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Abstract
This paper is concerned with the power system state

estimation problem, which aims to find the unknown
operating point of a power network based on a set
of available measurements. We design a penalized
semidefinite programming (SDP) relaxation whose
objective function consists of a surrogate for rank and
an `1-norm penalty accounting for noise. Although the
proposed method does not rely on initialization, its
performance can be improved in presence of an initial
guess for the solution. First, a sufficient condition is
derived with respect to the closeness of the initial
guess to the true solution to guarantee the success of
the penalized SDP relaxation in the noiseless case.
Second, we show that a limited number of incorrect
measurements with arbitrary values have no effect on
the recovery of the true solution. Furthermore, we
develop a bound for the accuracy of the estimation
in the case where a limited number of measurements
are corrupted with arbitrarily large values and the
remaining measurements are perturbed with modest
noise values. The proposed technique is demonstrated
on a large-scale 1354-bus European system.

1. Introduction

Uncertainties and complexities imposed by renew-
able energy sources and emerging technologies for
future grids, such as electric vehicles, necessitate the
development of advanced system monitoring mecha-
nisms for the control and operation of power networks.
In this regard, state estimation plays a crucial role.
Power system state estimation (PSSE) is the problem
of determining the operating point of an electrical net-
work based on the given model and the measurements
obtained from supervisory control and data acquisition
(SCADA) systems [1], [2].

Due to difficulties such as the nonlinearity induced
by the laws of physics, PSSE is known to be a
non-convex and NP-hard problem in the worst case.

Aside from non-convexity, there are further challenges
involved in obtaining an accurate estimation for the
state of a power network, including the presence of
noise and possibly incorrect sensor information. It is
essential for power system state estimation algorithms
to be robust to a limited number of severely corrupted
measurements, known as bad data. Once corrupted
measurements are identified, they can be removed from
the set of measurements in order to avoid inaccu-
rate estimation. Therefore, several methods have been
proposed in the literature to address the problem of
bad data detection through different approaches such
as statistical techniques, convex relaxation and sensor
placement [3]–[7].

In this paper, we employ a semidefinite program-
ming (SDP) relaxation technique in order to tackle
the non-convexity of the feasible region described by
the AC power flow equations. The papers [8] and [9]
have sparked intensive studies of the SDP relaxation
technique for solving fundamental problems in power
networks. The work [9] develops an SDP relaxation for
finding a global minimum of the optimal power flow
(OPF) problem. A sufficient and necessary condition
is provided to guarantee a zero duality gap, which
is satisfied by several benchmark systems. From the
perspective of the physics of power systems, the follow-
up papers [10] and [11] develop theoretical results to
support the success of the SDP relaxation in handling
the non-convexity of OPF. The papers [12] and [13]
develop a graph-theoretic SDP framework for finding a
near-global solution whenever the SDP relaxation fails
to find a global minimum. Recently, SDP relaxation
has been applied to the PSSE problem and its superi-
ority over traditional approaches has been demonstrated
through extensive numerical case studies [14], [15].
The papers [16] and [17] have performed a graph
decomposition in order to replace the large-scale SDP
matrix variable with smaller sub-matrices, based on
which different distributed numerical algorithms have
been developed. Moreover, the formulations in [14] and
[15] have been extended in [16] and [5] to accommo-
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date PMU measurements. The work [5] has studied a
variety of regularization methods to solve the PSSE
problem in the presence of bad data and topology error.
These methods include weighted least square (WLS)
and weighted least absolute value (WLAV) penalty
functions, together with a nuclear norm surrogate for
obtaining a low-rank solution.

In this paper, we develop theoretical guarantees for
the effectiveness of an SDP-based convex formulation
equipped with an `1-norm estimator for solving the
PSSE problem. We design a class of penalized convex
problems, where the measurement equations are softly
penalized in the objective as opposed to being imposed
as equality constraints. The objective function of the
convex problem has two terms: (i) one is a linear
function that can be designed based on an initial guess
for the solution to deal with non-convexity, (ii) and the
other term is an `1-norm penalty that is intended to
estimate noise values. We show that the penalized SDP
relaxation precisely solves the PSSE problem in the
case of noiseless measurements if the available initial
guess is relatively close to the solution to be sought. We
then consider the scenario where a limited number of
measurements are corrupted with possibly large noise
values (bad data) and the remaining measurements are
noiseless. In this case, we prove that if the number
of corrupted measurements is small, they have ab-
solutely no effect on the solution of the penalized
convex problem. Finally, we derive a bound on the
estimation error in the case where the measurements are
subject to perturbations with modest noise values. We
demonstrate the efficacy of the proposed mathematical
framework through extensive simulations.

1.1. Notations

The symbols R, R+ and C denote the sets of real,
nonnegative real and complex numbers, respectively.
Sn denotes the space of n×n real symmetric matrices
and Hn denotes the space of n×n complex Hermitian
matrices. Re{·}, Im{·}, rank{·}, trace{·}, det{·} and
null{·} denote the real part, imaginary part, rank, trace,
determinant and null space of a given scalar/matrix.
diag{·} denotes the vector of diagonal entries of a
matrix. For every p ≥ 1, the symbol ‖·‖p denotes the p-
norm of a matrix. Likewise, the notation ‖ · ‖F denotes
the Frobenius norm. Matrices are shown by capital
and bold letters. The symbols (·)T, (·)∗ and (·)conj
denote transpose, conjugate transpose and conjugate
respectively. Furthermore, “i” is reserved to denote
the imaginary unit. The notation 〈A,B〉 represents
trace{A∗B}, which is the inner product of the matrices
A and B. The notations ]x and |x| denote the angle

and magnitude of a complex number x. The notation
W � 0 means that W is a Hermitian and positive
semidefinite matrix. Likewise, W � 0 means that W
is Hermitian and positive definite. Given a matrix W,
its Moore Penrose pseudoinverse is denoted as W+.
The (i, j) entry of W is denoted as Wij . The symbol
0n and 1n denote the n× 1 vectors of zeros and ones,
respectively. 0m×n denotes the m×n zero matrix and
In×n is the n × n identity matrix. The notation |X |
denotes the cardinality of a set X . For an m×n matrix
W, the notation W[X ,Y] denotes the submatrix of W
whose rows and columns are chosen form X and Y ,
respectively, for given index sets X ⊆ {1, . . . ,m} and
Y ⊆ {1, . . . , n}. Similarly, x[X ] denotes the vector
whose entries are chosen from x based on the index
set X .

2. Preliminaries

In this section, we offer some preliminary results on
the power system state estimation problem.

2.1. Voltages, Currents, and Admittance Matrices

Let N and L denote the sets of buses (nodes) and
branches (edges) of the power network under study.
Moreover, let n denote the number of buses. Define
v , [v1, v2, . . . , vn]

T to be the vector of complex
voltages, where vk ∈ C is the complex (phasor) voltage
at node k ∈ N of the power network. Denote the mag-
nitude and phase of vk as |vk| and ]vk, respectively.
Let ik ∈ C denote the net injected complex current
at bus k ∈ N . Given an edge l ∈ L, there are two
current signals entering the transmission line from its
both ends. We orient the lines of the network arbitrarily
and define if;l ∈ C and it;l ∈ C to be the complex
currents entering the branch l ∈ L through its from and
to (tail and head) ends, respectively, according to the
designated orientation.

Define Y ∈ Cn×n as the admittance matrix of the
network, and Yf ∈ C|L|×n and Yt ∈ C|L|×n as the
from and to branch admittance matrices, respectively,
such that

i = Y × v, if = Yf × v, it = Yt × v, (1)

where i , [i1, i2 . . . , in]
T is the vector

of complex nodal current injections, and
if , [if,1, if,2 . . . , if,|L|]

Tand it , [it,2, it,2 . . . , it,|L|]
T

are the vectors of currents entering the from and to
ends of branches, respectively.

2.2. Power Flow Equations
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Let pk and qk represent the net active and reactive
power injections at every bus k ∈ N , where p ,
[p1 p2 · · · pn]T ∈ Rn and q , [q1 q2 · · · qn]T ∈ Rn
are the vectors containing net injected active and reac-
tive powers, respectively. The power balance equations
can be expressed as

p+ iq = diag{v × i∗}. (2)

For every k ∈ N , define

Ek , eke
∗
k, (3a)

Yi;k , Y∗eke
∗
kY (3b)

Yp;k ,
1

2
(Y∗eke

∗
k + eke

∗
kY), (3c)

Yq;k ,
1

2i
(Y∗eke

∗
k − eke

∗
kY), (3d)

where e1, . . . , en denote the standard basis vectors in
Rn. The nodal parameters |vk|2, |ik|2, pk and qk can be
expressed as the Frobenius inner-product of vv∗ with
the matrices Ek, Yi;k, Yp;k and Yq;k:

|vk|2 = 〈vv∗,Ek〉, ∀k ∈ N (4a)

|ik|2 = 〈vv∗,Yi;k〉, ∀k ∈ N (4b)
pk = 〈vv∗,Yp;k〉, ∀k ∈ N (4c)
qk = 〈vv∗,Yq;k〉, ∀k ∈ N . (4d)

There are two power flows entering the transmission
line from its both ends. Given a line l ∈ L from node
k to node j, define sf;l , pf;l+qf;li and st;l , pt;l+qt;li
to be the complex power flows entering the branch l ∈
L through buses k and j, respectively. One can write:

sf;l = vk × i∗f;l , st;l = vj × i∗t;l . (5)

Let d1, . . . ,d|L| denote the standard basis vectors in
R|L|. Given a line l ∈ L from node k to node j, define

Yif ;l , Y∗f dld
∗
lYf , (6a)

Ypf ;l ,
1

2
(Y∗f dle

∗
k + ekd

∗
lYf), (6b)

Yqf ;l ,
1

2i
(Y∗f dle

∗
k − ekd

∗
lYf), (6c)

Yit;l , Y∗tdld
∗
lYt, (6d)

Ypt;l ,
1

2
(Y∗tdle

∗
j + ejd

∗
lYt), (6e)

Yqt;l ,
1

2i
(Y∗tdle

∗
j − ejd

∗
lYt). (6f)

The branch parameters if;l, pf;l, qf;l, it;l, pt;l and qt;l
can be written as the inner product of vv∗ with the
matrices Yif ;l, Ypf ;l, Yqf ;l, Yit;l, Ypt;l and Yqt;l:

if;l = 〈vv∗,Yif ;l〉, it;l = 〈vv∗,Yit;l〉, ∀l ∈ L (7a)
pf;l = 〈vv∗,Ypf ;l〉, pt;l = 〈vv∗,Ypt;l〉, ∀l ∈ L (7b)
qf;l = 〈vv∗,Yqf ;l〉, qt;l = 〈vv∗,Yqt;l〉, ∀l ∈ L (7c)

Equations (4) and (7) offer a compact formulation for
common measurements in power networks. In what
follows, we will study a general version of the state
estimation problem with arbitrary measurements of
quadratic forms. Consider the state estimation problem
of finding a solution to the quadratic equations

xr = 〈vv∗,Mr〉+ ωr + ηr, r ∈M, (8)

where
• M = {1, 2, . . . ,m} is the set of indices associated

with the available measurements (or specifica-
tions).

• x1, . . . , xm are the known measurement values.
• ω1, . . . , ωm are the unknown noise values, for

which some a priori statistical information may
be available (e.g., zero mean Gaussian noise).

• η1, . . . , ηm are unknown and sparsely occurring
noise values with arbitrary magnitudes (possibly
large), which are expected to impact a small subset
of measurements.

• M1, . . . ,Mm are some known n × n Hermitian
matrices (e.g., they could be any subset of the
matrices defined in (3) and (6)). With no loss of
generality, we assume that

‖Mr‖2 ≤ 1, ∀r ∈M. (9)

(this can be achieved by rescaling the measure-
ment equations).

The scalars ω1, ω2, . . . , ωm are expected to represent
modest noise values that may not affect the accuracy
of estimation significantly. However, the values of
η1, η2, . . . , ηm could purposefully be large (known as
bad data), in which case the corresponding equations
will not be informative. Therefore, it is of practical in-
terest to separately analyze the effect of measurements
that are entirely corrupted (i.e., bad data).

Definition 1: Let (G,B) denote the partition of M
into the two sets of measurements with zero and
nonzero sparse noise values, i.e.,

G = {r ∈M| ηr = 0}, B =M\ G. (10)

G and B are called the sets of good and bad measure-
ments, respectively.

In the case where the noises ω1, . . . , ωm are all equal
to zero and B = ∅, the problem (8) reduces to the
well-known power flow problem. It is straightforward
to verify that if v is a solution to the state estimation
problem, then αv is another solution of this problem for
every complex number α with magnitude 1. To resolve
the existence of infinitely many solutions due to phase
ambiguity, we assume that ]vk is equal to zero at a
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pre-selected bus, named reference bus. Hence, in the
noiseless case, the state estimation problem with the
complex variable v amounts to 2n− 1 real variables.

2.3. Semidefinite Programming Relaxation

The state estimation problem, as a general case of the
power flow problem, is nonconvex due to the quadratic
matrix vv∗. Hence, it is desirable to convexify the
problem. By replacing vv∗ with a new matrix variable
W, the quadratic equations in (8) can be formulated
linearly in terms of W as follows:

xr = 〈W,Mr〉+ ωr + ηr, ∀r ∈M. (11)

Consider the case where the quadratic measurements
x1, . . . , xm are noiseless. Solving the non-convex equa-
tions in (8) is tantamount to finding a rank-1 and
positive semidefinite matrix W ∈ Hn satisfying the
above linear equations for ω = η = 0 (because
such a matrix W could then be decomposed as vv∗).
The problem of finding a positive semidefinite matrix
W ∈ Hn satisfying the linear equations in (11) is
regarded as a convex relaxation of (8) since it includes
no restriction on the rank of W. Although the set of
equations (8) normally has a finite number of solutions
whenever m ≥ 2n−1, its SDP relaxation (11) may have
infinitely many solutions because the matrix variable
W includes O(n2) scalar variables as opposed to 2n−
1. The literature of compressed sensing substantiates
that minimizing trace{W} over the feasible set of (11)
may yield a rank-1 matrix W under strong technical
assumptions [18]–[20]. However, this approach is not
applicable to power system problems since diagonal
values of the matrix W represent voltage magnitudes,
which may be fixed or tightly constrained in practice.
The main objective of this paper is to develop an alter-
native approach for power system applications along
with theoretical guarantees on the performance of a
convexification framework for the PSSE problem in
terms of: (i) the closeness of the available initial guess
to the true unknown state of the system, (ii) the number
of bad measurements, and (iii) the noise level of good
measurements.

2.4. Sensitivity Analysis

Let O denote the set of all buses of the network
except the reference bus. The operating point of the
power system can be characterized in terms of the real-
valued vector

v ,
[
Re{v[N ]T} Im{v[O]T}

]T ∈ R2n−1. (12)

For every n×n Hermitian matrix X, let X denote the
following (2n−1)×(2n−1) real-valued and symmetric
matrix:

X =

[
Re{X[N ,N ]} −Im{X[N ,O]}
Im{X[O,N ]} Re{X[O,O]}

]
. (13)

Definition 2: Given an arbitrary subset of measure-
ments M′ ⊆M with

α1 < α2 < . . . < α|M′|

as the indices of such measurements, define the func-
tion fM′(v) : R2n−1 → R|M′| as the mapping from
the real-valued state of the power network (i.e., v) to
the vector of true (noiseless) measurement values:

fM′(v) , [〈vv∗,Mα1
〉, . . . , 〈vv∗,Mα|M|〉]

T.

Define also JM′(z) ∈ R(2n−1)×|M′| to be the Jacobian
of fM′ at the point z ∈ R2n−1, i.e.,

JM′(z) = 2
[
Mα1

z Mα2
z . . . Mα|M′| z

]
(note that Mr can be found using Mr via the equa-
tion (13) for r = 1, . . . ,m).

Notation 1: Given a Hermitian matrix A, denote
κ(A) as the sum of the two smallest eigenvalues of
A.

According to the inverse function theorem, if JM(v)
has full row rank, then the inverse of the function f(v)
exists in a neighborhood of the point v. Similarly, it
follows from the Kantorovich Theorem that, under the
previous assumption, the equation (8) can be solved
using Newton’s method by starting from any initial
point sufficiently close to the point v, provided that
the measurements are noiseless.

3. Main Results

Suppose that we are given an initial point u ∈
Cn, which is relatively close to the unknown vector
of voltages to be sought. We propose a penalized
convex optimization problem for solving the system of
quadratic equations (8).

Definition 3: The following convex optimization is
referred to as the penalized SDP relaxation problem
with the input (x, µ):

minimize
W∈Hn

ν∈Rm

〈W,M〉+ µ× ‖ν‖1 (14a)

subject to 〈W,Mr〉+ νr = xr, r ∈M, (14b)
W � 0. (14c)
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where M is a constant n × n Hermitian matrix that
satisfies the following two properties:

M× u = 0n (15a)
κ(M) > 0 (15b)

Note that the penalized SDP relaxation is not a
semidefinite program due to the norm term in its
objective, but it can be converted into an SDP by
introducing new variables to replace the norm term with
linear constraints. The term 〈W,M〉 in the objective
of the penalized convex problem (14) is a surrogate for
the rank of W and aims to handle the nonlinearity of
measurement equations. In addition, noise values are
estimated through the auxiliary variables ν1, . . . , νm ∈
R by incorporating the regularization term ‖ν‖1 into
the objective function. In this work, we seek to derive
certain conditions in order to guarantee that:

1) In the noiseless case, the penalized SDP problem
(14) recovers the exact solution if the vector of
voltages to be sought is relatively close to the
initial guess u.

2) A limited number of wrong or severely corrupted
equations (i.e., members of B) have zero effect
on the accuracy of estimation, regardless of their
corresponding measurement values.

3) The accuracy of estimation is bounded with re-
spect to the level of modest noise values, i.e.,
‖ω‖1.

In order to perform an analysis on the effectiveness
of the proposed penalized SDP problem in different
scenarios, it is necessary to quantify the quality of the
initial guess u and the set of good measurements G for
finding the unknown vector of voltages. To this end,
we define functions that measure the closeness of our
initial guess to the solution and informativeness of the
available measurements.

Definition 4: For an arbitrary subset of measure-
ments M′ ⊆ M and a real number ρ ≥ 1, define
δM′;ρ : Cn → R as follows:

δM′;ρ(v) ,
4‖J+
M′(v)Mv‖ρ
κ(M)

. (16)

It can be easily observed that if JM′(v) is full row
rank and M satisfies the two properties in (15), then
δM′;ρ(v) serves as a measure for the distance between
the two vectors ‖v‖−12 × v and ‖u‖−12 × u. The next
definition introduces another function that will be later
used to quantify the influence of an arbitrary subset of
measurements.

Definition 5: For an arbitrary subset of measure-
ments M′ ⊆ M and a real number ρ ≥ 1, define

ζM′;ρ : Cn → R as follows:

ζM′;ρ(v) , ‖J+
M′(v)JM\M′(v)‖ρ. (17)

3.1. Noiseless Measurements

Our first contribution in this work is for the noiseless
case. The following theorem offers conditions under
which the penalized SDP problem (14) with a noiseless
input is guaranteed to recover the exact vector of
voltages.

Theorem 1 (Noiseless case): Suppose that JM(v)
has full row rank and

δM;1(v) < 1. (18)

Then, for every µ > δM;∞(v), the point (W,ν) =
(vv∗,0m) is the unique solution of the penalized
SDP relaxation problem (14) with the noiseless input
(fM(v), µ).

Proof: The proof is provided in the Appendix.

Remark 1: According to Theorem 1, in the noiseless
case, if the initial guess u is sufficiently close to
v and µ is chosen large enough, then the penalized
SDP relaxation (14) recovers the exact solution of the
problem (8).

3.2. Severely Corrupted Measurements

Theorem 1 offers a sufficient condition to guarantee
the exact recovery of v for cases where noise values
are zero and all of the measurements are correct. In
this subsection, we extend the result of Theorem 1
to the case where each measurement value is either
correct or entirely corrupted. We aim to show that
if the unknown vector of complex voltages remains
observable through the correct measurements and if the
number of corrupted measurements is relatively small,
then the unknown state can be recovered precisely.

Theorem 2 (Bad data): Let G and B denote the set
of good and bad measurements, respectively (see Def-
inition 1). Suppose that JG(v) has full row rank and
the following three conditions are satisfied:

δG;1(v) < 1, (19a)
ζG;∞(v) < 1, (19b)

|B| < 1− ζG;∞(v)

1 + ζG;1(v)
× 1− δG;1(v)

δG;∞(v)
. (19c)

Then, for every µ ∈ R such that

δG;∞(v)

2(1− ζG;∞(v))
<

µ

κ(M)
<

1− δG;1(v)
2|B|(1 + ζG;1(v))

, (20)
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the point (W,ν) = (vv∗,η) is the unique solution
of the penalized SDP relaxation problem (14) with the
input (fM(v) + η, µ).

Proof: The proof is provided in the Appendix.

3.3. Combination of Modest Noise Values and Bad
Data

The guarantee provided by Theorem 2 relies on the
number of equations for which the measurement values
are corrupted, as opposed to the level of corruption for
those equations. It is of particular interest to analyze the
case where, in addition to a limited number of arbitrar-
ily corrupted measurements, the other measurements
are perturbed by modest noise values ω1, ω2, . . . , ωm.
In this subsection, we offer a bound on the estimation
error with respect to the level of modest noise values
‖ω‖1.

Theorem 3: Let (Wopt,νopt) be an arbitrary solu-
tion of the penalized SDP relaxation problem (14) with
the input (fM(v)+ω+η, µ), and G and B denote the
sets of good and bad measurements, respectively (see
Definition 1). Suppose that JG(v) has full row rank. If
the three conditions in (19) hold and µ satisfies (20),
then there exists a constant α > 0 such that

‖Wopt − αvv∗‖F ≤
√
τ×trace{Wopt}×‖ω‖1 (21)

where

τ ,
4µ× κ(M)−1 × |B|−1

(1− δG;1(v))− 2µ(ζG;1(v) + 1)
. (22)

Proof: The proof is provided in the Appendix.

Remark 2: In light of Theorem 3, there exists a
constant α > 0 for which the estimation error ‖Wopt−
αvv∗‖F is upper bounded by(
1− ζG;∞(v)

1 + ζG;1(v)
× 1− δG;1(v)

δG;∞(v)
− |B|

)−1

×trace{Wopt}×‖ω‖1

if an optimal coefficient µ is used for the penalized
SDP problem. This upper bound is non-trivial as long
as the inequality (19c) holds.

4. Simulation Results

In this section, numerical results are presented to
verify the performance of the proposed penalized con-
vex relaxation technique for the PSSE problem. For
all simulations, it is assumed that the measurement set
consists of the voltage magnitudes at all buses, the
nodal active and reactive power injections at all buses,
and the active and reactive power flows in one direction
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Fig. 1: These figures show the RMSE of the estimated com-
plex voltages for the PEGASE 1354-bus system, using the
proposed penalized convex problem, with different numbers
of bad measurements. The standard deviation of Gaussian
noise values for all measurements is set to (a): 0%, (b): 1%,
and (c): 5% of the true values.

for every line of the network (i.e., entries of |v|,p, q,
pf and qf ).

4.1. Exploiting Sparsity

The penalized convex problem (14) can be com-
putationally expensive for large-scale systems because
of the high-order conic constraints (14c). One method
for tackling this issue is to replace the single conic
constraint with several lower-order conic constraint as
follows:

W[C1, C1]�0, . . . , W[Cd, Cd]�0, (23)

where W[C1, C1],W[C2, C2], . . . ,W[Cd, Cd] are princi-
pal submatrices of W with rows and columns chosen
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from C1, C1, . . . , Cd ⊆ N , respectively. C1, C1, . . . , Cd
are some possibly overlapping subsets of N that can
be found through a graph-theoretic analysis of the
network graph, named tree decomposition. This pro-
cedure breaks down the large-scale conic constraint
into several smaller ones. Due to the sparsity and near
planarity of power networks, the decomposed penalized
convex problem is expected to be significantly lower
dimensional. This is due to the fact that all entries of
W that do not appear in any of the above principal
submatrices could be removed from the optimization
problem. These entries of W, referred to as missing
entries, can later be found through a matrix completion
algorithm, which enables a rank-1 decomposition of W
for recovering a vector of voltages [13], [20].

4.2. Rank-One Approximation Algorithm

Given an optimal solution (Wopt[C1, C1], . . . ,
Wopt[Cd, Cd]) of the decomposed penalized convex
problem, we obtain an approximate solution ṽ of the
set of equations (8) as follows:

1) Set the voltage magnitude |ṽk| :=
√
W opt
kk for

k = 1, . . . , n.
2) Find the phases of the entries of ṽ by solving the

convex program:

minimize
θ∈[−π,π]n

∑
(i,j)∈L

∣∣]W opt
ij − θi + θj

∣∣ (24a)

subject to θo = 0, (24b)

where o ∈ N is the reference bus.
Note that the above approximation technique is exact

in the case where there exists a positive semidef-
inite filling Wopt of the known entries such that
rank{Wopt} = 1. Under that circumstance, we have
](Wopt)ij − θi + θj = 0. If there exists a non-
rank-one matrix Wopt with a dominant nonzero eigen-
value, then the above recovery method aims to find
a vector ṽ for which the corresponding line angle
differences are as closely as possible to those proposed
by (Wopt[C1, C1], . . . ,Wopt[Cd, Cd]).

4.3. Case Study: Robustness to Bad Data

We have conducted numerical experiments on the
Pan European Grid Advanced Simulation and State Es-
timation (PEGASE) system with 1354 buses to evaluate
the robustness of the penalized convex problem to bad
measurements and modest noise values. The data is
borrowed from [21]. It is assumed that the measurement
set consists of the voltage magnitudes at all buses,
the nodal active and reactive power injections at all

buses, and the active and reactive power flows in both
directions for every line of the network.

Let m0 denote the number of bad measurements. For
different values of m0, up to 3% of the total number
of measurements, we have generated 10 random trials
by uniformly choosing m0 measurements and replacing
them with large numbers. We have then used the pe-
nalized convex problem with normalized measurement
coefficients and set µ = 10. The matrix M in the
objective is chosen as α × In×n −B, where B is the
susceptance matrix and α is the smallest nonnegative
number such that α × In×n − B � 0. This choice is
motivated by the fact that 〈−B,W〉 is equal to the
total reactive power generation. Since for the power
system under study, the matrix −B has a few negative
eigenvalues, we combined it with the identity matrix
in order to satisfy the property (15b). Therefore, no
initialization is applied for designing the matrix M.

The average root-mean-square error (RMSE) of the
estimated voltages for the 10 trials are shown in Fig-
ure 1a. As expected from Theorem 2, we empirically
observed that for trials with less than 110 bad mea-
surements, the true vector of voltages can be recovered
with no estimation error (there would be an extremely
small computation error).

As another simulation, in addition to sparsely oc-
curring high intensity noise, we have added zero mean
Gaussian noise values to all measurements. The results
are reported in Figures 1b and 1c for noise values with
standard deviations equal to 1% and 5% of the true
values, respectively. In both figures, one realization of
Gaussian noise is considered and each point is obtained
by averaging the RMSE values of 10 random choices
of bad measurements. Then, in each trial, the set of bad
measurements is additively expanded for obtaining the
next point in diagram. As substantiated in Theorem 3,
as long as the number of bad measurements is smaller
than a threshold, the estimation error does not grow
rapidly.

5. Conclusions

This paper aims to propose a convex relaxation
scheme for the power system state estimation (PSSE)
problem, which needs to be robust to noise and bad
data. We employ an initial guess for the solution in
order to build a family of penalized semidefinite pro-
gramming problems for solving PSSE. The proposed
convex relaxation scheme is guaranteed to succeed in
the noiseless case as well as the case where a limited
number of measurements are corrupted, provided that
the initial guess is relatively close to the solution to
be sought. We prove that noise values have no effect
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on the accuracy of estimation in this case. We then
consider the case where all measurements are subject
to perturbation with modest noise values, in addition
to severe corruptions caused by sparse noise. In the
later case, we offer an upper bound on the accuracy
of estimation with respect to the level of modest noise
perturbations. Extensive simulations are performed on
a real-world European system with 1354 buses in order
to demonstrate the efficacy of the proposed convex
relaxation scheme.
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7. Appendix

The dual of the penalized SDP problem (14) can be
derived as follows:

maximize
λ∈Rm

− xTλ (25a)

subject to M+
∑
r∈M

λrMr � 0 (25b)

‖λ‖∞ ≤ µ. (25c)

Proof of Theorem 1: In order to prove that
(vv∗,0m) is the unique optimal point for the primal
problem, it suffices to construct a dual feasible point
λ̂ ∈ Rm that certifies the optimality of (vv∗,0m). To
this end, consider the following choice for the dual
certificate:

λ̂ := −2J+
M(v)Mv (26)

and define Ĥ , M +
∑
r∈M λ̂rMr. Due to the

assumption µ > δM;∞(v), the dual constraint (25c)
is satisfied. In addition, according the definition of λ̂,
it can be easily observed that complementary slackness
holds, i.e.,

〈Ĥ,vv∗〉 = 0. (27)

Moreover, due to the concavity of κ(·) and according
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to the assumption (18), we have

κ(Ĥ) ≥ κ(M) +
∑
r∈M

κ(λ̂rMr)

≥ κ(M)−
∑
r∈M

2|λ̂r|‖Mr‖2

≥ κ(M)− 2‖λ̂‖1 = κ(M)(1− δM;1(v)) > 0. (28)

This implies that the constraint (25b) holds and in
addition,

rank{Ĥ} = n− 1. (29)

As a result, λ̂ satisfies the requirements to certify that
(vv∗,0m) is the unique solution for problem (14),
provided that strong duality holds.

In order to prove the strong duality, we need to
construct a strictly feasible point λ̃ ∈ Rm for the dual
problem. Let o represent the reference bus of the power
system. With no loss of generality, we assume that
Im{vo} = 0. Since JM(v) has full row rank, we have

vTJM(v) 6= 0.

Therefore, the relation

v∗Mrv = vTMrv 6= 0 (30)

holds for at least one index r ∈ M. Let d1, . . . ,dm
be the standard basis vectors for Rm. We select λ̃ as
λ̂+ c×dr, where c ∈ R is a nonzero number with an
arbitrarily small absolute value such that c×v∗Mrv >
0. Then, one can write:

M+
∑
r∈M

λ̃rMr = Ĥ+ cMr � 0

if c is sufficiently small. Therefore, λ̂ + c × dr is a
strictly feasible point for the dual problem. This proves
strong duality. �

Proof of Theorem 2: The pair (vv∗,η) is feasible
for the primal problem (14). With no loss of generality,
assume that G = {1, . . . , |G|} and B =M\G = {|G|+
1, . . . , |M|}. Consider the following choice for the dual
certificate:

λ̂ :=

[
−J+
G (v)

(
2Mv − µJB(v)γ

)
−µγ

]
, (31)

where

γ :=

[
η|G|+1

|η|G|+1|
,
η|G|+2

|η|G|+2|
, . . . ,

η|M|

|η|M||

]T
. (32)

Define Ĥ , M +
∑
r∈M λ̂rMr. According to the

definition of λ̂, it is straightforward to verify that
complementary slackness holds, i.e.,

〈Ĥ,vv∗〉 = 0. (33)

In addition, according to the left side of (20), one can
write:

|λ̂r| ≤ ‖2J+
G (v)Mv‖∞ + µ× ‖J+

G (v)JB(v)‖∞

=
κ(M)

2
× δG;∞(v) + µ× ζG;∞(v) < µ, (34)

for every r ∈ G. This implies that λ̂ satisfies the dual
constraints (25c). Moreover, according to the right side
(20), we have

κ(Ĥ) ≥ κ(M) +
∑
r∈M

κ(λ̂rMr)

≥ κ(M)−
∑
r∈M

2|λ̂r|‖Mr‖2

≥ κ(M)− 2‖λ̂‖1
= κ(M)− 2‖2J+

GMv‖1 − 2µ(‖J+
G JB‖1 + 1)|B|

= κ(M)(1−δG;1(v))−2µ(ζG;1(v)+1)|B| > 0 (35)

As a result, the constraint (25b) holds and moreover,

rank{Ĥ} = n− 1. (36)

Therefore, λ̂ is dual feasible and certifies that (vv∗,η)
is the unique solution for problem (14) (note that strong
duality holds because of the argument made in the proof
of Theorem 1). �

Proof of Theorem 3: With no loss of generality,
assume that G = {1, . . . , |G|} and B = M \ G =
{|G| + 1, . . . , |M|}. We construct the vectors λ̂ and
γ as follows:

λ̂ :=

[
−J+
G (v)

(
2Mv − µJB(v)γ

)
−µγ

]
, (37)

where

γ :=

[
ω|G|+1 + η|G|+1

|ω|G|+1 + η|G|+1|
, . . . ,

ω|M| + η|M|

|ω|M| + η|M||

]T
. (38)

Define Ĥ , M +
∑
r∈M λ̂rMr. Similar to the proof

of Theorem 2, it can be verified that the following
properties hold for λ̂ and Ĥ:

‖λ̂‖∞ ≤ µ, (39a)

〈Ĥ,vv∗〉 = 0, (39b)

κ(Ĥ)>κ(M)(1−δG;1(v))−2µ(ζG;1(v)+1)|B|. (39c)

Now, primal feasibility of the point (Wopt,νopt),
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combined with the inequality (39a) implies that:

‖νopt‖1=
∑
r∈M

|〈Mr,W
opt − vv∗〉 − ωr − ηr|

≥
∑
r∈G
|〈Mr,W

opt − vv∗〉| −
∑
r∈G
|ωr|

−
∑
r∈B

γr〈Mr,W
opt − vv∗〉+

∑
r∈B
|ωr + ηr|

≥ 1

µ

∑
r∈M

λ̂r〈Mr,W
opt − vv∗〉 −

∑
r∈G
|ωr|

+
∑
r∈B
|ωr + ηr|

≥ 1

µ
〈Ĥ,Wopt − vv∗〉 − 1

µ
〈M,Wopt − vv∗〉

+ ‖ω + η‖1 − 2‖ω‖1. (40)

On the other hand, evaluating the objective function of
the primal problem at (vv∗,ω + η) yields that

‖νopt‖1 ≤ −
1

µ
〈M,Wopt − vv∗〉+ ‖ω + η‖1. (41)

Replacing ‖νopt‖1 on the left side of (41) with the
lower bound offered by (40) leads to

1

µ
〈Ĥ,Wopt − vv∗〉 ≤ 2‖ω‖1. (42)

Hence, according to (39b), we have

〈Ĥ,Wopt〉 ≤ 2× µ× ‖ω‖1. (43)

Now, consider the eigenvalue decomposition

Ĥ = U diag{τ}U∗, (44)

where τ = [τn, . . . , τ2, 0]
T collects the eigenvalues of

Ĥ in descending order and U is a unitary matrix whose
last column is equal to v/‖v‖2. Define

Ŵ =

[
W̃ w̃

w̃T W̃nn

]
= U∗WoptU, (45)

where W̃ ∈ Hn, w̃ ∈ Cn and W̃nn ∈ R. Therefore,

trace{W̃} ≤ 1

τ2
〈diag{τ},W̃〉 ≤ 1

τ2
〈Ĥ,Ŵ〉

≤ 1

τ2
〈Ĥ,Wopt〉 ≤ 1

τ2
× 2× µ× ‖ω‖1. (46)

Moreover, due to the positive semidefiniteness of Ŵ,
it can be easily observed that

‖w̃‖22 ≤ W̃nn × trace{W̃}. (47)

Hence, by defining

α = W̃nn/‖v‖22, (48)

one can write:

‖Wopt − αvv∗‖2F = ‖Ŵ − W̃nnene
T
n‖2F

= ‖W̃‖2F + 2‖w̃‖22
≤ ‖W̃‖2F + 2W̃nn × trace{W̃}
≤ ‖W̃‖2F
+ 2

(
trace{Wopt} − trace{W̃}

)
trace{W̃}

≤ 2× trace{W̃} × trace{Wopt}

≤ 4

τ2
× µ× ‖ω‖1 × trace{Wopt} (49)

The proof is completed by combining (49) with the
lower bound on τ2 given in (39c). �
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