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Abstract 
This paper proposes a methodology for the design 

of a probing signal used for power system 
electromechanical mode estimation. Firstly, it is 
shown that probing mode estimation accuracy 
depends solely on the probing signal’s power 
spectrum and not on a specific time-domain 
realization. A relationship between the probing 
power spectrum and the accuracy of the mode 
estimation is used to determine a multisine probing 
signal by solving an optimization problem. The 
objective function is defined as a weighting sum of 
the probing signal variance and the level of the 
system disturbance caused by the probing. A desired 
level of the mode estimation accuracy is set as a 
constraint. The proposed methodology is 
demonstrated through simulations using the KTH 
Nordic 32 power system model.  
 
 
1. Introduction  
 

Near real-time accurate monitoring of 
electrochemical oscillations is one of the most 
important functions of a wide area monitoring system 
(WAMS) [1]. Oscillations are monitored by 
continuously estimating the frequency, damping ratio 
and mode shape of critical system modes [2]. 

A traditional way of estimating modes is using an 
ambient system response [2]. This approach is widely 
accepted due to its simple implementation and the 
required infrastructure that does not go beyond a 
classical WAMS. However, the applicability of the 
ambient based approach is hindered by its limited 
accuracy, which is determined by the system’s 
intrinsic characteristics. More accurate, but still non-
intrusive, mode estimation can be performed by using 
a low magnitude probing signal (approximately 10 
min long) as an excitation to the system [3]. In this 
approach, Phasor Measurement Units (PMUs) 
capture the system response due to the probing. As a 

result system identification methods that assume 
known input and outputs can be applied to obtain 
accurate mode estimates.  

In addition to more accurate mode estimation, 
probing methods allow to identify modes that are not 
excited under ambient conditions, and therefore are 
not possible to estimate using  ambient-based mode 
estimation. 

There are several convenient ways to inject a 
probing signal to excite the power system: 

1) By modulating the reference signal of 
automatic voltage regulators, 

2) By modulating the reference signals of 
FACTS devices (active, reactive power and 
voltage reference signals, etc), 

3) By modulating the reference signals of turbine 
governors. 

Assuming a given location and a reference signal 
used for probing, there is a question on how this 
signal should be realized in order to obtain the best 
possible mode estimate. This issue was first 
addressed in [4] where different design 
considerations such as probing signal crest factor and 
identifiability have been discussed. In addition, [4] 
identifies that the frequency content (spectrum) of the 
probing signal is essential for the overall quality of 
the estimation process. 

This paper investigates the relationship between 
the probing signal spectrum and mode estimation 
accuracy in order to derive a formal mathematical 
algorithm for optimal probing signal design. This 
represents a contribution in comparison with the 
previous methods that use probing signals that 
equally excite all relevant frequency components.  

In the control theory community, the problem of 
optimal experiment (probing) design for system 
identification has been analyzed by numerous authors 
[5],[6],[7]. Recently, the least costly experiment 
paradigm was proposed [8],[9]. In this approach, the 
experiment is designed with respect to the allowed 
uncertainty of the estimated model. However, the 
focus/objective of the optimal experiment (probing) 
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design has been traditionally on identification of the 
system’s transfer function or on enhancement of the 
control performance, and not on the accuracy of the 
critical damping ratio estimate. 

In this paper, the least costly paradigm is adopted 
for design of probing signal with the aim of 
guaranteeing accuracy of a few pre-defined critical 
damping ratio estimates, whilst relaxing requirements 
on accurate estimation of other model parameters. 
The probing signal design is formulated as an 
optimization problem where the decision variable is 
the power spectrum of the probing signal and the 
accuracy of the critical damping ratio estimate 
(described by variance of the estimate) is constrained 
to be lower than a pre-defined arbitrary threshold. 
The decision variable (i.e. spectrum of the probing 
signal) is parameterized (described) by the 
amplitudes of the sine waves in a multisine signal. 

The objective function in the formulated 
optimization method is defined as a weighted sum of 
two components:  

• variance of the injected probing signal that 
represents the probing power, and  

• mean square of the output signal deviation 
that represents level of the system disturbance 
(probing impact on the system). The constraint 
is defined as the maximum tolerable variance 
of the critical damping ratio estimate.  
 

The optimal probing power spectrum is realized 
using the method proposed in [4]. 

The reminder of the paper is organized as follows: 
Section 2 provides a background and underlying 
modeling assumptions used in deriving the method. 
Section 3 presents the proposed methodology, 
whereas the performed case studies are presented in 
Section 4. The main conclusions of the paper are 
drawn in Section 5. A list of references and an 
Appendix that complements the method’s derivation 
are given in Section 6 and Section 7, respectively.  
 
2. Background  
 

During probing experiments, it is assumed that a 
power system can be accurately described by a linear 
model due to absence of large disturbances. 
Exploiting the system’s linearity and the 
superposition principle, an arbitrary measured 
synchrophasor signal y(t) can be decomposed into 
two components:  

• A component that is as a result of ambient 
excitation, i.e. random load changes. This 
component is equal to (H(z)e(t)), where H(z) 
is a transfer function that describes aggregated 

behavior of the system and e(t) is a white 
noise process that represents ambient 
excitation. 

• A component that is a result of probing signal. 
This component is equal to G(z)u(t). G(z) 
represents a transfer function between probing 
signal and the measured output signal y(t). 
Signal u(t) is the probing signal (a disturbance 
introduced by a FACTS device or generator 
governor) that can be arbitrarily chosen by the 
user i.e. it can be designed with the aim to 
improve estimation accuracy. 
 

The model of power system used is shown in 
Fig. 1: 

G(z)

H(z)

+u(t)

e(t)

Probing

Ambient

y(t)
PMU  

Fig. 1 Power system model during probing tests 

Since both transfer functions in Fig. 1 (G(z) and 
H(z)) can be derived from the same state space model 
of a power system, it is reasonable to assume that 
both transfer functions have the same denominators. 
This defines an ARMAX (AutoRegressive Moving 
Average with eXogenous inputs) model structure of 
the system [10]: 

( ) G( ) ( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )

y t z u t H z e t
B z C zu t e t
A z A z

= + =

= +
, (0) 

where A(z), B(z) and C(z) are polynomial functions in 
z. In addition, A(z) represents the characteristic 
equation of the system. Note that the discrete domain 
is used in the model description because of the 
discrete nature of the measured synchrophasor 
signals. Also note that H(z) and G(z) can be 
parameterized (fully described) with a parameter 
vector ρ that, among other parameters, contains the 
critical modes’ damping ratios. 

The mode estimation procedure estimates model 
parameter vector ρ through an optimization procedure 
that minimizes the prediction error criterion of the 
model, as described in [11]. It can be shown that the 
covariance matrix of the parameter estimates Pρ, in 
case of prediction error system identification, is given 
by [11]: 
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where: 
• N is the number of data points used for 

identification,  
• ρ0 represents the true system parameter vector, 
• Φu(ω) is the power spectrum of the probing 

signal, 
• 2σ  is the variance of the ambient (driving) 

noise,  
• functions Fu(ω, ρ0) and Fe(ω, ρ0) are defined 

as: 
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Equation (2) describes the relationship between 
power spectrum of the probing signal (Φu(ω)) and the 
accuracy of the estimate that is described by Pρ. 
Furthermore, by observing (2) it is obvious that the 
stronger probing is, the more accurate mode estimate 
is obtained (Pρ is smaller). Therefore, using this 
relationship it is possible to influence the estimate 
accuracy by designing the probing signal u(t). This is 
done through an optimization process where the 
spectrum of u(t) is a decision variable. The 
optimization method is described in Section 3. It has 
to be noted that it is assumed that Fu(ω, ρ0) and 
Fe(ω, ρ0)  are known, which is typically not true. 
Therefore, these transfer functions have to be 
calculated or estimated either from the existing model 
of power system (using any power system modeling 
software), or from the initial data-based identification 
of ρ0

 1. Note that H(z, ρ0) and G(z, ρ0), as well as 
Fu(ω, ρ0) and Fe(ω, ρ0), are fully described by the 
parameter vector  ρ0. The initial estimate of ρ0 is a 
rough description of the power system behavior but 
sufficiently accurate to be used for design of a 
probing signal. It will be shown in the sequel that the 
identification, where the probing signal is designed in 

                                                 
1 Initial identification of the parameter vector ρ0 can 
be performed using white noise probing (or any other 
probing excitation that sufficiently excite the system). 
Also note that initial identification be done either on 
real system or using simulated data from the existing 
power system model.  

this way, will lead to more accurate estimate of 
modes.  
 
3. Optimal Power Spectrum of the 
Probing Signal  
 
A. Objective Function 
 

In addition to ensuring accurate mode estimation 
it is important to design a probing experiment 
(signal) that does not jeopardize system stability. In 
other words, the disturbance that is caused by the 
probing should be as small as possible. In addition, 
the device that is used to inject the probing signal 
should not be overly strained, i.e. there is a rationale 
to keep the power of the injected signal as small as 
possible. These two considerations constitute the 
proposed objective function of the optimization 
procedure that minimizes the system disturbance 
induced by the probing signal as well as the control 
effort of the probing device. This objective function, 
with the power spectrum of the probing signal as a 
decision variable, can be formalized as follows: 
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where Φu(ω) is power spectrum of the input (probing) 
signal and k1 and k2 are weighting factors. The 
objective function defined in this way has two 
summands. The first summand represents energy of 
the probing signal (represent strain of the probing 
device) and the second one represents the deviation 
in the energy of the selected output signal due to 
probing (for example frequency deviation) that 
reflects the level of the overall system disturbance 
caused by the probing experiment. 

It was mentioned before that a probing signal is 
chosen to be a multisine that is in general case 
defined by the following expression: 

 

1
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M
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where rA , rω  and rϕ  are the amplitude, frequency 
and phase of the r-th sine component. Consequently, 
the power spectrum of a multisine signal is equal to: 
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Note that the defined decision variable (power 
spectrum of the probing signal) is described by the 
coefficients 2 ( 1,..., )rA r M= . 

Using the defined multisine parameterization, the 
objective function (3) can be rewritten as follows (by 
substituting (5) into (3)): 

 

2
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Further, the relationship between the probing 

signal’s power spectrum and the estimation 
covariance matrix (defined by (2)) can be expressed 
in terms of the multisine parameterization (by 
substituting (5) into (3)): 
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Note that this expression can be simplified as: 
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where Rr is derived from (7), and the procedure for 
the derivation of S given in the Appendix.  
 
B. Constraints used in the LMI optimization 
problem 

 
The accuracy of the mode estimation procedure is 

determined by the estimation variances of the critical 
modes’ damping ratios (ζi.). These variances are the 
diagonal elements of Pρ (see (7)). Therefore, a 
sufficiently accurate mode estimate is obtained if the 
variance of each critical damping ratio ζj is 
constrained to be smaller than a desired (user-
defined) threshold. This is formulated as: 

 
var( ) ( , ) T

j i iP i i e P e rρ ρζ = = < , i.e.  
0T

i ir e P eρ− >  (0) 
 

where r is the user-defined constraint (maximal 
allowed value of the critical variance), i is the index 
of a critical mode’s damping ratio in the parameter 
vector ρ0, and ei is a unity vector whose i-th element 
is equal to one. When several modes need to be 
accurately estimated, a constraint defined by (9) is 
added for each critical mode. 

As it can be seen from (7), the relationship 
between Pρ  (or T

i ie P eρ ) and the decision variable 
(power spectrum of the probing signal) is non-linear 
due to the inversion operation. In order to formulate 
an LMI form of the constraint defined by (9), this 
relationship has to be convexified. This can be done 
by exploiting the Schur complement property that a 
matrix is positive definite if and only if its Schur 
complement is positive definite [12]. As (9) can be 
represented in the form of Schur complement, an 
equivalent constraint would be a constraint on the 
positive-definiteness of the matrix whose Schur 
complement is equal to T

i ir e P eρ− . Therefore, the 
constraint (9) can be written as: 

 

1 0
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The constraint defined by (10) has a form of an 

LMI. This can be seen when 1Pρ
−  in (10) is replaced 

by (8). 
Another constraint that has to be taken into 

account is that the obtained power spectrum must be 
positive for all frequencies (physical constraint). The 
spectrum’s positivity is guaranteed by imposing non-
negativity of the decision variable, as follows: 

 
2 0;rA ≥  for 1, 2,...,r M= . (0) 

 
The discussion above defines an optimization 

problem with its objective function (power of the 
probing signal and the level of disturbance induced 
by the probing signal), decision variable (spectrum of 
the probing signal) and constraints (desired accuracy 
of the estimate defined by the maximum allowed 
variance of the critical damping ratio). The solution 
of this optimization problem provides a spectrum of 
the probing signal that results with a) the desired 
accuracy and b) minimal impact on the normal power 
system operation.  

For the sake of simplicity, the defined 
optimization problem is summarized and rewritten in 
the sequel: 

 
Objective: 
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subject to: 
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where all variables are defined before. 

Once the power spectrum has been determined it 
is necessary to realize the time-domain representation 
of the probing signal that will be added to a reference 
signal fed to a controller of a probing device. It is 
known that one signal spectrum can be represented 
with different time-domain representations. 
Therefore, it possible to choose the one that fits the 
best according to other (secondary) criteria that can 
be introduced in order to improve the overall 
estimation process. In the methodology proposed in 
[4], the crest factor is used as a signal quality 
indicator and the time-domain signal realization 
process is used for further optimization, where the 
crest factor is minimized. This time-domain probing 
signal realization methodology from [4] is applied 
here without any alterations. 
 
4. Case Studies  
 

The case studies are performed using the KTH 
Nordic 32 test system shown in Fig. 2 [13]. It is 
assumed that a FACTS device with the capability of 
injecting reactive power is installed at bus 48 and 
used for probing. As an output, the voltage 
magnitude of bus number 38 is selected. The 
disturbance is evaluated using the same output signal, 
i.e. the deviation of the voltage magnitude is selected 
as a measure of the disturbance caused by the probing 
procedure. The KTH Nordic 32 test system has two 
critical modes, one at 0.5 Hz and another at 0.76 Hz. 
The probing signal is designed to accurately estimate 
the damping ratios of these two modes.  

It was mentioned that an initial estimate of ρ0 is 
required to perform optimal probing signal design. 
This initial estimate is obtained through an 
identification procedure where the data are generated 
with the linearized high-order power system model 
[13]. The ambient excitation (active and reactive 
power injections) is modeled by unity variance white 
noise in all load buses, whereas the input (probing) 
signal is chosen to be white noise with a variance of 
10 000. The order of the identified models (G(z) and 
H(z)) are chosen to be equal to 12. This initial 
estimate has a limited accuracy that will be improved 
by using the optimal probing. The duration of the 
desired optimal probing signals is chosen to be 10 

minutes, i.e. 3000 data samples (sampling frequency 
is equal to 5 Hz). 

 

 
Fig. 2 KTH Nordic 32 test system 

 
 

C. Optimal power spectrum computation 
 

In the first case study, the power spectrum of the 
probing signal is computed with the objective to 
minimize its variance (k1≠0 and k2=0). The variance 
of the damping ratios’ estimates is constrained to be 
smaller than 10-5 (for both modes that corresponds to 
0,361% standard deviation of the damping ratio 
estimate). In the following case studies, the probing 
power spectrum is designed as: 

1) white noise, 
2) multisine. 

 The variance of the white noise probing signal is 
obtained directly from (3) by replacing ( )u ωΦ  with a 
constant function (with the desired mode estimate 
accuracy). The multisine signal is designed with a 
frequency resolution of 0.01 Hz and components 
from 0.05 Hz up to 2.5 Hz.  

The probing spectrum obtained is shown in Fig. 3.  
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Fig. 3. Spectrum of the optimal multisine input 

signal when input variance is minimized 
 
The signal’s energy is mostly allocated around the 

critical modes’ frequencies (0.5 Hz and 0.76 Hz). 
This is understandable because the easiest way to 
excite the mode is to excite exactly frequency of the 
mode (this is the frequency where the system has the 
highest gain). However, this also may introduce a 
risk for the system’s stability because potentially a 
latent low damped/unstable mode could be excited. 

Next, as a second case study, the objective is to 
minimize the disturbance introduced by the probing 
signal (k1=0 and k2≠0). The obtained probing 
spectrum obtained is shown in Fig. 4. 

 

 
Fig. 4. Spectrum of the optimal multisine 

probing signal when output variance is minimized 
 
It can be seen that the variance of the probing 

signal is much larger as compared to the case when 
the probing signal’s variance was minimized. It is 
interesting to note that high frequency components 
carry most of the signal’s power. This is because of 
the low system gain at these frequencies; therefore a 
probing signal with such components has a negligible 

impact on the system’s response. In other words, the 
method avoids exciting frequencies that are close to 
the critical mode and tries to capture enough 
information about the system’s model by exciting 
high frequency components2. This is a desirable 
property because it might be dangerous to excite the 
exact frequency of the modes, as explained in the 
previous study case.  

In order to minimize both probing (input) and 
output variance, a weighted sum is taken as a 
criterion (denoted by var{uy(t)}). The weighting 
factors in (6) are chosen to have the following values: 
k1=0.5 and k2=1000, because the output variance has 
a numerical value that is roughly 2000 times smaller. 
The obtained probing spectrum is shown Fig. 5. 

 
 

 
Fig. 5. Spectrum of the optimal multisine 

probing signal when both, probing and output 
variances are minimized 

 
This type of criterion represents a compromise 

between the two previously presented criteria (input 
only and output only criteria). It can be noted that 
high frequencies do not contribute significantly to the 
accuracy of the estimated modes, and thus, as shown 
in Fig. 5, these components are suppressed 
(comparing to the case when only output variance is 
minimized, see Fig. 4). The result is that the power 
spectrum’s shape is similar to the case when only the 
probing signal’s variance is minimized (the energy of 
the signal is mostly allocated around the critical 
modes’ frequencies, see Fig. 3). The numerical 

                                                 
2 As the system has small gain at high frequencies, 
the cost in the objective function that corresponds to 
these frequencies is small as well, regardless of the 
strong excitation by probing signal (the objective 
function is proportional to the product of system gain 
and input power at each particular frequency) 
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values of the probing signal obtained and output 
signal variances are shown in Table I. 

 
Table I Introduced system disturbance when 

the variance of the input and output signal is 
minimized. 

 White 
noise 

Minimized function 
var{u(t)} var{y(t)} var{uy(t)} 

var{u(t)}  10410 1179.8 101850 1441.6 
var{y(t)} 1.6761 2.0915 1.2425 1.5980 
var{uy(t)} 6881.1 7981.4 52167 2318.8 

 
Table I summarizes the most important results. 

The reference case represents the situation when 
probing is performed using white noise signal 
(spectrum is not optimized, rather all frequencies are 
equally excited). It can be seen that when the input 
(probing) power is minimized, the same mode 
estimation accuracy can be accomplished with an 
input power that is roughly 8 times smaller (10410 
compared to 1179.8). This is a significant 
improvement when the capacity of injecting 
disturbance is limited. However this type of probing 
may pose a risk for power system stability because 
the output variance (that represents a level of system 
disturbance) is the largest in this case (2.0915) 

On the other hand, when only the system 
disturbance is minimized (arbitrary power level of 
probing signal is allowed), a significantly larger 
probing power (by factor of 90) is obtained to 
accomplish the same level of desired mode 
estimation accuracy. This level of probing input 
power might be unacceptable from the perspective of 
the probing device’s allowable strain, so a tradeoff 
between these two extreme cases (as presented by the 
case where both input and output powers are 
minimized) might be the most suitable for real-life 
applications.  

It can be also noticed that the space for 
improvement in terms of output power (level of 
system disturbance) is generally much smaller than 
the space for improvement of the level of input 
power. This is reasonable, because a desired mode 
estimation accuracy inevitably implies a significant 
level of system disturbance (if the system is not 
sufficiently disturbed, no useful information about 
the modes can be extracted from the measured 
outputs). 

At this point it is important to clarify what the 
numbers in Table I represent quantitatively. Because 
a linearized model was used, the level of excitation 
(ambient noise) does not directly affect the shape of 
optimal spectrum result (linearity property). What is 
important is the variance ratio between the ambient 
noise and the probing signal. In the studies presented, 

the ambient noise is represented by a unit variance 
white noise active and reactive power injections at all 
buses of the linearized model. This means that the 
reactive power probing of 10410 (Table I) 
corresponds to a value that has 10410 100≈  larger 
magnitude in per unit than the ambient noise (which 
is assumed to have unity variance). This further 
means that an ambient excitation of 100kVA at each 
bus requires a probing signal of 10MVA for the 
presented case. Because of the variable nature of the 
ambient noise, it has been decided to present the 
relative values shown in Table I rather than absolute 
values. 

 
D. Signal realization  
 

As presented in [4] it is beneficial when the 
probing signal has a time-domain representation with 
a small crest factor. In the case of multisine signals, 
this means that the vector of sine waves’ phases has 
to be optimized with the objective of minimizing 
crest factor. This minimization procedure is given in 
[4]. Table II presents the values of the crest factors 
for signals whose spectra where determined earlier.  

It can be noticed that the obtained crest factors are 
reduced significantly, as compared to the case with 
random phases of sine components. However, the 
values depend on the spectrum and phases used for 
initialization.  

 
Table II Crest factors of the designed multisine 

signals. 
Objective 
function Method Crest Factor 

var{u(t)} Random phases 4.034 
Optimal phases 3.272 

var{y(t)} Random phases 2.863 
Optimal phases 2.618 

var{uy(t)} Random phases 3.579 
Optimal phases 2.754 

 
5. Conclusion  
 

Probing-based mode estimation enables more 
accurate estimation in comparison with ambient 
based methods due to a known disturbance injected 
into system. Probing experiments in power systems 
are costly processes that have to be carefully planned. 
One of the important design considerations in the 
planning stage is the shape of the probing signal. This 
paper proposes a methodology for probing signal 
design that exploits the relationship between the 
probing signal spectrum and the accuracy of the 
mode estimate. It is shown that only the power 
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spectrum of the signal (not the time-domain signal 
realization) determines the accuracy of the mode 
estimation process. Consequently, the spectrum of 
the probing signal is determined through an 
optimization process, where the impact of the 
probing on the normal system operating condition is 
minimized, whilst the desired mode estimation 
accuracy is treated as a hard constraint. The probing 
signal is modeled as a multisine signal where the 
spectrum is described by the amplitudes of the 
individual sine components (determined through 
optimization). Once the probing power spectrum has 
been determined (first stage), a time-domain probing 
signal is generated with the aim to minimize crest 
factor of the signal in the second stage. 

The presented method provides a significant 
improvement in comparison with previous probing 
signal design methods that excite all frequency 
components equally. It is shown that the same 
accuracy of mode estimation can be accomplished 
with the probing signal that has roughly 8 times 
smaller power. In addition, it is also shown how to 
minimize the impact of the probing signal on the 
system’s operating condition. 

The advantage of the proposed method is its 
straightforward application in real-life conditions. 
The probing signal is determined offline and later 
reproduced using reference inputs of FACTS 
controllers or generator regulators. The presented 
method assumes the existence of the initial model 
that is used for probing design. This assumption may 
lead to a suboptimal signal design, which is a 
drawback that will be tackled in future research 
efforts. 
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7. Appendix  
 

This appendix presents the derivation of 
expression (8) that has a LMI from as defined with 
(7). These two expressions are rewritten here for the 
sake of derivation completeness: 
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As stated before, Rr is derived trivially from A(1), 
whereas the derivation of S is given in the sequel. 
First, it is necessary to compute the matrix S, that is 
equal to: 

*
0 0

1 ( , ) ( , ) .
2 e eS F F d

π

π

ω ρ ω ρ ω
π −

= ∫   (A3) 

Using Parseval’s theorem this expression can be 
rewritten as follows: 

*
0 0

1 ( , ) ( , )
2 e eS F F d

π

π

ω ρ ω ρ ω
π −

= =∫  

[ ( ) ( )]TE y t y t=  (A4) 

where E denotes the expected value of a random 
process, ( ) ( ) ( )ey t F z e t=  with ( )e t white noise of 
unit variance. 

Note that the transfer function (z)eF  can be 
expressed as a single-input multiple-output (SIMO) 
state space form, as follows: 

 
( 1) ( ) ( )
( ) ( ) ( ).

x t Ax t Be t
y t Cx t De t

+ = +
= +

  (A5) 

 
Using (A5), the expression for transfer function 
(z)eF  can be further manipulated as follows: 

(z) ( ) ( )T
eF E y t y t = =    (A6) 

( )( )( ) ( ) ( ) ( ) TE Cx t De t Cx t De t = + +   (A7) 

( ) ( )( ) ( ) ( ) ( )T T T TE Cx t x t C E De t e t D= +  (A8) 
T TCXC DD= + . (A9) 

 
Equation (A9) constitutes the Lyapunov equation 

T TX CXC DD= + that can be solved for X, providing 
a solution for S, i.e. S=X. 

This concludes the derivation of S and this 
appendix. 
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