and
demand-side technologies, including renewables and storage
facilities. In addition, the electric power system is evolving
due to pressures from smart grid technologies, restrictions
on pollutant emissions and the need to maintain low overall
cost. Distributed energy resources organized into microgrids
will play an increasingly important role in this evolution
through encouraging both greater installation of renewables,
such as rooftop solar and residential-agricultural scale wind
power, and also smart grid technologies such as smart meters
and automated demand response, typically implemented at
customer sites at low voltage levels [1], [10], [11], [12],
[13], [14], [15]. The vision presented here assumes that the
low-voltage system will be operated as a microgrid, with
smart grid technologies, to enable demand response and
coordination of distributed generation.

3. Framework for Optimizing the Future
Power System

The overarching objective of the modeling and analysis
framework presented here is the development of a scalable
co-optimization solution for transmission and distribution-
system-as-microgrid, that includes demand response, stor-
age and renewable resources. This solution incorporates
modeling and integration of responsive demand in the low
voltage system to assist in management of uncertainty in
the transmission system induced by renewable generation
sources and contingencies. To achieve this objective, the
framework includes four overlapping elements:

1) Develop new optimization and statistical ap-
proached to properly characterize the uncertainty,
spatial correlation, and serial correlation of renew-
ables, including solar and wind.

2) Identify and develop viable strategies and models
for integrating demand response in the low voltage
grid, and evaluating potential application to miti-
gating risk and uncertainty in the grid.

2976



1985 1990 1995 2000 2005 2010 2015
0

200

400

600

800

1000

1200

1400

1600

1800

Year

T
ril

lio
n 

B
tu

 

 

Solar/PV
Wind

Student Version of MATLAB

Figure 1. Solar/PV and wind consumption in the US from 1984 to 2015.

3) Incorporate elements 1 and 2 to examine the in-
teraction between the high-voltage and low-voltage
systems, with the objective of identifying operat-
ing strategies that improve the performance of the
combined, unified systems.

4) Building upon the first three elements, develop an
overall stochastic co-optimization framework that
includes transmission and distribution systems with
renewables, demand response, and storage capabil-
ities, and that is scalable to systems of any size.

3.1. Element 1: Multi-area renewable resources
modeling with spatial and serial correlations

Wind and solar/PV consumption in the US has been
increasing since the beginning of the twenty-first century
as depicted in Figure 1 (data from [25].) In 2015, renew-
able energy sources contributed about 13% to the total US
energy generation and accounted for about 10% of total
consumption. This indicates an important step towards the
20% renewable energy integration perspective by 2030. The
increasing renewable penetration, however, further compli-
cates the operation of the power grid as it introduces new
sources of uncertainty and variability in its management,
requiring more sophisticated decision support tools be de-
veloped.

The first element of the the framework focuses on inno-
vative methods to characterize the uncertainty in renewable
generation with specific focus on incorporating the spatial
and temporal correlations that are typically not well charac-
terized in existing methods.

Accurate renewable modeling is crucial as forecast-
ing errors may result in costly operating decisions. Ac-
curate models should take into consideration the correla-
tion structure, since renewable resources may be correlated
across areas because of similar meteorological conditions.
Several methods have been reported for wind speed/wind
power forecasting [26], [27], [28]; however, none of the

existing research has compared the performance of these
methods. In addition, other methods widespread in other
areas of stochastic programming [29], [30], [31] are not
effectively applied for renewable resources. Consistent with
[32], the modeling vision includes development of forecast-
ing/simulation methods based on non-linear optimization.
Initial investigations in this area are presented in Section 4.

The framework also recognizes the need to empirically
compare the performance of existing and alternative meth-
ods. One step in this element is to investigate statistical and
optimization-based methods to generate spatially and seri-
ally correlated renewable scenarios. Algorithms and meth-
ods comparisons on different problems and data sets will
provide conclusive insights, as an algorithm can outperform
another on some data sets and underperform on others.
The greater the number of tests included in testing, the
more valid the conclusions. An important second focus is to
perform numerical experiments with various data sets (for
different locations).

3.2. Element 2: Microgrid DR strategies to mitigate
intermittency in the transmission system

Previous work by the authors developed a mechanism to
facilitate significantly increasing distributed resource pene-
tration in the power system by coordinating their partici-
pation in electricity markets [21], [24], [33]. This frame-
work expands upon the earlier work by explicitly includ-
ing intermittent generation resources on the supply-side
and improving the sophistication of the demand response
resources through integration with the work done in [2].
The increased intelligence in power system facilities as the
smart grid continues to develop suggests that modeling these
facilities as intelligent agents is consistent with their actual
implementation. In addition, software running the devices
that will constitute microgrids and smart grid installations
is itself increasingly agent-based, supporting the modeling
and simulation of microgrid facilities as intelligent soft-
ware agents. The framework discussed here integrates prior
work into the earlier modeling framework developed by the
authors, focusing on co-optimization of transmission- and
distribution-level operations.

This second element thus focuses on the modeling of
demand-side resources in the low voltage network. This
element builds on previous work on agent-based methods in
[21], [24], [33], explicitly including intermittent generation
resources on the supply-side and improving the sophistica-
tion of the demand response resources. This element also ex-
plores alternative strategies to incorporate demand response
resources and develop novel demand response strategies and
models through microgrid modeling.

3.3. Element 3: Synergistic interactions and strate-
gies for the high-voltage- and micro-grids

The joint optimal and cooperative operation of
the distribution-system-as-microgrid with the high-voltage

2977



power network requires new modeling representations of the
unified system. In-depth understanding of technology and
system interactions is crucial in developing a joint optimiza-
tion model that captures the dynamics of the unified system.
A first step is determining which optimization approach(es)
best fit the cooperative operation of the unified system. This,
for example, may translate into a single objective, or a multi
objective or bi-level optimization problem.

Element three considers the interaction between the mi-
cro and macro grids to develop strategies for co-operative
optimization of these systems to optimize performance of
the entire power system. The approach includes analysis
of interactive effects, development of potential strategies
to encourage effective interaction, and assessment of the
impact of microgrid location on the transmission system.

Within Element 3, the effort includes developing an op-
timization framework that captures the microgrid dynamics
as well as its interaction with the high voltage network. This
effort to develop co-optimization framework will contribute
to the open question as to where to best locate microgrid,
and to incent effective interactions within the unified sys-
tem. This is envisioned to be addressed within a broader
perspective while tackling specific issues facing the bulk
power system such as congestion management.

3.4. Element 4: A comprehensive stochastic co-
optimization framework for the future power sys-
tem

The power system co-optimization framework intro-
duced here unifies the high-voltage transmission network
with interconnected microgrids. The microgrids contain the
interconnected intermittent renewable generating technolo-
gies, responsive demand, and storage. The framework anal-
ysis discussed here increases the size and complexity of the
power network computational problem, building upon the
strengths of efficient stochastic optimization methods and
algorithmic schemes. Several optimization algorithms have
been developed since the 1970s in an attempt to solve large
scale problems. Some of those algorithms are limited to
specific classes of problems while others have a broader
application scope. Problem structure provides insights on
strategies to tackle computational burden. For instance, in a
day ahead market structure, the decision making is divided
into two steps, specifically (i) the on/off status of the con-
ventional generators (the unit commitment decisions), and
(ii) the dispatch level of each committed unit as well as their
contribution to reserve requirements (the economic dispatch
decision). When the power network also comprises storage
facilities, economic dispatch also addresses the strategic
utilization of storage over the planning horizon, increasing
the decision space. The strategy for the framework presented
here is to investigate decomposition algorithms to address
the tractability of the problem.

This final element incorporates the lessons from the
other elements in the development of the co-optimization
framework that integrates the transmission and microgrid

level systems. It is well known that realistic transmission
level optimization problems are of high dimension and
computationally challenging, and the addition of the low
voltage subsystems will exacerbate the complexity. There-
fore significant effort focuses on the use of decomposition
strategies for the unit commitment aspect of the problem,
and the application of stochastic dual dynamic programming
(SDDP) to the economic dispatch stages. This element
leads to a solution framework that models the interactive
and co-operative effects of the microgrid/distribution system
managing demand-side resources with the larger transmis-
sion system, including large scale intermittent renewables.
This approach is significant as the majority of demand-side
resources will exist in the low voltage network, and realistic
management of these resources must include these systems
explicitly.

As discussed earlier the operation of the transmis-
sion network in itself is complicated due to transmission
constraints and risk of failure. Therefore, the stochastic
co-optimization frame is challenging, even for relatively
modest size networks, supporting the development of a
comprehensive stochastic optimization framework to tackle
the global problem. As computer capability has increased,
stochastic optimization methods, not equality efficient, have
been proposed. Of particular interest here are decomposition
techniques. These methods, in conjunction with efficient
algorithms, hold promise for solving large scale problems.

4. Related Prior Work

The purpose of the modeling framework and future
view for the power system presented here is to develop a
structured and scalable solution to incorporate responsive
demand, storage and intermittent renewables within the high
and low-voltage networks in an efficient and reliable manner.

The project builds on the authors’ previous experiences
in development of innovative methods for scalable stochastic
optimization of power systems [2], [16], [17], and the mod-
eling interactions between renewables and the existing grid
[1], [18], [19]. Previous work conducted by the authors, both
individually and collaboratively, have focused on the use of
current market structure to enable integration of renewables
and responsive loads in the future electric grid [1], [18], [19],
[20]. The following sections discuss related prior work that
supports the development of this framework.

4.1. Renewables Integration

In the area of renewables integration, [1] focuses on
the potential for leveraging interactions of wind and de-
mand response. [19] investigates renewable variability on
the efficacy of the EPA’s Clean Power Plan to target exist-
ing generation and [18] presents an empirical analysis of
integration strategies for wind self-procurement of reserves,
referred to as a flexible dispatch margin. As the level of
wind penetration increases, the impacts of the uncertainty
associated with wind generation become more significant on
system operations. The flexible dispatch margin is designed

2978



to make wind generation available when moving from the
hour-ahead to the 10-minute market.

In providing a flexible dispatch margin, wind generators
under-schedule in the hour ahead energy market in order to
hold some of their expected, forecasted, output in reserve,
in the day-ahead schedule. This schedule is submitted for
less than the forecasted wind generation, providing expected
reserves for mitigating system variability and uncertainty.
The expected excess wind generation is then available for
mitigating forecast errors from wind and demand as well as
lost generation from forced outages.

Fig. 2 depicts possible 10-minute market realizations
with the use of a flexible dispatch margin, FDM, for wind
generation. The far left bar shows an hour-ahead forecast of
100MW for some wind farm, with the lower (blue) portion
of 90 MW representing the schedule submitted as the wind
farm schedule in the hour-ahead market. The remaining 10
MW (upper green segment) represents the flexible dispatch
margin held as expected reserves for the 10-minute market.
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Figure 2. 10-minute market realizations with a wind flexible dispatch
margin.

The four right-hand bars in Fig. 2 show possible 10-
minute market realizations. The ‘no error’ bar is the situation
in which the 10-minute ahead forecast is the same as the
hour-ahead forecast, resulting the hour-ahead schedule of
90 MW being met, and leaving 10 MW of expected wind
generation available to the system. In the ‘high under-
generation’ situation, the wind generation is forecasted to be
only 75 MW. In this case the wind farm imposes the need
on the system for 15 MW of additional generation, while 10
MW of the otherwise 25 MW under-generation is accounted
for through the FDM. For the ‘low under-generation’ case,
the wind is now forecasted to generation 95 MW, meaning
that 5 MW from the FDM are used to mitigate the wind farm
forecast error from the hour-ahead time stage yet leaving 5
MW available to the system as needed. Finally for the ‘over
generation’ case in which the wind farm is now expected to
generate 110 MW, there will be 20 MW of wind generation
expected to be available for the system if needed.

Simulated use of a wind flexible dispatch margin has
been shown to increase system-wide benefits including less
generator ramping, lower LMP and fewer price spikes [18].
The flexible dispatch margin has the potential to improve
power system performance in terms of decreased reliance on
peaking generators to mitigate the increased net variability
and uncertainty. Integrating the flexible dispatch margin for

wind into the framework presented in this paper will require
optimizing the magnitude of the flexible dispatch margin for
different levels of wind penetration and system demand.

4.2. Distributed Resources in Microgrids

The authors have previously investigated modeling and
control of distributed generation and microgrid operations
[21], [22], [23], [24], and the mobilization of responsive
demand and distributed generation [2], [21], [23], [24].

Distributed resources, both responsive demand and dis-
tributed generators, are at a disadvantage in wholesale elec-
tricity markets due to their relatively small size (as well
as existing market rules). Organized as microgrids, these
distributed resources can potentially participate in electricity
markets, on both the generation and demand side. As dis-
cussed throughout this paper, the power system will require
a new framework for coordinating system and market opera-
tions as the number of market participants grows. Rules for
participation in ancillary services markets vary regionally,
yet tend to include similar requirements for facilities and as-
sociated communications capabilities, increasingly enabled
by smart grid technologies. Price signals are one mechanism
available to coordinate the operation of a power system in
the emerging competitive environment.

In ideal markets, the market clearing dynamic relies
upon the actions of both customers and suppliers as they
respond to price changes according to their own price elas-
ticities. Price elasticity is defined as the percent change in
quantity (demand or supply) for a given percent change
in price. Typically, a price increase would cause suppliers
to increase their output while customers would decrease
their demand in order to avoid paying the higher price.
Distributed resource response based strictly upon individual
and isolated decisions is acceptable for distributed resource
participation in bulk energy markets. However, this dynamic
could result in a net energy imbalance within a closed
microgrid system as the number of these resources grows
and if resources respond strictly in an open loop manner,
based on their independently determined price elasticity.

Building upon the concept of frequency droop, one
mechanism designed to prevent an energy imbalance and
possible instability is the concept of price droop [24]. The
price droop is a method for coordinating market behavior
and facilitating distributed resource participation in the local
balancing market, and presenting the microgrid response as a
unified participant in the wholesale markets. Patterned after
the definition of frequency droop, price droop is defined to
be the percentage change in price for a given percentage
change in quantity.

PriceDroopi =
4λ/λ0

4Pi,G/L/Pi,G0/L0

(1)

where λ represents the system price and Pi,G/L represents ei-
ther generator input or load consumption. 4λ is the change
in system spot price from a given system disturbance, 4P
is the response of the generator or load to the system spot
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Figure 4. Responsive load behavior after a load disturbance of -50MW and
subsequent local price change, based on price droop values learned through
Q-learning [33].

price, λ0 represents the initial system price, and Pi,G0/L0

represents the maximum load or generation capacity.
Initial results for implementing the price droop mech-

anism in a microgrid where all participating distributed
resources are modeled as intelligent agents are presented
below. The 31 bus test system used for the simulations is
shown in Fig. 3. Generators are located at buses 10, 17 and
24 with load at all the remaining buses except for buses 1,
3, 5, 6, 7, 8.

For a given operating point, price droop values for all
participating resources can be calculated in a coordinated
fashion, which will ensure cooperative behavior. This mech-
anism could be particularly useful in microgrids that are
dominated by facilities interconnected via power electronics,
and are thus without synchronized generators with large
inertia to provide the traditional frequency droop.

For a load disturbance of a decrease in 50MW of de-
mand, figures 4 and 5 show the response of other customers
and distributed generators, respectively, as coordinated by
the price droop mechanism. These figures demonstrate that
in response to an initial drop in load, the rest of the
microgrid follows a proportional response in which the
generators decrease their output and the loads increased their
consumption slightly in order to maintain the local energy
balance.

This initial investigation with the price droop mechanism

	
Figure 5. Distributed generator response to a local load disturbance and
subsequent price change, based on price droop values learned through Q-
learning [33].

demonstrates the integration of distributed energy resources
into electricity markets and reliable system operations. The
price droop mechanism an open-loop, multi-agent signal that
builds upon the concepts of frequency droop and own price
elasticity. These simulations using the signal demonstrate
the ability of distributed energy resources, organized into
microgrids and coordinated to act as a unified entity, to
participate in electricity markets while maintaining system
reliability.

The price droop signal is anticipated to be useful in
promoting increased use of distributed energy resources, in-
cluding demand response and intermittent renewable energy
technologies, and is integrated into the larger framework
presented in this paper.

4.3. Microgrid and Transmission System Interac-
tions

Preliminary work described in [23] explores interaction
between microgrid and the transmission system through a
simulation study conducted on the IEEE 30 bus test system.
The microgrid includes demand response, storage capability,
and solar generation resources, while the transmission sys-
tem includes thermal generation and wind resources. In this
work, the interaction between the microgrid energy manage-
ment policy, and the economic dispatch of the transmission
system are considered. The key parameters considered are
the location of the microgrid, as well and the pricing policy
governing the interaction between the connected systems.

Specifically, results show that transmission system con-
gestion can be alleviated or exacerbated through the ad-
dition of a microgrid at specific nodes on the system. In
addition, the pricing policy for purchase (sales) of energy
by the microgrid from (to) the transmission system shows
significant potential for the management of congestion con-
ditions. For example, Figure 6 shows the likelihood of line
congestion under various pricing schemes guiding micro-
grid/transmission grid interaction.
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Figure 6. Likelihood of transmission congestion under alternative pricing
schemes between microgrid and transmission system, shows significant
sensitivity

In Figure 6, three distinct pricing mechanisms are con-
sidered; a fixed LMP-based (FLMP) strategy, wherein the
microgrid pays (receives) a fixed price for purchase (sale)
of energy at the transmission level, based on the economic
LMP. The congestion results are also compared with a
high (fixed) LMP strategy (HLMP), as well as a piecewise
linear price function (PWL), based on a priori sensitivity
analysis of the network. It is clear from examination of
Figure 6, that the pricing mechanism plays an important
role in managing the interaction between the microgrid and
the transmission system, and can be leveraged to encourage
mutually beneficial behavior.

It is through this combination of previous work that it
has become apparent that a truly comprehensive approach
for the management of the future grid will include micro-
grids, distribution systems, and the transmission system in
a co-optimization approach.

The framework described here follows a natural evo-
lution to combining this previous work for developing
methods and solutions for the co-operative optimization
of the transmission system and the distribution-system-
as-microgrid. This framework is essential to leverage the
consumer-level demand response, toward management of
a power system with significant renewable resources. The
vision is based on knowledge of the complexities and di-
mensionality of the systems involved, and the optimization
framework is formulated to leverage decomposition methods
and approximation (SDDP) approaches for ensuring compu-
tational tractability.

5. Closing Remarks

An ideal microgrid is defined as an electric entity ca-
pable of operating in both interconnected (with the high-
voltage grid) and islanded mode. As such, the microgrid
should incorporate generating units (e.g. traditional units and

intermittent) and if needed, absorb (feed) power from (to)
the high-voltage grid. The interplay between the microgrid
and high-voltage grids drives the interest in developing
the co-optimization approach to ensure performance of the
global network.

Demand-side participation cannot be leveraged effec-
tively without explicitly including the distribution system
dynamics in the optimization-based wholesale market op-
erations. To date, very little research has been conducted
on the co-optimization of these two systems due to com-
putational limitations. However, advances in computational
capabilities, and the judicious use of decomposition methods
and innovative approximation methods for high-dimension
dynamic programming (SDDP) now makes this goal a vi-
able objective that will lead to a fundamental shift in the
integration of demand-side resources.

To this end, the modeling framework presented intro-
duces a novel co-optimization framework to include the op-
erations of both the transmission and distribution systems (or
microgrid) to effectively analyze renewable and distributed
generation along with responsive demand.

This vision for the future power system relies upon:
i) a performance comparison of renewable output fore-
casting/scenario generation methods, ii) a comprehensive
framework for the interplay between the micro and macro
grids, iii) an analysis of the impacts of different demand
response strategies on the power grid operation, and finally
iv) an analysis of the performance of combined stochastic
decomposition methods to tackle the integrated problem.

Previous work by the authors supports this vision as
a natural evolution for the integration of synergistic tech-
nologies for the achievement of reliable, economic and
sustainable energy for the future.
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