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Abstract
An accurate dynamic load model plays a crucial role
in the analysis of power system transient stability. The
WECC dynamic composite load model (CMPLDW)
has been developed recently to better represent fault-
induced delayed-voltage-recovery (FIDVR) events,
which are of increasing concern to electric utilities.
To facilitate the understanding of the CMPLDW, it is
worth studying the effect of parameters that describe
the model structure on its dynamic response. In this
paper, we show that 1) some parameters have very
minimal sensitivities under certain FIDVR events; 2)
sensitivities of certain parameters are strongly depen-
dent on the temporal profile of given fault, such as its
minimum fault voltage or recovery time; and 3) some
parameters share similar sensitivity patterns and thus
the change of their values may complement each other.
These observations are essential for further developing
enhanced measurement-based dynamic load modeling
approaches by tackling the parameter identifiability
issues pointed out in the present work.

1. Introduction
It is essential to develop accurate dynamic load

models for transient stability analysis and operation of
power systems [1, 2]. Nonetheless, the modeling has
long been a challenging task due to the inherent uncer-
tainty, complexity, and diversity of power system loads
[3]. With the development of digital fault recorders,
the measurement-based load modeling approach has
become increasingly popular [4–9]. In this approach,
the parameters describing a given model structure need
to be determined by fitting field measurements during
system disturbances. However, not all the parameters
are identifiable using only field measurements accord-
ing to some previous work [5–8], especially for com-
plex model structures with large numbers of parameters.
Hence the analysis of parameter sensitivity serves as the
base for measurement-based load modeling.

There are several dynamic load model structures
generally used for measurement-based load model-
ing. One popular choice consists of a static con-
stant impedance-current-power (ZIP) component and
a dynamic induction motor (IM) component. This
ZIP+IM model has been widely used due to its simple
structure [4–7]. In addition, the complex load model
(CLOD) developed by PSS/E, which has been prelim-
inarily investigated in [8], has several more compo-
nents including two IMs with different torque-speed and
current-speed curves. Although these load models are
effective in representing load dynamic behavior during
most short-duration faults, they fail to model the so-
called fault-induced delayed-voltage-recovery (FIDVR)
events; see [10, 11]. Slow voltage recovery after low-
voltage faults is mainly caused by the stalling of low-
inertia single-phase IMs. It is of increasing concern
to utilities because of the resultant loss of voltage con-
trol and potential cascading effects. To model FIDVR
events, the WECC composite load model (CMPLDW)
has been developed [9], which includes a single-phase
IM component among other enhancements character-
ized by 121 parameters. To the best of our knowledge,
very few studies have been conducted to understand the
identifiability of these parameters.

In general, the identifiability issues of load models
has two causes [6]: the insensitivity of some parameters
and the dependency among several parameters. Specif-
ically, if the simulation results are completely insensi-
tive to a parameter, then its value will not matter at all.
Additionally, if the effects made by several parameters
can always be complemented by each other, then dif-
ferent combinations of these parameter values will gen-
erate indistinguishable output measurements, based on
which no unique parameter estimation can be obtained
[12]. To investigate these causes, we perform trajectory
sensitivity analysis to determine which parameters are
sensitive. Based on this, we demonstrate dependency
between pairs of parameters. To further quantify the
dependency, we also perform singular value decompo-
sition (SVD) on the sensitivities.

3165

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41540
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: A schematic of the WECC CMPLDW compos-
ite load model [10].

This paper is organized as follows. Section 2
introduces the WECC CMPLDW and other background
for the sensitivity analysis. Sections 3 and 4 present
the results of the sensitivity and dependency analy-
sis, respectively. Concluding remarks are provided and
future work is addressed in Section 5.

2. Background and objective
This paper is focused on the WECC CMPLDW

model and the modeling of FIDVR events. The struc-
ture of the model is illustrated in Figure 1, consisting
of a substation transformer model, a feeder equivalent
model, and six load model components [9]. The load
components include three 3-phase motors, one single-
phase motor, one static ZIP load, and one electronic
load, all connected in parallel. The 3-phase motors are
henceforth named motor A, B, and C, and the single-
phase motor, which is used to model an air conditioner
compressor, is named motor D. Compared to the simple
ZIP+IM model of only 13 parameters [5], the WECC
CMPLDW has a more extensive list of parameters used
to describe its static and dynamic behaviors. A repre-
sentative CMPLDW model has in total 121 parameters
with example values as listed in Table 1; see more details
in [9]. These parameters, denoted as the vector θ, can be
categorized to represent the following:

• substation and feeder (e.g., transformer reactance
and feeder equivalent impedance);

• load model components (e.g., reactance and inertia
of a motor, or the ZIP coefficients of static load);

• the fraction for each load component (i.e., Fel,
FmA, etc.).

As shown in [4–7], dynamic load modeling is gen-
erally challenged by the unidentifiability of parameters

that describe the model structure. The unidentifiabil-
ity has two primary causes: the insensitivity of some
parameters and the dependency among several parame-
ters [6]. It is difficult to identify these parameters accu-
rately because different values of insensitive parameters
or various combinations of dependent parameters may
result in a similar output response.

To facilitate the understanding of the model’s iden-
tifiability, trajectory sensitivity analysis is performed to
characterize each parameter. Specifically, the sensitiv-
ity of the system dynamic response to the changes of
each parameter will be evaluated [13]. For complex
load models such as the CMPLDW, it is difficult to
develop their mathematical state-space representations
to evaluate the trajectory sensitivity [4]. Hence, the
finite-difference derivative approximation is employed
to numerically evaluate the sensitivity [13]:

Ji(t) : =
∂f(t;θ)

∂θi

∣∣∣∣
θ=θ0

≈ f(t;θ0 + εei)−f(t;θ0 − εei)

2ε
(1)

where θ0 is the vector of nominal parameter values, ei

is the Kronecker vector with all entries zero except for
the i-th entry equal to 1, and the perturbation coefficient
ε is a small positive value. The dynamic system output
f(t) under different parameter settings can be obtained
by numerical simulation. Hence, the resultant sensitiv-
ity Ji(t) will consist of discrete-time samples through-
out the fault event. Concatenating the samples into a
vector Ji of length T for each parameter, we can use it
as the feature vector to characterize the effects of chang-
ing θi in the dynamic response. Note that perturbations
in both active and reactive power outputs are included in
the vector Ji. Except for the parameters marked in ital-
ics in Table 1, most other parameters will be analyzed to
see if they are insensitive or interdependent.

Figure 2: Two voltage profiles recorded by PQube
devices during FIDVR events.
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Table 1: List of WECC CMPLDW Parameters with Example Values. Parameters in italics remain fixed by convention
[10], and the 15 parameters in bold have the highest sensitivity.

Feeder Static Load Motor A Motor B Motor C Motor D
Bss 0 Pfs -0.99 FmA 0.167 FmB 0.167 FmC 0.167 FmD 0.167

Rfdr 0.04 P1e 2 MtypA 3 MtypB 3 MtypC 3 MtypD 1
Xfdr 0.05 P1c 0.54546 LFmA 0.7 LFmB 0.8 LFmC 0.8 LFmD 1
Fb 0.75 P2e 1 RsA 0.04 RsB 0.03 RsC 0.03 CompPFD 0.97
Xxf 0.08 P2c 0.45454 LsA 1.8 LsB 1.8 LsC 1.8 VstallD 0.6

Tfixhs 1 Pfrq -1 LpA 0.1 LpB 0.16 LpC 0.16 RstallD 0.1
Tfixls 1 Q1e 2 LppA 0.083 LppB 0.12 LppC 0.12 XstallD 0.1
LTC 1 Q1c -0.5 TpoA 0.092 TpoB 0.1 TpoC 0.1 TstallD 0.02
Tmin 0.9 Q2e 1 TppoA 0.002 TppoB 0.0026 TppoC 0.0026 FrstD 0
Tmax 1.1 Q2c 1.5 HA 0.05 HB 1 HC 0.1 VrstD 0.9
step 0.00625 Qfrq -1 EtrqA 0 EtrqB 2 EtrqC 2 TrstD 0.4

Vmin 1 Vtr1A 0.75 Vtr1B 0.5 Vtr1C 0.5 FuvrD 0.17
Vmax 1.02 Electronic Load Ttr1A ∞ Ttr1B 0.02 Ttr1C 0.02 Vtr1D 0.65
Tdel 30 Fel 0.167 Ftr1A 0.2 Ftr1B 0.2 Ftr1C 0.2 Ttr1D 0.02

Tdelstep 5 Pfel 1 Vrc1A 0.9 Vrc1B 0.65 Vrc1C 0.65 Vtr2D 0.9
Rcmp 0 Vd1 0.75 Trc1A ∞ Trc1B 0.6 Trc1C 0.6 Ttr2D 5
Xcmp 0 Vd2 0.65 Vtr2A 0.5 Vtr2B 0.7 Vtr2C 0.7 Vc1offD 0.4
Mbase 0 Frcel 0.25 Ttr2A 0.02 Ttr2B 0.02 Ttr2C 0.02 Vc2offD 0.4

Ftr2A 0.47 Ftr2B 0.3 Ftr2C 0.3 Vc1onD 0.45
Vrc2A 0.639 Vrc2B 0.85 Vrc2C 0.85 Vc2onD 0.45
Trc2A 0.73 Trc2B ∞ Trc2C ∞ TthD 30

Th1tD 0.3
Th2tD 2.05
TvD 0.025

The event measurements are taken from real
datasets collected by a southern US utility company.
They are recorded using PQube devices [14] during
three summer months in 2012. Each event includes the
voltage profile and the corresponding real and reactive
power consumption, all with cycle-level sampling rate
(around 60 Hz). Two FIDVR events have been identified
from the data. As plotted in Figure 2, the voltage profile
of FIDVR takes a long time, usually several seconds,
to recover from the voltage drop caused by a certain
disturbance. This phenomenon generally results from
the high penetration of single-phase induction motors in
power systems, which can barely be captured by the tra-
ditional ZIP+IM model structure. We thus mainly focus
on addressing FIDVR type faults in the ensuing analysis.

3. Parameter trajectory sensitivity
analysis

Main results from the parameters’ trajectory sen-
sitivity under FIDVR events are illustrated in this sec-
tion. Given a fault voltage disturbance, we first show
that some parameters have very minimal (even abso-
lutely zero) sensitivity. Interestingly, we make further
observations that the sensitivity is strongly related to the
shape of the faulted voltage, which originates from the
thresholding nonlinearity of the WECC CMPLDW.

3.1 Insensitive parameters
Using the sensitivity vectors {Ji}, we can first

identify the parameters that the load model output is
insensitive to. Figure 3 plots the sorted ‖Ji‖2 values
and their logarithmic values for all CMPLDW param-
eters under the voltage input in dataset #1. Clearly,
almost half the parameters have very minimal, or even
zero, trajectory sensitivity, which means that changing
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Figure 3: The 2-norm and its logarithm of the trajectory
sensitivity of each parameter from the test on PQube
data set #1, sorted in descending order.

the value of several CMPLDW parameters could result
in negligible output perturbations. Hence, we choose
a predetermined threshold rth > 0 and only select the
parameters with ‖Ji‖2 ≥ rth for the ensuing analysis.
For the N parameters selected, their corresponding fea-
ture vectors are stacked into the T ×N matrix J, which
is approximately the Jacobian matrix for the measure-
ment function f(θ) at θ = θ0. The most significantly
sensitive parameters are marked as bold in Table 1. Par-
ticularly, by setting the threshold rth as 1% of the nom-
inal output norm ‖Ji‖2, a total of N = 70 parameters
are selected to form the resultant Jacobian J.

Some of the absolutely insensitive parameters are
related to the tripping behavior of the load components,
which may not be activated under the given input voltage
profile. For example, parameters Vd1 and Vd2 are used
to set the voltage levels for tripping the electronic load.
Slightly varying their values will not cause any change
of the system response if the lowest voltage input is sig-
nificantly higher than the initial tripping levels specified
in Vd1 and Vd2. These examples reveal the threshold-
ing nonlinearity of the CMPLDW model. Therefore, the
selection of insensitive parameters depends on both the
initial parameter setting θ0 and the input voltage profile.

3.2 Impact of input fault voltage profile
Building on previous analysis, we investigate the

impact of the input voltage profile on the parameter sen-
sitivity. We first designate PQube data set #1 in Figure
2 as our base case. We then modify the base case profile
to emulate faults of varying severity and recovery time.
Specifically, we scale the profile vertically to vary the
minimum fault voltage, while maintaining the pre-fault
voltage. We scale the profile horizontally to vary the
recovery time. These are both illustrated in Figure 4.

The parameter sensitivities are then calculated for

Figure 4: Illustration of vertical and horizontal stretching
of the voltage profile.

each voltage profile and plotted in Figure 5 and Figure
6 on a log scale. From Figure 5 we can see that the
parameter sensitivities do not remain constant. There is
a cyan colored line which has relatively low sensitivity
between 0 and 0.5 p.u., peaks at 0.6 p.u., then disap-
pears for profiles with higher minimum voltage. This
line corresponds to the parameter VstallD, the stall volt-
age for motor D. In the base case, the stall voltage is
set to 0.6 p.u.. When the minimum fault voltage does
not drop below 0.6 p.u., motor D will not stall, hence
VstallD does not affect the trajectory at all (‖Ji‖2 = 0
for VstallD). Since Figure 5 uses a log axis, those zero
sensitivities cannot be plotted. On the other hand, when
the minimum fault voltage is very close to 0.6 p.u.,
the sensitivity of VstallD exceeds the other parameters
approximately one order of magnitude. This is because
a small change in the value of VstallD will determine
whether motor D stalls; this is thresholding nonlinear-
ity. Finally, for faults where the voltage drops signif-
icantly below 0.6 p.u., motor D will definitely stall, so
the trajectory again becomes very insensitive to VstallD.
The reason the sensitivity is not exactly zero is merely
because a more severe fault causes the voltage to drop
faster, and hence causes motor D to stall a fraction of a
cycle earlier.

We can also see that many parameters have a large
peak in sensitivity when the minimum fault voltage is
0.7 p.u. and a few parameters have a peak at 0.5 p.u..
These can also be attributed to thresholding nonlinearity.
Voltage trip levels Vtr1A, Vtr2B, Vtr2C, and Vtr1D, and
voltage reconnection levels Vrc1B, Vrc1C, and Vrc2A
are all between 0.639 and 0.75 p.u.. Voltage trip levels
Vtr1B, Vtr1C, and Vtr2A are all 0.5 p.u.. When the min-
imum fault voltage is near those values, not only those
voltage thresholds, but also any associated time delays,
such as trip delay times, become very sensitive. For
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Figure 5: Parameter sensitivity under vertical stretching of the voltage profile. The base case minimum fault voltage
level is 0.3703 pu (see Figure 2).

Figure 6: Parameter sensitivity under horizontal stretching of the voltage profile. The base case profile period is 30 s
(see Figure 2).

example, motor B parameters Vtr1B and Ttr1B repre-
sent the under-voltage trip level and the trip delay time.
If motor B does not trip for the given voltage input, vary-
ing Ttr1B will not affect the output dynamics either. The
parameter sensitivities in Figure 6 are more uniform than
those in Figure 5. This is because we are not affect-
ing the minimum fault voltage. However, we still see
some peaks when the profile period is reduced to around
20 s, which is evidence that thresholding non-linearity
is occuring for time thresholds, such as a reconnection
time delay.

4. Parameter dependency analysis

In Section 3.1, we showed that the output response
was insensitive to about half of the parameters, mean-
ing those parameters cannot be observed with the given
measurements. However, even among the parame-
ters with high sensitivity, it may still be difficult to
uniquely identify a parameter. This is due to parameter
dependency: the effect of one parameter on the output
response can be replicated by one or more other param-
eters.
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Figure 7: Contour of the MSE between the base case
output and test cases for RsB and RsC, the stator resis-
tances of motors B and C.

4.1 Examples of dependent parameters

As an example, consider the stator resistance of
motors B and C, RsB and RsC. Since the parameters of
motors B and C are quite similar, we find that RsB and
RsC are essentially indistinguishable from one another.
In Figure 7, the default values of RsB and RsC (see
Table 1) are indicated by the dashed white lines. The
simulation result with RsB and RsC at their default val-
ues is the base case output. With all other parame-
ters fixed, the values of RsB and RsC are then varied
between 10% and 200% of their default value. The mean
squared error (MSE) between the resulting outputs and
the base case output are then calculated and contoured
in the figure. From the figure, we can see that as long
as RsB and RsC are varied proportionally, the MSE will
stay in the dark blue region extending from the top-left
to bottom-right corners. Thus, from a single set of out-
put measurements, it is difficult to uniquely identify both
RsB and RsC. Only if we pick one parameter’s value can
we then determine the other parameter.

While the dependence of this particular pair of
parameters seems intuitive, there are other pairs of
dependent parameters which have no simple explana-
tion. Consider the following two parameters for the
single-phase motor D: XstallD, the stall reactance in
p.u., and Th2tD, the thermal protection trip completion
temperature in p.u.. Both these parameters have quite
high sensitivity: XstallD is ranked first, and Th2tD is
13th among all the parameters. These two parameters
are also completely unrelated from a physical stand-
point. However, in Figure 8, we can see that they
exhibit interdependent behavior. We hypothesize that

Figure 8: Contour of the MSE for two relatively sensitive
parameters. XstallD and Th2tD are the stall reactance
and the thermal protection trip completion temperature
for motor D, respectively.

this is because for a larger XstallD, the stall current and
hence the thermal losses would be lower, which would
require a lower Th2tD to cause the same tripping behav-
ior. Due to this interdependency, it would still be diffi-
cult to identify both parameters uniquely within the dark
blue region.

Finally, we illustrate how thresholding nonlinear-
ity impacts the parameter dependency by contouring
VstallD and XstallD. VstallD is the stall voltage of
motor D, which we also highlighted in Figure 5 and Sec-
tion 3.2. This Figure 9 agrees with our analysis from

Figure 9: Contour of the MSE which highlights the effect
of thresholding nonlinearity. XstallD, the stall reactance
for motor D, is continuous, but VstallD, the stall voltage
of motor D, is discontinuous.
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Section 3.2. Note that we change the voltage trip level
here, whereas Figure 5 changed the minimum fault volt-
age. When the stall voltage VstallD is set below the min-
imum fault voltage of 0.3703 p.u., neither its own value
nor that of the stall reactance matters, which leads to the
dark red area at the bottom of the contour. Above 0.3703
p.u., the vertical contour lines mean that VstallD does
not matter. However, since VstallD is higher than the
minimum fault voltage, the motor will stall, so XstallD
does impact the simulation result.

4.2 SVD-based dependency analysis
As revealed in Section 4.1, there exist possible

dependencies among parameters. To further quantify
this, singular value decomposition [15] on matrix J is
performed to find the most essential components. Addi-
tionally, since the length of each Ji is the total number
of output samples, its value T can be very large. This
may pose a challenge when performing data analytics
on the parameter features [16]. To remedy this, SVD-
based analysis can also be used to reduce the dimension
of the trajectory sensitivity.

To analyze the dependency of parameters with
vastly different sensitivities, we first normalize each col-
umn Ji to be in the range [0, 1], to make the parameters
comparable. With T >> N , the compact SVD of the
Jacobian matrix J is given by

J = U ·Σ ·VT (2)

where the T × N matrix U = [u1, . . . ,uN ] consists
of the N orthonormal left-singular vectors satisfying
UTU = I; and similarly for the right-singular vec-
tors in the N × N matrix V = [v1, . . . ,vN ]. The
diagonal matrix Σ = diag {σ1, σ2, · · · , σN} contains
the N singular values ordered by σ1 ≥ σ2 ≥ · · · ≥
σN ≥ 0. Each column of (2) can be represented as
Ji =

∑N
n=1(σnvn,i)un, where vn,i is the i-th entry of

vn. Hence, each un can be viewed as a common princi-
ple component (PC) of all vectors {Ji}.

Figure 10 plots all the N singular values for the
normalized Jacobian matrix. Clearly, the magnitude
of σn decreases rapidly when n ≤ 20, implying the
first few PCs are much more dominant in forming Ji

compared to the rest. This further verifies the depen-
dency of these parameters. Particularly, Ji can be well
approximated using the first L < N PCs, as given by
Ji ≈ JL

i :=
∑L

n=1(σnvn,i)un. In fact, the approxima-
tion error ratio using the first L PCs can be quantified
using [15]

ηL :=
‖J− JL‖F
‖J‖F

=

√∑N
n=L+1 σ

2
n√∑N

n=1 σ
2
n

(3)

Figure 10: The singular values σn of the normalized
Jacobian matrix in descending order.

Figure 11: The approximation error ratio ηL of the nor-
malized Jacobian matrix using the first L PCs.

where ‖ · ‖F denotes the matrix Frobenius norm. Figure
11 plots the approximation error ratio value versus the
number of PCs L. To achieve ηL < 10% one can select
L = 16 PCs, while for ηL < 1%, L = 35 suffices.
Hence, we can approximate each Ji of length T using a
much smaller number of PCs with excellent approxima-
tion accuracy. We will further explore this in our future
work.

5. Conclusions and future work

This paper is focused on the identifiability issues
of the CMPLDW load model developed by WECC. By
performing sensitivity analysis on the CMPLDW model,
we show that the output response has varying degrees of
sensitivity to each parameter. Although the exact tra-
jectory sensitivity is linked to the shape of the voltage
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profile, we can still make the general conclusion that for
approximately half the parameters, the sensitivity varies
across seven orders of magnitude. For the remaining
parameters, the sensitivity is zero. This is primarily due
to thresholding nonlinearity related to voltage trip lev-
els and their associated time delays and recovery char-
acteristics. Even among the sensitive parameters, how-
ever, we identify pairs of dependent parameters. Some
are intuitive, but there are also pairs of physically unre-
lated parameters that behave similarly. To further quan-
tify this dependency, we use SVD analysis to show that
we can maintain 99% accuracy by considering only 35
principal components, and 90% accuracy by using only
16.

SVD-based analysis can also be used to reduce the
dimension of the trajectory sensitivity. The next step
will be to create an automated process to identify the sets
of parameters which are interdependent. Based on that
analysis, we can reduce the dimension of the parameter
to be estimated, while still maintaining a high degree of
accuracy.
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