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Probabllistic Forecasting and Simulation of
Electricity Markets via Online Dictionary Learning

Weisi Deng, Yuting Ji, and Lang Tong

Abstract—The problem of probabilistic forecasting and online
simulation of real-time electricity market with stochastic gener-
ation and demand is considered. By exploiting the parametd
structure of the direct current optimal power flow, a new
technique based on online dictionary learning (ODL) is propsed.
The ODL approach incorporates real-time measurements and
historical traces to produce forecasts of joint and margina
probability distributions of future locational marginal p rices,

A Shadow price for the energy balance constraint at
time ¢.
p/u;  Shadow prices for max/min transmission con-

straints at timet.

|. INTRODUCTION

power flows, and dispatch levels, conditional on the system \We consider the problem of online forecasting and sim-

state at the time of forecasting. Compared with standard More
Carlo simulation techniques, the ODL approach offers seveal
orders of magnitude improvement in computation time, makirg
it feasible for online forecasting of market operations. Numerical
simulations on large and moderate size power systems illusite
its performance and complexity features and its potential a a
tool for system operators.

Index Terms—Dictionary learning, electricity market, machine
learning in power systems, power flow distributions, probaliistic
price forecasting.

NOMENCLATURE
() Real-time generation cost function.
el Cost for generation at bus
;i Cost for reserve typg at busi.
& v Penalty for reserve deficit of local constrainbr
system constraint.
d Vector of net load.
d; Vector of forecasted net load at tinie
g Vector of generation.
Ji—1 Vector of generation estimate at time- 1.
Tij Generation reserve of typgat bus:.
s'/s*  Vector of local/system reserve deficit.
F*/F~ Vector of max/min transmission capacities.
G+ /G~ Vector of max/min generation capacity.
I, Interface flow for local reserve constraiat
IF Interface flow limit for local reserve constraint
Q'/Q* Vector of local/system reserve requirement.
RT Vector of ramp capacities.

S Shift factor matrix.

AT /A~ Vector of upward/downward ramp limits.

e Binary value that is 1 when reserveat busi
belongs to constraint.
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ulation of real-time wholesale electricity market. By owi
forecasting and simulation we mean in particular the use
of real-time SCADA and PMU measurements to produce
conditional probability distributions of future nodal peis,
power flows, power dispatch levels, and discrete events such
as transmission congestion and occurrences of contingency

The forecasting and simulation problem considered in this
paper is motivated by the increasing presence of stochastic
elements in power system as a result of integrating intéentit
renewables at both wholesale and retail levels. The surge
of solar power integration in recent years, for example, has
fundamentally changed the overall net load charactesistic
some areas, the traditional load profile is being transfdrme
to the so-called “duck curve” profile where a steep down-
ramp during the hours when a large amount of solar power
is injected into the network is followed by a steeper up-ramp
when the solar power drops sharply in the late afternoon and
early evening hours.

While the duck curve phenomenon representsaw@rage
net load behavior, it is the highly stochastic and spatial-
temporal dependent ramp events that present difficult epera
tional challenges to system operators. For this reasorg the
a need for a more detailed and informative characterization
of the overall uncertainty of power system operation, one
that reveals interdependencies of power flows, congesiih,
locational marginal prices (LMPs).

Currently, some system operators are providing real-time
price forecasts. The Electric Reliability Council of Texd$
offers 1-hour ahead real-time LMP forecast, updated every 5
minutes. Such forecasts signal potential shortage/opptgu
caused by anticipated fall/rise of renewable supplies er th
likelihood of network congestion. The Alberta Electric &m
Operator [[2] provides two short-term price forecasts with
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Most LMP forecasts, especially those provided by system
operators, ar@oint forecastghat predict directly future LMP
values. They are typically generated by substituting the ex
pected trajectory of random load and intermittent genenati
in place of their actual realizations. Sucértainty equivalent
annrogches amount to equating the expectation of a funation
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random variables and a function of the expectation of randomThe main difficulty of the approach in1[6]/][7] is the
variables; they can lead to gross mischaracterization ef thigh cost of computing critical regions that partition the
behavior of the system operation. More significant, perhagsrameter space. Although such computations can be made
is that point forecasts are of limited value if forecasts tare off-line, the number of critical regions grows exponenyial

be integrated into system and market operations. To a systeith the number of constraints, which makes even the off-
operator and market participants, the most informativee tyfine computations prohibitive for large systems. The applo

of forecasting—the focus of this paper—is theobabilistic presented here builds upon the ideas[ih [7] and develops a
forecastingthat produces probability distributions of futurecomputationally efficient and adaptive forecasting teghai
system variables conditional on the current system state.

B. Summary of Contribution

In this paper, we present a new methodology for the proba-
istic forecasting and online simulation of real-timesoation
and electricity market. The main idea is tbeline dictionary

A. Related Work

There is a substantial literature on point forecasting -tecBiI
nigues from the perspectives of external market parti¢gpan

See [3] for a recent review. These techniques do not Inc%hrning(ODL) that sequentially captures the parametric struc-

porate system operating cond_|t|or_13 that are only avaﬂ&bleture of DCOPF solutions. The main features of the proposed
system operators. Here we highlight some results on proba-

T : ) . “methodology are the significant reduction of computaticst€o
bilistic forecasting from the system operator’'s perspesti and its ability of adapting to changing operating condision
Probabilistic forecasting has not been widely used in power y Ping ging op 9

. e . Rr large systems, the ODL approach offers several orders of
system operations because of the difficulty associated W'r%a nitude improvement in computational cost compared with
obtaining conditional probability distributions of fuisystem 9 P P P

the online Monte Carlo simulation.

vangbleg Other than some simple cases, probablllspe-for The ODL approach is a Monte Carlo simulation method
casting in a large complex system can only be obtained b

Monte Carlo techniques where conditional distributions aV\Xth two key mnovatlons._ First, the propos_ed approach is
. . . . sed on a multiparametric DCOPF formulation for the real-
estimated using sample paths generated either accorqu.?o

the underlying system model or directly from measuremen (e operation. By exploiting explicitly the solution stture
ying sy y of DCOPF, we reduce the problem of collecting statistics on

and historical data. In this context, the problem obtalnlnl%e space otontinuous probability distributionsf random

probabilistic forecasting is essentially the same as enlin :
. . ) . . arameters (generation and demand) to that on the space of
Monte Carlo simulations. To this end, there is a premium gn

the computational cost and the rate of convergence oftatis Inite discrete probability distribution®on a set of critical

There are several prior approaches to probabilistic fateca €9IONS: Note that each critical region is associated with a

ing for system operators. In particular, M&t al. proposed (u)?'gg%ifgn:nzjTﬁgogstsr;itig:dpi;h?a‘:]ar:r:niﬁr Itic()e rtge soiutio

in [4] direct implementation of Monte Carlo simulations to Second. we propose an ODL ga ?oach thpat Se‘ entiall

obtain short-term forecasting of transmission congestimn . , WE prop . PP quentially
builds a dictionary of solutions from past samples using a

M Monte Carlo runs over &-period forecasting horizon, o : ) .

. . : . dynamlc critical region generation process. In partigutach
the computational cost is dominated by the computation 0 . "
entry of the dictionary corresponds to aservedcritical

M x T direct current optimal power flow (DCOPF) solutions ion within which a sample of random aeneration/demand
that are used to generate the necessary statistics. Foge | faion within-whi P 9 ’

scale system with a significant amount of random generatio s fallen. A new entry of the dictionary is produced only
when the realization of the renewable generation and demand

and loads, such computational costs may be too high for su : 2 . :
P y 9 é:oes not fall into any one of the existing critical regions

a technique to be used for online forecasting. . _ ; ,
A sim?lar approach based on a nonhomc?geneous MarkB\ the dictionary. This allows us to avoid costly DCOPF
chain modeling of real-time LMP is proposed il [5] Thecomputations and recall directly the solution from the dic-

Markov chain technique exploits the discrete nature of LMEpna_r y: IBecause rentiwatile getnek:aukc; n ar(ljd (;oad dprocezfs?
distributions and obtains LMP forecasts by the product gpy5|cdatr|]orocessets, ) e{ enA 0 be Oltmd N _z;m thC(:rl(k:mr rate
transition matrices of LMP states. Estimating the traositi around the mean trajectory. As a resull, despite tha €a

probabilities, however, requires roughly the same number otentially exponentially large number of potential eggrin
' ' the dictionary, only a very small fraction of the dictionary

Monte Carlo simulations, thus requiring roughly the same . . ! )
number of DCOPF computations. entries are observed in the simulation process.

An existing work closest to the present paper [i$ [6],
[7] where the authors proposed a probabilistic forecasting!!- PARAMETRIC MODELS OFREAL-TIME OPERATION
method based on a multiparametric formulation of DCOPF Most wholesale electricity markets| [8[=[10] consist of eay
that has random generations and demands as parameters. Fdoead and real-time markets. The day-ahead market enables
the multiparametric linear/quadratic programming theding market participants commit to buy or sell wholesale eleitjri
(conditional) probability distributions of LMP and powerone day before operation, and the real-time market balances
flows, given the current system state, reduce to the conditiothe difference between day-ahead commitment and the actual
probabilities that realizations of the random demand amdal-time demand and production. In this paper, we focus on
generation fall into one of the critical regions in the paesden real-time operation models. In particular, we consider two
space. real-time markets: one is the energy-only market; the other
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is the co-optimized energy-reserve market. Our approath al Note again that the energy-reserve co-optimization model
applies to several other real-time markets such as the itgpats also of the form of parametric DCOPF with parameter

and ancillary service markets. (d, g:—1) that is realized prior to the co-optimization.
Our presentation here highlightsparametric formulation
that treats random elements in the system such as renewable I1l. M ULTIPARAMETRIC PROGRAM

generation, demands, etc., as parameters that vary froen tim

; o L We have seen in previous section that a number of real-time
to time and realization to realization.

market operations can be modeled in the form of parametric
DCOPF. In this section, we summarize several key results
in_multiparametric linear/quadratic programming essertt

In the energy-only market, the operator sets generatiag :
. . . . velop our approach. Seée [13]-[16] for more comprehensive
adjustments by solving a DCOPF problem in which the ongs osifi)ons ofpr$1ultiparametric pr([)grllmming theory.p

step ahead real-time net load is balanced subject to syste id | right-hand didenulti )
constraints[[11]. By “net load” we mean the total electrical onsider a general right-han multiparametric pro-
' f_'_gram (MPP) as follows:

load plus interchange minus the renewable generation. For
simplicity, we assume that each bus has a generator and.aload  minimize z(x) subject toAz < b+ E0 (y) (4)
xT

The DCOPF problem for the operation at times defined by _ o
the following optimization: wherez is the decision vecto#, the parameter vectot/-) the

cost functiony the Lagrangian multiplier vector, andl, £, b
are coefficient matrix/vector with compatible dimensions.

A. Energy Only Market

minimize c¢(g)
g9

subject to The multiparametric programming problem is to solie (4)
A 1T(g—dy) =0 1) for all values of the parameter vectér the optimal primal
iy o —FT <S(g—d) <FT solution z*(#), the associated dual solutigyt(6), and the
G- <g<G* value of optimizationz*(6).
g1 — A" <g<gi1+AT. In this paper, we only consider the linear and quadratic pro-

In this model, the generation costs can be linear, piece-w@ams for which the multiparametric programming problems
affine, or strictly convex quadratic. The real-time LMp at are referred to as multiparametric linear programs (MPLPs)
time ¢ is calculated from the (dual) solutions & (1) as the sufd multiparametric quadratic programs (MPQPs) respectiv

of the energy and congestion prices ly. In addition, we assume that the MPP is not (primal or dgal)
S . degeneraEefor all parameter values. Under this assumption,
T =M1 = ST + STy ) the primal and dual solutions tdl1(4) are unique for @ll

Given the predicted net load; and estimated genera-Approaches for the degeneracy cases are presentedlin [16].
tion (from SCADA or PMU measurementg)_;, the above
optimization can be viewed as parametric DCOPFwith A critical Region and Solution Structure
paramete = (d;, §;—1). This viewpoint plays a critical role

in our approach. The multiparametric programming analysis and the pro-

posed simulation technique build upon the conceptriical
B. Joint Energy and Reserve Market region Critical region partitions the parameter space into a
- . finite number of regions. Within each critical region, thése
In the joint energy and reserve market, dispatch and reserve .. . o
. - : : . ~~~an affine relation between parameter value and optimization
are jointly determined via a linear program that minimizeg | .o

the overall cost subject to operating constraints. In the co - . .
. . There are several definitions for critical region, we adopt
optimized energy and reserve market, system-wide and Io?ﬁ\-

tional reserve constraints are enforced by the market tmpera © deflmtlon from [[I6] under primal/dual non-degeneracy
: asaumptlon.
to procure enough reserves to cover the first and the secon
contingency events. We adopt the co-optimization model Definition 1. A critical region © is defined as the set of all
[12] as follows: parameters such that for every pair of paramefefs € ©,
L their respective solutions*(6) and z*(¢’) of (@) have the
mlgbrgze i (ngi * Zﬂ'ca-jri’j ) + Z“Cgsz + 2 uchsy same active/inactive constr(aints. "
subject to
17(g—d)=0
—F*<S(g—d) <F*

ZiZjéﬁjTiJ + (LF = L) +st, > QL Vu

The definition implies that each critical region is a poly-
hedron in the parameter space. Given an MBP (4), the set of
critical regions can be computed explicitly, although thstc
of constructing the complete set of critical regions maywgro

L, Z;Zkefu stk(gz SdZ) exponentially with the number of constraints.

Zizj'éi,jriyj + Sv 2 vav

Gi <g < G:r - Zﬂ”im Vi 1By right-hand side we mean the parameter veétds on the right-hand

g1 — A" < g< g1+ AT side of the constraint inequalities.

0<r<Rt 2F0r_ a given@_, the MPP [(%) is said to be primal d_egenerate _if tht_ere exists
AN an optimal solutionc* (9) such that the number of active constraints is greater

Sy, 85 2> 0, Y, v. than the dimension of. By dual degeneracy we mean that the dual problem

(3) of MPP [3) is primal degenerate.
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In this paper, we avoid computing the complete set of criMonte Carlo simulations, which allows us to avoid explicit
ical regions. Instead, we dynamically generate criticgloes computations of DCOPF solutions. In particular, we borrow
on demand. To this end, we need a procedure to compute the notion of dictionary learning to explain the ideas behin
critical region that contains a given parameter and the imgppthe proposed online learning approach to forecasting. Wvide
of the parameter to the primal and dual solutionddf (4). €heased in the signal processing community, dictionary leayni
results are summarized in the following theorem. refers to acquiring a dictionary of signal bases to repriesen

Theorem 1. Consider [#) with cost function(z) — cTz a rich class of signals using words (atoms) in the dictionary

for MPLP and z(z) = %xTHx for MPQP where I7 is [Qr]htla%]ére two components of the online learning approach
positive definite. Given parametég and the solution of the P g app '

. N o = . One is the learning of the underlying stochastic model of
parametric programz*(6,), let A, E and b be, respectively, . )
X : the parameter process, and the other is the learning of the
the submatrices ofi, £ and subvector ob corresponding to

the active constraints. Led, £ andb be similarly defined for collection of critical regions that characterizes the Solu

the inactive constraints. Assume tht (4) is neither prima s_tructure of parametric DCOPF. Since there is an extensive
literature on the former, we focus here on the problem of
dual degenerate.

. ) , . learning the structure of parametric DCOPF.
@) F(_)r the MPLP, th? critical regior€, that containsy is Analogues to dictionary learning in signal processing, the
given by, respectively, learning process here is also acquiring a dictionary whose
Cy = {9‘(AA—1E —E)) <b— [1,21—113} (5) words (or atoms) are critical regions. In particular, each
word is associated with the affine function that maps the
parameter to the solution of MPLP/MPQP. Therefore, if we
treat a realization of the parameter process as a sentéwce, t
2*(0) = A" (b+ E6), y*(0) = y*(6). dictionary allows us to translate a sentence in the langoége
system parameters to one in the language of LP/QP solutions.
The ODL process therefore includes (i) checking if a new

and for anyf € Cy, the primal and dual solutions are
given by

(2) For the MPQP, the critical regiort, that containg is

given by paramete has already been learned in the past. If not, (i)
Co = {0]0 € prﬂTd} (6) construct a new entry in the dictionary by computing the
where®, and P, are polyhedra defined by critical region that containg. For (ii), the construction of

the dictionary is given by Theorem 1. The detailed algorithm
P, = {0|AHLAT(AH-YAT)"1(b+ EO) —b— E6 < 0} IS summarized in Algorithm 1.

_ AT—1 AT\—1(% 0) <
Pa={0|(AHAT)" (b + E6) < 0} Algorithm 1 Online Dictionary Learning for Critical
and for any® € Co, the primal and dual solutions are givenregions

by o } o 1: given the mean trajectory{d;}7_, of the net load and
z*(0) = H*AT(AH "AT) "1 (b + E6) associated (forecast) distributiof&; }7_,
‘(g 0 inactive constraints 2: initialize the critical region dictionary, using the mean
y(0) = —(AH-*A7)"'(b+ E6) active constraints trajectory
3 form=1,---,M do

fort=1,---,T do
Generate samplé™ and letd)" = (d*, g™ ;).
SearchC;™, for critical regionC(67").
if C'(6;") € Ci™, then
Computeg;™ from the affine mappingg(etm)(e;").

The proof of above theorem follows some of the derivationg”
in [16] and is consolidated in the Appendix.

For our application, a key implication of this theorem is
that, once we know that a realized random paranterin a _
known critical region, we no longer need to solve the origina™

a

© N o

LP/QP; the soluti be easil ted from the afind ~ ©IS€
ma;}piagse solutions can be easily computed from the affing’ Solve g from DCOPF [) usingd". . compute
' C(6;"), and update€;™ = C/", U {C(6)")}.
11: end if

IV. FORECASTING VIA ONLINE DICTIONARY LEARNING
end for

We present in this section a new methodology of probabiliﬁl-i end for
tic forecasting and online simulation of real-time elegityi
market. In particular, we are interested in obtaining cbadal
probability distributions of future LMPs, power flows, daph
levels, and congestion pattern from sample paths of random
processes of stochastic parameters such as load and gemerat We present in this section two sets of simulation results.
processes. These sample paths can be generated via Madh first compares the computational cost of the proposed
Carlo simulation based on stochastic models or by samplingethod with that of direct Monte Carlo simulations. To this
historical traces. end, we used the 3210 “Polish network™[19]. The second set

Our approach is one of online learning that acquires sef simulations focuses on probabilistic forecasting. \lis
guentially a set of solutions that most frequently appear @xample, we aim to demonstrate the capability of the prappose

V. NUMERICAL SIMULATIONS
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< 9800l Scenario 3: Z ot £
s ) T=240 w g ot
_\5 Sgenano 1 102
= . —Proposed Method 0
[ 10
3 900} Scenario 2 O e number of Monte Carlo e 023 TR e ps Crysamss e
9200 Fig. 2: Left: The expected number of OPF computations vs.
the total number of Monte Carlo simulations. Right:
%000, 5100 150 200 250 288 The distribution of the critical regions observed for
Time Index the proposed method.

Fig. 1: The “duck curve” of net load over the different time
of the day. . ]
at the level of 27,000 MW during morning peak load hours

with 10% of renewables distributed across 30 wind farms. One
method in providing joint and marginal distributions of LBIP large wind farm had rated capacity of 200 MW, 20 midsize
and power flows, a useful feature not available in existingind farms at the rated capacity of 150 MW, and 9 small

forecasting methods. wind farms at 50-80 MW. Wind farm produced Gaussian
distributed renewable powe (1, (0.031;)?).
A. General setup The left panel of Fig[2 shows the comparison of the

mputation cost between the proposed approach and the

" C
We selected the “duck curve20] as the expected net IO_%%nchmark techniquél[4]. The two methods obtained identica

profile as shpwn in Fid:l.l' We were particularly interested forecasts, but ODL had roughly three orders of magnitude
:Eree S::Tnaélos' Scherllgnotl :jeprets;ehnted .?j time 65)S\Nhen . reduction in the number of DCOPF computations required
Tein;:‘420a wash eth N eatly ad e m ra:jnge. cznarlqn he simulation. This saving came from the fact that only
((j _t th) was w enf € lne oa w;s on % ovx;rjlv(\)/ar raM4y89 critical regions appeared in about 2.88 million random
ue o the increase of solar power. Scenarid'3-(240) was arameter samples. In fact, as shown in the right panel of

:ﬁ atime Wh_en the net 'O?dd"g’?‘f? at atsharp tgpwardﬂ;gz. S.IZ, 19 out of 3989 critical regions represented 99% of alll
ree scenarios represented different operating condi the observed critical regions.

different levels of randomness.
The net load—the conventional load offset by renewables—
was distributed throughout network. A renewable genemati¢. The IEEE 118-bus System

connected to a bus, say a wind farm, was modeled as a Gaus_l;h ‘ f th 4 alaorith q
sian random variabl&/(j, (nu)?) with meany and standard e performance of the proposed algorithm was tested on

deviationnu. Similar models were used for conventional Ioque lEEE 1]:8—bus syster [19], partmone_d Into thre(_a suare
forecasts. sh_ovyn in Fig.[8. There were 10_ capacity cc_)nstralned trans-
Given a forecasting or simulation horizdn the real-time mission lines (blue) at the maximum capacity of 175 MW.

economic dispatch model was a sequence of optimizatioﬂ%e system included 54 thermal units, 186 branches, and 91

with one DCOPF in each 5 minute interval. In this model, thlé)ad bgses. All buses were connected to a Gaussian d".*’“"b“t
ad with standard deviation at the level o= 0.15% of its

benchmark technique solved a sequence of single period lBa ) .
COPF models with ramp constraints that coupled the DCO an. The mean trajectory of the net load again followed the
“duck curve.” Three scenarios were tested, each includéé 10

solution at timet with that at timet — 1. Computationally, te Carl ‘ ¢ ired statisti
the simulation was carried out in a Matlab environment witWIon e Lar olruns 0 generag require S_a ISUCS.
1) Scenario 1: T=55:The first scenario wag" = 55 on

yalmip toolbox and IBM CPLEX on a laptop with an Intel i .
Core i7-4790 at 3.6 GHz and 32 GB memory. the duck curve. This was a case when the system operated in

a steady load regime where the load did not have significant
change. Figl4 showed some of the distributions obtained by
B. The 3120-bus System the proposed technique. The top left panel showed the awerag
The 3120-bus system (Polish network) 1[19] was used tdMP at all buses where the average LMPs were relatively flat
compare the computational cost of the proposed method witith the largest LMP difference appeared between bus 94 and
direct Monte Carlo simulation [4]. The network had 312®us 95. The top right panel showed the joint LMP distribution
buses, 3693 branches, 505 thermal units, 2277 loads andaB®us 94 and 95. It was apparent that the joint distribution
wind farms. Twenty of the wind farms were located at P\éf LMP at these two buses was concentrated at a single point
buses and the rest at PQ buses. For the 505 thermal unitgss, which corresponded to the case that all realizatibns o
each unit had upper and lower generation limits as well aglae random demand fell in the same critical region. The lbotto
ramp constraint. Ten transmission lines 1, 2, 5, 6, 7, 8, 9, 2&ft panel showed the power flow distribution at line 147
36, 37 had capacity limits of 275 MW. connecting bus 94-95. As expected, line 147 was congested.
The net load profile used in this simulation was the duckhe bottom right panel showed the power flow distribution of
curve over a 24 hour simulation horizon. The total load wdge 114, which was one of the tie lines connecting areas 2
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0
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power flow @ line 114 (Bus 70-74) T:55 point

right: power flow distribution on line 152. Bottom

. ) ) left: power flow distribution on line 128. Bottom
Fig. 4: Top left: The expected LMPs at all buses. Top right: right: power flow distribution on line 152.

joint LMP distribution at buses 94-95. Bottom left:
power flow d!str!but!on on I!ne 147. Bottom right:
power flow distribution on line 114. 3) Scenario 3: T=240:The third scenario at T=240 in-
volved a steep up ramp at high load levels. This was also a case
when the random load crossed boundaries of multiple ckitica
and 3. The distribution of power flow exhibited a single mode=gions. In Fig[B, the top left panel indicated four possibl
Gaussian-like shape. LMP realizations at buses 94-95. With probability near half
2) Scenario 2: T=142: The second scenario at T=144hat the LMPs across buses 94-95 had significant difference,

involved a downward ramp. This was a case when the lo84d the other half the LMPs on these two buses were roughly
crossed boundaries of multiple critical regions. In Fig. "€ Ssame. The power flow on tie line 152 had a Gaussian-
the top left panel showed the joint probability distributiof like distribution shown in t_he_top_ right panel _whereas _trmh
LMP at buses 94-95, indicating that the LMPs at these twi?8 had a power flow distribution spread in four different
buses had two possible realizations, one showing small LN@/€lS shown in the bottom left panel. It is especially wyrth
difference with a high probability, the other a bigger pric@' Pointing out, from the bottom right panel, that the power
difference with a low probability. The top right panel shalve flow on line 66 had opposite directions.

the power flow distribution on the line connecting bus 94-

95. It was apparent that the line was congested with non-zero V1. CONCLUSION

but relatively small probability, which gave rise to thedar We present in this paper a new methodology of online
price difference between these two buses. The bottom panaisbabilistic forecasting and simulation of electricityarket.
showed the power flow distributions on tie lines 115 and 153he main innovation is the use of ODL to obtain sequentially
In both cases, the power flow distribution had three moddbe solution structure of parametric DCOPF. The resulting
showing little resemblance of Gaussian distributions. benefits are the significant reduction of computation costs
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and the ability of adapting to changing operating cond&ionBecause MPLP is neither primal nor dual degenerdtéas
Numerical simulations show that, although the total nundéer full rank, and

critical regions associated with the parametric DCOPF iy ve

large, only a very small fraction of critical regions appéar

a large number of Monte Carlo runs. This insights highligh

the potential of further reducing both computational cestd
storage requirements.
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APPENDIX. PROOF OFTHEOREM[]]

To prove the MPLP case, if is in the same critical region

as 6y, thenz*(0) and 2*(fy) have the same active/inactive

constraints. This means that

Az*(0) —b— Ef = 0,
Az (0) —b— E6 < 0.

()
(8)

2*(0) = A~ (b + E0).

%ubstitutingx*(&) into (8), we have) € Cy.
Conversely, suppose théte €. It can be checked that

T 2ATN b+ E9), vt =y (6)

satisfy the KKT condition for being the solution of the MPLP
associated wtil. Becausez* has the same active/inactive
constraints ag* (), 0 € Co.

For the MPQP case, suppose thatand 6, are in the
same critical region. Then*(6) and z*(6y) have the same
active/inactive constraints. By the KKT condition, we have

Hz*(0) + ATy*(9) = 0, (9)
diagy*(0))(Az* —b— Ef) = 0, (10)
y*(0) = 0, (11)

Az*(0) —b—Ef = 0, (12)

Az*(0) —b—EO < 0, (13)

where y*(6) is the dual variable and diag*(6)) is the
diagonal matrix with diagonal entries made of entriegd®).
From [9),

z*(0) = —H "ATy*(9). (14)
Substituting the result intd_(10), we have
diagy*(0))(—AH ' ATy* —b — Ef) = 0. (15)

Let y*(¢) and g*(#) denote the Lagrange multipliers corre-
sponding to inactive and active constraints respectivly.
(I3), for inactive constraintsy*(f) = 0, and for active
constraints,

AH YAT§*(0) + b+ Ef = 0. (16)

By the non-degeneracy assumption, the rowslafre linearly
independent. This implies that —!' AT is a square full rank
matrix. Therefore

7 (0) = —(AH YAT)"Y(b+ E0). (17)
From [11), we have
— (AHYAT)"Y (b + E6) > 0, (18)

thusd € P,. Substitutingg*(¢) from (@32) into [14), we have
2*(0) = H*AT(AH A"} (b + E0). (19)

Substitutingz*(6) from (29) in the primal feasibility condi-
tions [13),

AH YAT(AHTAT) Y (b + Ef) < b+ E9,
thus® € P,. We therefore havé < C,.
Conversely, considet € C. It can be verified that

(20)

ot 2 HYAT(AH A7)\ (b + E6)
g 2 —(AH AT (b + E6)

. A

g =0

satisfy the KKT condition, which means that is the solution

of (4).
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