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Abstract A distributed control architecture is
presented that is intended to make a collection of
heterogeneous loads appear to the grid operator as
a nearly perfect battery. Local control is based
on randomized decision rules advocated in prior re-
search, and extended in this paper to any load with
a discrete number of power states. Additional linear
filtering at the load ensures that the input-output
dynamics of the aggregate has a nearly flat input-
output response: the behavior of an ideal, multi-GW
battery system.
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1 Introduction

Are billion dollar batteries and billion dollar gas tur-
bine generators required to manage the volatility of
renewable generation?

In prior research, it is argued that balancing re-
sources will come from flexible loads at much lower
cost and potentially greater performance. In order
to realize this vision, a decentralized control design
is utilized; the design respects the limitations of the
loads, which are based on dynamic constraints as
well as strict bounds on the quality of service (QoS)
delivered to consumers [6]. Automation is required
to ensure that the grid operator obtains reliable an-
cillary service, and that reliability to the consumer
is also maintained.

The goal of this research is to create virtual en-
ergy storage from flexible loads. The framework here
and in prior research is Demand Dispatch: power
consumption from loads varies in a possibly coor-
dinated manner to automatically and continuously
provide service to the grid, without impacting QoS
to the consumer.

This paper investigates a question posed in [14]:
what intelligence is required at the grid-level to im-
plement demand dispatch? The question was ad-

dressed through extra layers of local control at each
load. One topic left for future research was how to
approximately invert the dynamics of an aggregate
of loads so that the resulting dynamics would ap-
proximate a perfect battery.
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Figure 1: A control architecture for Demand Dispatch.

The control architecture proposed in [14,17] is il-
lustrated in Fig. 1. The “compensation” block rep-
resents today’s balancing authority (BA), and the
“grid” represents the aggregate dynamics of loads,
generators, transmission lines, and other grid ele-
ments. Design of the compensator Gc will be based
on an input-output model of the grid, denoted Gp
in the figure [11] (see Section 2.1 for details). The
contributions of this paper are summarized here:

(i) New design techniques are introduced for a
broad class of on/off loads (or more generally,
loads with a finite number of operating states).
It is found in numerical results that the result-
ing mean-field dynamics share desirable proper-
ties observed in the optimal design of [17]. In
particular, in every example considered, the lin-
earized dynamics are minimum phase.

(ii) It is argued that the minimum phase property
is valuable in the design of a prefilter for each
load. Applying techniques from the theory of ro-
bust control, it is shown that the input-output
dynamics can be shaped to appear as a constant
gain over a bandwidth centered at the nominal
period of the load.

(iii) With one-way communication from the BA to
the loads, it is shown that the aggregate, with
each load acting independently, serves as a nearly
perfect “virtual battery”. This is argued based on
control analysis, and tested through simulation.

Grid-level simulation experiments were conducted
using over 50 different types of loads. Local con-
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trol ensures that this diverse population — including
pools with time constants of 24 hours, and residen-
tial air-conditioning with time constants of tens of
minutes to one hour — act cooperatively to provide
regulation over all time-scales.

Related research Beginning in the early eighties,
deterministic schemes were introduced to model and
control a population of thermostatically controlled
loads (TCLs) for ancillary services [4,13]. Random-
ized algorithms appeared in the sequels [10,16]; sys-
tem identification and state estimation are required
for accurate tracking.

Centralized control is the subject of [8], where the
main contribution is to address combinatorial com-
plexity through a priority ordering of loads. The
state information required by the centralized con-
troller presents challenges in terms of both commu-
nication and privacy.

Local control of refrigerators is proposed for pri-
mary frequency control in [21]. A randomized con-
trol architecture is introduced to avoid synchroniza-
tion of loads. There are no performance guarantees
with respect to ancillary service, which raises con-
cerns as inaccurate primary frequency control can
destabilize the grid [11,14].

There is substantial literature on indirect load
control, where customers are encouraged to shift
their electricity usage in response to real-time prices.
Control through price signals can introduce uncer-
tain dynamics, and risk to system stability [3,18,20].

Our approach addresses simultaneously the fol-
lowing four challenges: (i) a distributed control ar-
chitecture simplifies communication infrastructure
requirements and assuages consumer privacy con-
cerns; (ii) local control ensures reliable ancillary ser-
vice; (iii) local control ensures QoS to the consumer;
and (iv) contractual agreements and periodic cred-
its, such as those proffered by Florida Power and
Light in their OnCall program, are advocated to in-
centivize customer participation.

The present paper concerns all four challenges,
but focuses on a new approach to topic (i). It is
assumed that there is only one-way communication
from BA to loads, and that the control signal gen-
erated by the grid operator is based on frequency
deviation, as AGC (automatic generation control) is
synthesized today.

It is remarkable to see the potential for demand
dispatch based on minimal communication. How-
ever, some communication from loads to the grid
operator remains valuable in practice. In particular,
the grid operator requires bounds on the capacity

of service from loads, and may want to occasionally
update or verify parameters in local control algo-
rithms.

The remainder of this paper is organized as fol-
lows. Section 2 provides details of the distributed
control architecture, including grid-level control, lo-
cal control design, and load dynamics. In Section 3,
multiple simulations are performed to demonstrate
the validity and utility of demand dispatch. Conclu-
sions and directions for future research are summa-
rized in Section 4.

2 Distributed Control Architecture

2.1 Grid level control

The macro grid model used in this study is taken
from [5], which is itself based on standard power sys-
tems analysis [11]. The grid is modeled as an input-
output linear system whose input is power deviation
and output, frequency deviation. A particular grid
model of [5] is used in numerical experiments:

Gp(s) = 10−5 2.488s+ 2.057

s2 + 0.3827s+ 0.1071
(1)

The impulse response of this system is in close agree-
ment with the response of frequency to a grid out-
age in the ERCOT region — a full discussion can be
found in [14].

Throughout the paper, the transfer function (1)
is used to model the “grid block” shown in Fig. 1.
The resonance of this transfer function corresponds
to time-scales on the order of seconds, while in this
paper the relevant disturbances to be rejected evolve
on much slower time-scales. This justifies the use of
PI control for the choice of Gc in the “compensation
block”. The output of the compensator is denoted

Ut = KP ω̃t +KI

∫ t

0

ω̃r dr

where ω̃t = ωdesired − ωt. The interpretation of Ut
is the desired change in power from all resources
(MWs). The control parameters (proportional and
integral gains KP , KI) are chosen to respect the un-
certainty of grid dynamics on timescales of seconds
or faster.

In practice, the PI compensator would be modified
to avoid “integrator windup”, as is common practice
in synthesizing the AGC signal today.

For simplicity, in this paper, we focus solely on
techniques for balancing within the control region
(this includes ramp services, balancing reserves, and
frequency regulation). In practice, the regulation
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of tie-line error would be performed in conjunction
with these services.

The signal U is decomposed using several band-
pass filters: Each block “BP” shown in Fig. 1 rep-
resents a bandpass filter that is chosen based on
the dynamics and constraints of the associated ag-
gregate of resources. Batteries and flywheels are
valuable for the highest frequency component of U ;
demand dispatch based on refrigerators and water
heaters can provide service on time-scales of tens of
minutes to several hours [17].

2.2 Local control: Markovian dynamics

The local control described here is a continuous-time
variant of the myopic design introduced in [2].

The starting point is the construction of a Marko-
vian model for nominal behavior of an individual
load. The state process evolves in continuous time,
on a finite state space denoted X. Hence its dynam-
ics are defined by a rate matrix, denoted A0. For
two states x, x′ ∈ X the transition probability is de-
noted P t(x, x′) = P{Xt = x′ | X0 = x}, which is the
matrix exponential P t = exp(tA0), t ≥ 0.

It is assumed that the nominal model has a unique
invariant pmf (probability mass function), denoted
π0. Invariance requires that

∑
x π0(x)A0(x, x′) = 0

for every x′ ∈ X.

The rate matrix is assumed to be of the following
form,

A0 = r[−I + S0] (2)

where S0 is a Markov transition matrix, and I is
the identity matrix. A Markov process X with rate
matrix (2) can be realized by first constructing a
Poisson process with rate r and jump times {Tk :
k ≥ 1}. The continuous-time process X is constant
on the inter-jump time-intervals [Tk, Tk+1), and

P{XTk+1
= x′ | XTk

= x} = S0(x, x′) ,

for x, x′ ∈ X and k ≥ 0, with T0 = 0. The as-
sumption that Xt = XTk

for t ∈ [Tk, Tk+1) reflects
the fact that we are only considering the load at the
sampling times {Tk}. We do not assume that the
load state itself is constant over this period.

The state of the load has the following form:
Xt = (Xu

t , X
n
t ) for t ≥ 0, and the state space has

the form X = Xu × Xn. The first component Xu

represents a variable that can be adjusted directly,
such as power consumption, or the temperature set-
point for a refrigerator. The second component Xn

is indirectly controlled through Xu and exogenous
disturbances (e.g., someone opens the refrigerator).

The Markovian dynamics for the nominal model
are assumed to be of the form

S0(x, x′) = R0(x, x′u)Q0(x, x′n), (3)

where x, x′ ∈ X = Xu × Xn, and
∑
x′
u
R0(x, x′u) =∑

x′
n
Q0(x, x′n) = 1. The matrices R0, Q0 model the

dynamics of Xu, Xn, respectively.
The construction of S0 is of course entirely depen-

dent on the characteristics of the particular load.
For simplicity, in this paper it is assumed that

Xu
t = mt represents power consumption (that can

be controlled directly at the load). It is assumed
moreover that there are just two power states: on or
off. The process m evolves in the binary set denoted
Xu = {	,⊕}. Denote by U(x) the associated power
consumption: U(	, xn) = 0, and U(⊕, xn) = % (kW)
(a positive value, independent of xn ∈ Xn).

Local control is based on a perturbation of nom-
inal behavior, defined by a family of rate matrices
{Aζ : ζ ∈ R}. The following myopic design is used
in all of the numerical experiments considered here:

Sζ(x, x
′) = S0(x, x′) exp(ζU(x′)− Λζ(x)) (4)

in which Λζ(x) is the normalizing constant defined
so that

∑
x′ Sζ(x, x

′) = 1 for each x.
The goal of the myopic design is to influence the

load to consume more power at time t when ζt > 0,
and less power when ζt < 0.

Given a homogeneous collection of N loads, the
empirical distribution at time t is defined as follows:

µNt (x) :=
1

N

N∑

i=1

I{Xi
t = x}, x ∈ X. (5)

We assume this is approximated by the mean-field
equations,

d
dtµt = µtAζt (6)

in which µt is interpreted as a row vector; justifica-
tion for large N is straightforward in the discrete-
time setting [17]. The average power is denoted
yt =

∑
x µt(x)U(x), and the steady-state average

power consumption for the nominal model is y0 =∑
x π0(x)U(x).
It is assumed moreover that Aζ is continuously

differentiable in ζ. This justifies the linear state
space model approximation,

d
dtΦt = AΦt +Bζt , γt = CΦt (7)

where A = AT
0, and B, CT are column vectors of

dimension d = |X|:

Ck = U(xk) , Bk =
∑

x

π0(x)A′0(x, xk) , 1 ≤ k ≤ d
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where A′0 is the derivative of Aζ at ζ = 0.
The state Φt is d-dimensional: Φt(k) is intended

to approximate µt(x
k)− π0(xk) for 1 ≤ k ≤ d. The

output γt is an approximation of ỹt = yt − y0.

2.3 Local control: inverse filter design

Fig. 2 shows the nominal behavior of an air-
conditioning load along with the associated Marko-
vian model, whose sample paths are piece-wise con-
stant. The sampling rate r was chosen so that the
mean sampling time 1/r is much smaller than the
nominal period of the load.

time(min)

19.4

19.6

19.8

20

20.2

20.4

20.6

te
m

p(
ce

nt
ig

ra
de

)

0

0.2

0 60 120 180

0.4

0.6

0.8

1

on
/o

� 
st

at
e

Sampled TCL temp
TCL temp

Sampled TCL On/O� state
TCL On/O� state

Figure 2: Temperature evolution of a TCL.

Consider a collection of 2,000 similar units, each
consuming 1kW of power when operating, and 50%
duty cycle. Hence, without any coordination, the

average power consumption is about Y
0
:= 1MW.

Denote the total power consumption at time t by
Yt. Equivalently,

Yt = N
∑

x

µNt (x)U(x) ,

and denote the deviation Ỹt = Yt − Y
0
. Using cen-

tralized control, the loads could be coordinated so
that Ỹt tracks a square wave of amplitude 1MW
nearly perfectly. If the frequency of this square wave
is chosen to be the nominal period (approximately
30 mins in this example), then each load would ap-
pear to be evolving without external influence. If
the frequency is far from the nominal, then the load
will receive poor QoS: either excessive cycling, or
poor temperature control. The decentralized con-
trol strategy described here is designed to respect
these constraints.

In every design considered, it is found that the ag-
gregate dynamics exhibit a resonance near the nom-
inal frequency. Fig. 3 shows a Bode plot for a lin-
earized TCL model with transfer function G`, with
resonance at fr = 3×10−3 rads/sec (consistent with
a 30 min period).

These observations are motivation for restricting
the bandwidth of service from each load to a neigh-
borhood of this resonance, and introducing pre-
filtering to flatten the resonance.

For each load, an associated mean-field model
and its linearization can be computed exactly. In
each example that we have considered, these dy-
namics are minimum phase, which simplifies the in-
verse filter design proposed here. The outcome of
this design is a prefilter that removes the resonance,
and makes the linearized dynamics appear all-pass
within a prescribed bandwidth.
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Figure 3: Linearized mean-field dynamics for a TCL with and
without inverse-filter

Let G` denote the transfer function for the lin-
earized mean-field model, and let M` denote the
pre-filter. The goal is to design the pre-filter so
that M`(jf)G`(jf) ≈ 1 for a range of f ∈ R. This
goal can be re-cast as the robust control problem
described next.

Fig. 4 shows a feedback control loop in which K` is
a transfer function to be designed. In the standard
robust control framework, one objective for design
is to ensure that the transfer function from ζt to yt
is nearly unity in some frequency range. This closed
loop transfer function is equal to L`/(1 +L`), where
L` = K`G`. Consequently, a solution to the robust
control problem provides an inverse filter design so-
lution M` = K`/(1 + L`). The desired approxima-
tion M`G` = L`/(1 + L`) ≈ 1 is obtained in the
specified frequency band.

MF ModelRobust Control

Σ
+

−
K G

ut yt

Figure 4: Feedback control system for Inverse Filter Design.

The robust control problem is posed as an opti-
mization problem over transfer functions. The opti-
mal transfer function K` is obtained numerically in
Matlab using the mixsyn command [1,12].
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Par. AC Fast WH Slow WH

θset 18–22 48–52 48–52
δ 0.8–1 2.95–3 3.95–4

Θa 30–34 19–21 19–21
RC 3.5–4.5 30–36 67–73
% 14/2.5 5/1 5/1

Table 1: TCL parameters for ACs and water heaters.

2.4 Design with heterogeneous loads

We conclude this section with a few details required
to incorporate multiple heterogeneous loads in the
demand dispatch model.

First, observe that the inverse design whose lin-
earization is plotted in Fig. 3 may result in a local
control algorithm that is too aggressive for a TCL
load. Without the inverse filter, the gain from an
aggregate of these TCLs falls quickly for frequen-
cies f > fr, which suggests a problem with this
inverse filter design: excessive cycling of individual
loads will occur if the aggregate tracks high frequen-
cies with significant magnitude. On the other hand,
capacity of low-frequency tracking is small because
of the temperature constraints associated with TCL
hysteresis.

Therefore, it is essential to introduce a second fil-
ter to restrict the bandwidth to a range appropriate
for the corresponding class of loads. Specifics are
provided in the experimental results surveyed in the
next section.

This section is concluded with a brief description
of the nominal behavior of a TCL, and a summary of
the parameters used in this paper when considering
a collection of heterogeneous loads.

A common model for temperature evolution is the
first order differential equation,

d
dtΘt = − 1

RC
(Θt −Θa

t + θgmt) +Wt, (8)

in which Θt is the internal temperature, Θa
t is am-

bient temperature, C is thermal capacitance, R is
thermal resistance, and Wt models disturbances.

The temperature gain parameter is θg = Rρtr,
where ρtr is the energy transfer rate: ρtr is positive
for TCLs providing cooling, and negative otherwise.
The power consumption is the ratio % = |ρtr|/COP,
where the denominator is known as the coefficient of
performance. The nominal behavior is defined by a
temperature set-point θset and a dead-band range δ,
so that Θt ∈ [θset − δ/2, θset + δ/2]. Temperature is
regulated to this band via the binary-valued process
{mt}, whose behavior is defined by hysteresis, as
illustrated in Fig. 2.

Table. 1 displays the ranges of values of TCL
parameters for air-conditioners and electric water
heaters (a subset of those surveyed in [15]). The
value of RC is in units of time (hrs). The last
row denotes the maximal power consumption, % =
|ρtr|/COP (kW).

The experiments that follow are based on a hetero-
geneous collection of loads in which the parameters
for the TCLs take on values within these limits.

3 Simulating the Grid

It is found in prior numerical studies that the mean
field model accurately matches the dynamics of an
aggregate of loads, provided the total number of
loads engaged is on the order of hundreds or more
[7, 17]. These prior works focused primarily on resi-
dential pool pumps; extensions to TCLs are treated
in [7], but without any supporting simulations.

Simulations demonstrating the tracking and
disturbance-rejection performance along with a cost
analysis of demand dispatch are presented in this
section. The impact of daily periodic patterns of
response from loads is also investigated.

3.1 Design of a virtual battery

The experiments conducted involved four classes of
loads: residential air conditioners (AC); small elec-
tric water heaters with faster cycle times (f-WH);
large electric water heaters with slower cycle times
(s-WH); and residential pool pumps. They are dis-
tinguished by their nominal period, and based on
this, a bandwidth of service was chosen for the de-
sign of each bandpass filter. In each case, a second-
order Butterworth filter was adopted — the param-
eters are summarized in Table. 2.
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Figure 5: Individual and aggregate load dynamics.

Twenty different subgroups were obtained for each
TCL class, through uniform sampling of the values
in Table. 1. Each subgroup contains 2,000 loads,
implying a total of 40,000 loads in each TCL class.
The Markovian model was obtained via Monte-Carlo
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based on simulations of (8), following Section IV
of [2] and prior work. The experiments include
40,000 homogeneous pools with 12 hour cleaning cy-
cles, with a nominal Markov model identical to that
used in [7].

For each homogeneous subgroup, the controlled
Markov model {Sζ : ζ ∈ R} was obtained using the
myopic design described in Section 2.2. Based on
the resulting design, its linearized dynamics were ob-
tained about ζ ≡ 0. This was the basis of the inverse
filter design described in Section 2.3. In addition, as
described in Section 2.4, each load locally pre-filters
the regulation signal using a bandpass filter.

Denote the respective transfer functions for the
linearized mean-field model by, respectively, Gac,
Gfwh, Gswh, Gpl, and the respective filters (inverse
× band-pass) by Mac, Mfwh, Mswh, Mpl. The linear
model of the aggregate dynamics of all the loads is
defined by the sum,

Hload = MacGac+MfwhGfwh+MswhGswh+MplGpl (9)

The Bode plot for Hload is shown in Fig. 5. The
rapid decline in the magnitude plot beyond f =
10−2 rads/sec is due to the inherent bandwidth con-
straints of the loads. Hence, the actuation is aug-
mented with an ideal resource Ga ≡ 1. A high
pass filter MHP was designed with bandwidth be-
yond f = 10−2 rads/sec, so that the introduction
of this resource flattens out the Bode plot. The
total response is modeled by the transfer function
Htotal = Hload + MHPGa, whose Bode plot is also
shown in Fig. 5.

The actuation obtained from Ga might come from
batteries, responsive generators, or fast responding
loads that provide accurate tracking. The time-
scales of ancillary service from these resources are as-
sumed to be in the range of primary control, which is
why accurate response is needed in this bandwidth.

Load Period BW (cyc/hr) %̄tot %tot

AC 20min–1hr. [1, 1/0.2] 97 224
f-WH 2–4 hrs. [1/3, 1/0.5] 11 200
s-WH 8–12 hrs. [1/9, 1] 8.5 200
Pools 24 hrs. [1/24, 1/3] 20 40

Table 2: Load Dynamics and Power Characteristics: BW of MBP;
max and average power %tot, %̄tot in MW for 40,000 loads.

Have we constructed a perfect battery? Recall
that the nonlinear dynamics have been linearized for
the sake of analysis, but the aggregate dynamics re-
main nonlinear. Moreover, the Bode plot for the lin-
earized dynamics with transfer function Htotal is not

entirely flat in magnitude or phase. These shortcom-
ings are no different than what would be expected
for a generator providing balancing service, or a re-
alistic (and imperfect) battery system.

The next results illustrate the accuracy of track-
ing, and the application of the ensemble of loads for
balancing the grid.

3.2 Open loop tracking

The balancing reserves deployed (BRD) from the
Bonneville Power Administration (BPA) were used
as a reference signal to evaluate open-loop track-
ing. A single typical windy day, February 19, 2016,
was chosen in the open-loop experiments described
here. These experiments illustrate the input-output
behavior of each collection of TCLs.

For each of the three classes of TCLs, the BRD
were passed through a bandpass filter designed
based on the frequency characteristics of the class.
Fig. 6 shows the open loop tracking performance in
each case (for the case of AC, the plot shows only six
hours during the day). The tracking accuracy is re-
markable for a one-way communication architecture
from the grid operator to the loads.

We estimate that the AC trajectory represents
only 20% of capacity (the signal could be scaled
up by 5 while maintaining reasonable tracking), and
the other two plots represent about 50% of capac-
ity. While demand dispatch does increase cycling of
TCLs, in these experiments, it was found that cy-
cling was increased by only about 5% from nominal.
Without the inclusion of “opt out” control, addi-
tional cycling will increase as the magnitude of the
reference signal increases [6].

The entire BRD signal can be tracked using a com-
bination of pools and the three classes of heteroge-
neous TCLs along with the high-frequency ideal re-
sources MHPGa. Results from experiments in non-
ideal settings are described next.

3.3 Closed loop performance

Simulations were performed to evaluate the distur-
bance rejection performance of the demand dispatch
control architecture. The experiments were based on
the closed loop system represented in Fig. 1.

The nonlinear mean field model tracks the aggre-
gate of loads perfectly in all cases considered. In
particular, in each of the simulation results shown in
Fig. 6, the mean-field model output is nearly indis-
tinguishable from the aggregate stochastic output.

Since it is much faster to simulate the nonlinear
deterministic system, we see no reason to conduct a
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stochastic simulation in these experiments.
The demand dispatch simulation model was based

on 1 million ACs, 5 million f-wh, 5 million s-wh, and
a large number of pools (this number was taken as
a parameter in this study). Each group of loads
evolves according to the corresponding mean-field
model (6), which is linear in the state and nonlinear
in the input.

For a homogeneous group `, there is by design
a controlled generator {A`ζ}, and a linear filter M `

that determine local control. The dynamics of the
aggregate of loads in this subgroup evolves as

d
dtµ

`
t = µ`tA`ζ`t , ζ`t = M`ζt t ≥ 0.

Given the specified mix of TCL loads and assum-
ing that the closed-loop system is driven by the BRD
signal as the disturbance entering the grid, in or-
der to obtain a flat Bode plot for total actuation as
shown in Fig. 5, we would require 4 million pools!
With a PI control architecture, a flat response at
low frequencies is not necessary, so experiments were
conducted with 1 million residential pools (the ap-
proximate number of pools in Florida). The max-
imum load is thus 1GW, and the average load is
500 MW, so that the pools can at best track signals
of ±500 MW. Tracking was poor when the BRD sig-
nal exceeded this range.

Other resources such as commercial water chillers
could be added to increase capacity at low frequen-
cies. Instead, in the next set of simulations, the
pools were augmented with a single 1 GW genera-
tor. This was modeled through the introduction of
an additional ideal actuator:

Htotal = Hload +MHPGa + 1
4M

LPGa

in which the second-order low-pass filter MLP has
unity gain at low frequencies, with the exact
pole/zero locations used for the pool loads. The scal-
ing of 1/4 is introduced so that the response from

the ideal low frequency actuators is commensurate
with the pools. The resulting Bode plot is no longer
flat – its gain below 10−4 rads/sec is approximately
half of the gain above 10−3 rads/sec.

As a result of the gain variations in the lineariza-
tion and the nonlinearities caused by capacity con-
straints, the open-loop tracking will no longer be
perfect, especially when the BRD signal takes on
large values. While imperfect, the performance is
still better than what is received from many gener-
ation units (such as Fig. 10 of [9]).

The following set of experiments are based on the
closed-loop architecture used in practice today: the
BA observes frequency deviations (or some other
measure of power mismatch), and varies the balanc-
ing reserve/AGC signal in response. Results from
these experiments are described next.

The plots on the left hand side of Fig. 7 show
the resulting closed loop behavior over 5 days, us-
ing BPA BRD data from February 19–23, 2016, as
the disturbance D entering the grid (modeled as an
additive input disturbance as shown in Fig. 1).

The aggregate response from all actuators, UA, is
approximately the negative of the BRD, so that the
frequency deviation is tightly controlled: the distur-
bance rejection performance is nearly perfect. The
grid frequency remained within the range 59.993 to
60.007 Hz over the 5 day period.

The plot on the right hand side of Fig. 7 shows the
filtered control signal ULP

t :=MLPUt along with two
responses: from the collection of pools, and from the
1 GW generator. The response of the pools nearly
matches the response from the ideal generator.

3.4 Time-varying capacity

The time-varying nature of many commercial and
residential loads is an issue of concern. For example,
the number of air conditioners that are in operation,
and hence available for ancillary service, is low dur-
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Figure 7: Closed-loop tracking with residential air-conditioners, electric water heaters, pool pumps, and ideal actuators. Actuation from
the loads can be interpreted as virtual energy storage.

ing the early morning hours and peaks during the
late afternoon — see Fig. 9. of [19].

Experiments were conducted in which the gain of
the response of the ACs was amplified/attenuated
using a time-varying gain function:

g(t) = 1− 0.5 sin(fdt), t ≥ 0

in which fd = 727×10−7 rads/s corresponds to a 24
hour period. All of the other resources were left the
same as the simulation setting of Section 3.3. Fig. 8
shows the results. While the AC actuation does not
track its input signal ζac, the aggregate actuation
from all the resources is almost the exact opposite
of the disturbance, just as seen in previous experi-
ments. Disturbance rejection is nearly perfect, and
the grid frequency remains within [59.993, 60.007]
Hz.

The potential cost of these gain fluctuation is ad-
ditional actuation from other resources [14].
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Figure 8: Tracking remains perfect even when the gain from ACs
is sinusoidal with a 24 hour period and a magnitude range of
[1/2, 3/2].
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Figure 9: Cost as a function of capacity from AC loads.

3.5 Resource availability and cost

Following installation of equipment to enable de-
mand dispatch, the operating cost is essentially
zero. Consumers may require incentives to partic-
ipate (e.g., the monthly credits provided by Florida
Power and Light through their OnCall program),
but they will also receive some guarantees regarding
constraints on QoS and potential costs from addi-
tional cycling of equipment.

The benefit of demand dispatch from low fre-
quency services such as residential pools is clear:
one million pools serve as a substitute for a 1GW
generator. Following the initial investment (usually
in $B), a generator requires fuel, maintenance, and
staff. The loads provide accurate regulation service
without any of these operating costs.

What about high-frequency ancillary services? To
investigate the value of the highest frequency ser-
vices from demand dispatch, we consider a param-
eterized family of models in which the contribution
from air conditioners is varied according to the frac-
tion α ∈ [0, 1]. The remaining 1 − α of regulation
is obtained from ideal actuation from batteries or
other sources. Denote the output of the ideal actu-
ators by {Uat }. The total ideal actuation is defined
by the sum:

Uat = [MHPGa + (1− α)MBP
ac Ga]Ut

Recall Ga ≡ 1 in these experiments. The second
component is thus (1−α)MBP

ac Ut, which is intended
to replace the lost service from the ACs.
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Figure 10: Left: Hypothetical CAISO Net-load over one day in 2020, and its frequency decomposition. Right: “Residual Load” = “Net
Load”−“Low Pass” is tracked nearly perfectly. The introduction of demand dispatch alongside generation reduces needed generation
capacity by at least 5 GW.

Following [14], the mean-square cost of the closed
loop system is defined as,

J2 =
1

T

∫ T

0

|Uat |2 dt (10)

This is similar to the “mileage” metric used for an-
cillary service resources such as batteries. Fig. 9
shows a plot of this cost as a function of α for T
corresponding to one day; α = 1 corresponds to the
simulation setting of Section 3.3. The total cost is
reduced by more than 50% when α = 1 as compared
to α = 0.

The cost would be much higher for intermediate
values of α if the inverse filter was not used to con-
struct ζac [14].

3.6 Ramp services

The plot on the right in Fig. 10 shows a stylized
“duck curve” representing the net-load at CAISO
anticipated in the near future, based on the assump-
tion that there will be significant solar energy pene-
tration. The plot is based on approximately 10 GW
of solar power at peak.

The 15GW ramp observed between 3pm and 6pm
is of concern today. It is argued in [14] that the
ramp can be smoothed by first scheduling generation
to track a low-frequency component of the net-load
— denoted “low pass” in the figure. The remaining
two zero-energy signals shown can be tracked using
a combination of resources — batteries, responsive
generators, and demand dispatch.

The mid-pass signal remains substantial – a range
of ± 5GW. This signal could be provided using gas
turbine generators, but a total capacity of 10GW
would be required. This value can be reduced sig-
nificantly by applying the same techniques used to
address the balancing reserves signal.

Let Lrt denote the residual load, defined as “Net
Load”−“Low Pass”. This is plotted on the right in

Fig. 10, where it is seen that it takes on values ap-
proaching ± 4GW. The capacity from loads in the
previous set of experiments was insufficient to track
this signal. The capacity from TCLs was doubled, so
that the simulation was based on 10 million s-WH,
10 million f-WH, and 2 million ACs. It included 1.2
million pools (the approximate number of pools in
California), and also ± 2GW of low frequency regu-
lation that might come from generation or demand
dispatch from other loads such as water chillers and
water pumping (a significant load in California).

The plots of deviation of power from TCLs shown
on the right in Fig. 10 are significant, even though
the loads themselves do not deviate from their in-
dividual temperature setpoints. The variation in
power consumption of s-WH and pools helps to ad-
dress the “mid pass” signal shown on the left of
Fig. 10, whereas the “high pass” component is ser-
viced by the f-WH and AC power consumption. The
residual load and aggregate actuation match nearly
perfectly.

4 Conclusions

It is exciting to see how heterogeneous loads can
coordinate through distributed control to smooth
out enormous shocks to the grid. The collection of
heterogeneous loads is a multi-GW virtual battery
capable of impressive actuation in response to the
control signal from the grid operator. In a closed-
loop setting, the demand dispatch architecture can
perform near-perfect disturbance rejection, tightly
controlling the grid frequency. Consequently, de-
mand dispatch offers tremendous potential to pro-
vide high-quality ancillary services on timescales
spanning from several hours to a few minutes (the
time-scale of AGC).

Two issues require further attention. First is the
role of the “perfect actuators” supplying regulation
at time scales of tens of seconds and faster (the
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timescale of today’s primary control). Can loads
assist with this service as well as bolster synthetic
inertia? The analysis in [14] suggests that this could
bring risk in terms of stability, but this may depend
on other elements of the grid architecture (e.g., the
number and size of synchronous generators).

A second, far more significant issue is the time-
varying nature of many loads. For example, the
nominal load from commercial and residential air-
conditioning is roughly periodic over a typical week,
and its magnitude changes slowly depending upon
the weather. The results summarized in Section 3.4
offer significant hope in terms of system stability.
Moreover, it is conjectured that periodicity is a ben-
efit in regions with significant solar energy, since de-
mand is in harmony with supply.

Future work is required to convince the scientific
community and the power industry that the overall
coupled dynamics will not introduce any additional
risk when compared to traditional methods for bal-
ancing and frequency regulation. Further large-scale
simulation is required along with large-scale demon-
stration projects.
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