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Abstract—This paper proposes a distributed optimization
model for community microgrids considering the building ther-
mal dynamics and customer comfort preference. The microgrid
central controller (MCC) minimizes the total cost of operating
the community microgrid, including fuel cost, purchasing cost,
battery degradation cost and voluntary load shedding cost
based on the customers’ consumption, while the building
energy management systems (BEMS) minimize their electricity
bills as well as the cost associated with customer discomfort due
to room temperature deviation from the set point. The BEMSs
and the MCC exchange information on energy consumption
and prices. When the optimization converges, the distributed
generation scheduling, energy storage charging/discharging
and customers’ consumption as well as the energy prices are
determined. In particular, we integrate the detailed thermal
dynamic characteristics of buildings into the proposed model.
The heating, ventilation and air-conditioning (HVAC) systems
can be scheduled intelligently to reduce the electricity cost while
maintaining the indoor temperature in the comfort range set by
customers. Numerical simulation results show the effectiveness
of proposed model.

Keywords-Community microgrids, scheduling, thermal dy-
namic model, decentralized optimization, alternating direction
method of multipliers (ADMM).

I. INTRODUCTION

The growth of distributed renewable and/or nonrenewable
energy resource installations, emerging utility-scale energy
storage, plug-in hybrid electric vehicle use, and demand
response are bringing unprecedented opportunities and chal-
lenges to the electric distribution system. As these technolo-
gies evolve, utilities, end users, manufacturers, and other
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participants in distribution system operations are actively
transforming the utility operational model. Traditionally,
utilities buy energy from the wholesale energy market and
sell it to their customers. The whole distribution network
is passive and the power flow is unidirectional. However,
this paradigm has been changed with the integration of
various distributed energy resources and energy storage
on the customer side. In fact, utilities are now facing an
active distribution network with bidirectional electricity flow.
Advanced coordination and integration are necessary for the
efficient operation of future distribution system.

One available approach for integrating these technologies
is through a microgrid. A microgrid can be defined as a low
voltage distribution network comprising various distributed
generation (DG), storage devices, and responsive loads that
can be operated in both grid-connected and islanded modes
[1]. It is connected to the main distribution network at the
Point of Common Coupling (PCC), importing or exporting
power to the distribution network as well as providing
ancillary services, such as, voltage support, to the main
distribution grid [2], [3]. A microgrid can also improve local
reliability, reduce emissions and contribute to lower cost of
energy supply by taking advantage of DG, storage devices
and responsive loads [4]. Due to such benefits, the microgrid
has attracted growing attention from both academia and
industry [5].

A microgrid central controller (MCC) usually performs
the scheduling of the microgrid in both grid-connected
and islanded modes [5]. The MCC determines the optimal
dispatch of DG and exchanged power between microgrid
and distribution utility through PCC that minimizes total
operating cost subjected to various technical, environmental,
reliability and operating constraints. Considerable efforts
have been devoted to optimal scheduling and management
of microgrids [7]. Scheduling methods for a microgrid
in islanded modes are proposed in [8]-[11]. In addition,
numerous research and published works are devoted to the
scheduling of microgrid in grid-connected mode [12]-[17].
In particular, deterministic models are used in [12] and [13],
while stochastic programming models have been developed
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in [14]-[16]. A hybrid stochastic/robust programming model
for microgrid scheduling is proposed in [17]. Recently,
optimal control schemes for HVAC considering thermal
dynamic model of buildings has been proposed in [19]-[20].
Given indoor temperature settings (desirable temperature
and allowable temperature deviation) from customers, the
HVAC system can precool (or preheat) the building by
turning on during low price hours and turning off during
high/peak price hours while still maintaining the indoor
temperature in allowable range. By integrating the thermal
dynamic model of buildings into the microgrid scheduling
process and allowing the MCC surrogate control of the
HVAC systems, significant savings in electricity cost can
be achieved by coordinating the DG and battery operation,
HVAC systems consumption and energy purchasing/selling
at PCC while preserving customers’ comfort. Nevertheless,
the HVAC system was modeled as a continuous controllable
load, while in practical cases, most HVAC systems can only
be switched on and off.

In these literatures, customers’ consumption is mostly
considered as constant values or responsive loads, which are
directly controlled by the MCC. In fact, the consumers and
house/building owners are generally very reluctant to allow
MCC directly control their appliances (e.g., HVAC systems)
due to various issues, such as psychological safety, privacy
protection, etc. For this reason, distributed optimization
has been proposed to schedule residential loads in [21]-
[23]. Dual decomposition algorithm is used to decouple
complicating variables in the power balance constraint, so
the MCC as well as each house can schedule their resources
and consumption separately. At residential level, the BEMS
in each house schedules its consumption based on price
signals distributed by MCC. Then, the MCC schedules
the distributed generation and energy storage based on
the customers’ consumption and update the price signals.
This process repeats until the power balance constraint is
satisfied, i.e., total generation equals total consumption. The
MCC adjusts prices (Lagrangian multipliers) in each iter-
ation, rather than allocating the consumption of customers
directly. To guarantee the convergence, all dual subproblems
are assumed convex and finite in [21]-[23]. However, the
dual subproblems are actually nonconvex due to the integer
constraints (on/off of generators and HVAC systems), which
cause non-convergence of the algorithm [24].

For this reason, a new distributed optimization model for
community microgrids operation considering the building
thermal dynamics and customer comfort preference is pro-
posed in this paper. Dual decomposition algorithm is used to
decouple the community microgrid scheduling problem into
parallel subproblems of MCC and BEMSs. Considering the
nonconvexity of dual subproblems, the alternating direction
method of multipliers (ADMM) is introduced to guarantee
the convergence [24]. Also, detailed thermal dynamic char-
acteristics of houses and HVAC system models are integrated

into the BEMS scheduling model. The main contributions of
this paper are as follows:

• Integrating the building thermal dynamics and HVAC
systems controller into BEMSs and reducing operating
cost of microgrids;

• Using ADMM to guarantee the convergence of the
distributed optimization with nonconvex dual subprob-
lems; and

• Validating the proposed distributed optimization with
numerical simulation results.

The rest of this paper is organized as follows. In Section
II, the model of community microgrid and thermal dynamic
model of buildings are presented. Based on that, the central-
ized community microgrid scheduling model considering the
building thermal dynamics and customer comfort preference
is formulated in Section III. Then, the distributed optimiza-
tion model is proposed in Section IV. In Section V, results of
case study on a community microgrid are presented. Finally,
conclusions are given in Section VI.

II. SYSTEM MODELING

A. Community Microgrid Model

In this paper, we consider a community microgrid that
consists of various distributed generation (PV panels and
wind turbines, microturbines, fuel cells, diesel generations,
etc.), energy storage (e.g., batteries) and a number of houses.
In each house, BEMS schedules the appliances to minimize
the utility bill while mitigating the impact on user’s comfort.
The loads can be categorized based on whether they can be
scheduled to earlier/later times. They are labeled responsive
and non-responsive loads. Typical non-responsive loads in-
cludes refrigerator-freezer, electric stove, lighting, TV, com-
puter, etc. Rescheduling these loads will cause significant
inconvenience for the customers. Thus, they are taken as
non-sensitive to the energy price and non-schedulable. On
the contrary, dishwasher, cloth washer/dryer, HVAC, water
heater and electric vehicle (EV) have prescribed energy
requirements, which are flexible over certain time slots.
Therefore, based on the electricity price and the residents’
comfort, the BEMS decides when to turn the device on
and off. So, they are taken as sensitive to energy price and
schedulable. Particularly, HVAC is indeed thermal load with
temperature profile, which must be kept within minimum
and maximum temperature limits. Due to the thermal inertia
of a house, the indoor temperature changes quite slow. This
gives the microgrid controller or BEMS extra flexibility to
schedule the HVAC. Modeling HVAC as a thermal load
requires building the thermal dynamic model of each house,
which needs to consider many factors, such as effective
window area, the fraction of solar irradiation entering the
inner walls and floor, the thermal capacitance and resistance
parameters of the house. It is much more complicated
compared to other loads. For this reason, we divide the load
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Figure 1: Example community microgrid

into HVAC loads and non-HVAC loads. In addition, rooftop
PV panels, small batteries and EVs may also exist.

A building energy management system (BEMS) is
equipped for each house to communicate with the microgrid
controller. Generally, the objective of the microgrid con-
troller is to minimize the total cost of operating the commu-
nity microgrid by coordinating the DG and battery operation,
customers’ consumption and energy purchasing/selling at
PCC while preserving customers’ comfort. In particular, we
assume the microgrid controller collects customer indoor
temperature settings (desirable temperature and allowable
temperature deviation) and other required information from
each BEMS. Based on customer requirements, electricity
demand, renewable generation and price information at
PCC, microgrid controller decides the power output of
controllable DG, charging/discharging power of batteries,
purchasing/selling power at PCC and consumption of HVAC
systems as well as other controllable loads over a scheduling
period (e.g., 24 hours). An example of the community
microgrid under consideration is shown in Fig. 1.

B. HVAC System Model

HVAC systems are typically controlled by thermostats
to maintain the house indoor temperature in a comfortable
range. Depending on customers’ preference, the desirable
indoor temperature and allowable temperature range will be
preset. Inside the thermostats, a temperature controlled relay
circuit is used to switch the HVAC on and off according
to the temperature detected by the temperature sensor. The
output from the thermostats is either on or off. For cooling
control, the HVAC system is switched on when the indoor
temperature reaches the ceiling of the allowed temperature
range. It will be switched off when the indoor temperature
falls below the floor of the allowed temperature range. This
autonomous device has been widely used in buildings and
houses where automatic temperature control is needed.

Different from the autonomous temperature control above,

we assume the desirable temperature and allowable temper-
ature range set by customers are forwarded to the commu-
nity microgrid controller by the BEMS and the microgrid
controller takes surrogate control of HVAC systems. Since
indoor temperature changes quite slowly due to the house
thermal inertia, a house can be considered as a thermal
storage facility. This gives the microgrid controller certain
flexibility to schedule the consumption of HVAC system.
Specially, a microgrid controller can switch on HVAC sys-
tems during low price or high renewable generation intervals
to precool (or preheat) the house and switch off them in
opposite cases while still maintaining the indoor temperature
in allowable range. As a result, it is expected that significant
savings in electricity cost can be achieved compared to
autonomous temperature control [19]-[20].

C. Building Thermal Dynamic Model

Considering the impact of ambient temperature, solar ir-
radiance and HVAC systems, a third order state-space model
is employed to describe the thermal dynamic characteristics
of a house [25] as:

T h,t+1 = AhT h,t + BhUh,t ∀h, ∀t (1)

where T h,t =
[
T In
ht , T

M
ht , T

E
ht

]
is the state vector. Uh,t =[

TA
t , Φt, uhtηhσhP

H
h

]
is the input vector, where σh = 1

corresponds to winter heating and σh = −1 for summer
cooling. The coefficients of matrices Ah and Bh of a house
h can be calculated based on the effective window area,
the fraction of solar irradiation entering the inner walls and
floor, the thermal capacitance and resistance parameters of
the house, and the sampling time, which is the time solution
of the optimization horizon. More details on this building
thermal dynamic model can be found in [25]. The constraints
on house indoor temperature are:

TD
ht − δht ≤ T In

ht ≤ TD
ht + δht (2)

III. CENTRALIZED COMMUNITY MICROGRID
SCHEDULING

The community microgrid considered in this paper con-
sists of distributed generators (e.g., diesel generators, micro-
turbines and fuel cells), renewable generation (e.g., wind tur-
bines and PV panels), energy storage (e.g., battery systems)
and load (HVAC and non-HVAC). The distributed generators
are considered dispatchable units, which can be controlled
by a MCC to provide dispatched power. Depending on unit
type, dispatchable units are subject to various constraints,
such as, capacity limits, ramping rates, minimum power
output limits, minimum on/off time, and so on. In con-
trast, renewable generation, such as, wind turbines and PV
panels, are taken as non-dispatchable units, which depend
on the meteorological conditions of wind speed, ambient
temperature and solar irradiance. Loads are divided to HVAC
loads and non-HVAC loads. Each HVAC load is associated
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with a house or building. The community microgrid is
also connected to the external utility system via the PCC
characterized by a forecasted day-ahead market price known
for a time window of 24 hours. Under this assumption,
the operation objective of the community microgrid is to
minimize a virtual cost associated with the system operating
cost and customer discomfort as in (3). Specifically, the
first and second line is the fuel cost of DGs (including DG
start-up cost); the third line is the energy purchasing/selling
cost/benefit from distribution grid; the fourth and fifth lines
are cost of battery degradation and load shedding; and the
sixth line is the discomfort cost of customers due to the
deviations from customer desired temperature.

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λPit(m)pit(m) + κiuit

]

+

NT∑
t=1

NG∑
i=1

SUit (uit, ui,t−1)

+

NT∑
t=1

λPCC
t PPCC

t

+

NT∑
t=1

NB∑
b=1

Cbt

(
PC
bt + PD

bt

)
+

NT∑
t=1

V LS
t PLS

t

+

NT∑
t=1

NH∑
h=1

ωht

∣∣T In
ht − TD

ht

∣∣ (3)

The objective function must be minimized subject to several
constraints.

Pit =

NI∑
m=1

pit(m) + uitP
min
i ∀i, ∀t (4)

0 ≤ pit(m) ≤ pmax
it (m) ∀i, ∀t, ∀m (5)

Pmin
i uit ≤ Pit ≤ Pmax

i uit ∀i, ∀t (6)

0 ≤ PC
bt ≤ P

C,max
b uCbt ∀b, ∀t (7)

0 ≤ PD
bt ≤ P

D,max
b uDbt ∀b, ∀t (8)

uCbt + uDbt ≤ 1 ∀b, ∀t (9)

SOCbt = SOCb,t−1+PC
btη

C
b 4t−PD

bt

1

ηDb
4t ∀b, ∀t (10)

SOCmin
bt ≤ SOCbt ≤ SOCmax

bt ∀b, ∀t (11)

0 ≤ PLS
t ≤ PLS,max

t ∀t (12)

∑NG

i=1 Pit + PW
t + PPV

t + PPCC
t +

∑NB

b=1

(
PD
bt − PC

bt

)
=
∑ND

j=1 Pjt +
∑NH

h=1 uhtP
H
h − PLS

t ∀t (13)

For DGs, constraints (4) and (5) approximate the production
cost of dispatchable generators by blocks. Constraint (6)
forces the output of DG to be zero if it is not committed.
Additionally, each unit is subject to its own operating
constraints, such as, minimum up and down time, initial
condition, ramping rates and so on. Due to the small
capacity of generators in the community microgrids, the
minimum up and down time as well as the ramping rates
are normally neglected. Nevertheless, detailed and standard
mathematical formulations of these constraints can be found
[26]. For batteries, constraints (7) and (8) are the maximum
charging/discharging power of a battery. These two states
are mutually exclusive, which is ensured by (9). The battery
state of charge (SOC) is defined by (10) and the limit of
SOC is enforced by (11). The amount of load curtailment
at time t is limited by constraint (12). The energy balance
is enforced by (13). The total of the electricity produced
by dispatchable generators, wind, PV, batteries and power
purchased at PCC must be equal to the summation of HVAC
load and non-HVAC load minus the load curtailed in the
microgrid. Most importantly, the thermal dynamic equation
of houses (1) and house indoor temperature limits (2) should
also be considered.

The proposed optimization can be reformulated into
mixed-integer linear programming (MILP). All logical terms
that appear in the objective function are recast into mixed-
integer linear form. For the objective function, the startup
cost of DGs (line 2) can be recast into mixed-integer linear
form as in [26]. The expression of customer discomfort
cost (line 6) can be reformulated into linear format as in
(14) - (16) by introducing an auxiliary variable Xht, which
represents the absolute value of temperature deviation. Thus,
the proposed optimization becomes a MILP, which can be
solved efficiently by commercial solvers.

Xht ≥ T In
ht − TD

ht ∀h, ∀ t (14)

Xht ≥ TD
ht − T In

ht ∀h, ∀ t (15)

Xht ≥ 0 ∀h, ∀ t (16)

IV. DISTRIBUTED COMMUNITY MICROGRID
SCHEDULING

The centralized community microgrid scheduling model
presented in Section III seems straight forward and easy
to solve. However, this model has two disadvantages. First
of all, the house/building appliances (e.g., HVAC systems)
have to be directly controlled by the MCC, while customers
generally want to preserve their privacy and may wish to
withhold detailed information on energy consumption to the
utility company. Secondly, the dimension of the centralized
optimization increases significantly as the number of cus-
tomers increase. As a result, the solution efficiency will be
compromised. For these reasons, we proposed to breakdown
the centralized optimization by dual decomposition and
obtain a distributed parallel optimization.
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The centralized optimization model (1)-(16) has a separa-
ble structure. Therefore, it can be solved in a distributed way
through dual decomposition and sub-gradient method. The
Lagrangian function for (3) is given as (17), where λt de-
notes the Lagrangian multiplier corresponding to constraint
(13). The Lagrangian minimization (17), is easily seen to
be decomposed to optimizations at the microgrid level and
customers.

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λPit(m)pit(m) + κiuit

]

+

NT∑
t=1

NG∑
i=1

SUit (uit, ui,t−1) +

NT∑
t=1

λPCC
t PPCC

t

+

NT∑
t=1

NB∑
b=1

Cbt

(
PC
bt + PD

bt

)
+

NT∑
t=1

V LS
t PLS

t

+

NT∑
t=1

NH∑
h=1

ωht

∣∣T In
ht − TD

ht

∣∣
−

NT∑
t=1

λt

[
NG∑
i=1

Pit + PW
t + PPV

t + PPCC
t + PLS

t

+

NB∑
b=1

(
PD
bt − PC

bt

)
−

ND∑
j=1

Pjt −
NH∑
h=1

uhtP
H
h

 (17)

s.t. (1) (2) , (4)− (12) , and (14)− (16)

For a convex optimization problem, dual decomposition can
converge to a global optimal solution. However, when the
problem is not convex, such as (17) , even finding a feasible
solution becomes difficult. For this reason, the augmented
Lagrangian methods were developed in part to bring robust-
ness to the dual ascend method, and in particular, to yield
convergence without assumptions like strict convexity or
finiteness of (3). The augmented Lagrangian for (3) is given
as (18), where ρ > 0 is called the penalty parameter. Note
(17) is the standard Lagrangian for the problem. Problem
(18) is clearly equivalent to the original problem (1)-(16),
since for any feasible solution, the terms added to the
objective are zero.

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λPit(m)pit(m) + κiuit

]

+

NT∑
t=1

NG∑
i=1

SUit (uit, ui,t−1) +

NT∑
t=1

λPCC
t PPCC

t

+

NT∑
t=1

NB∑
b=1

Cbt

(
PC
bt + PD

bt

)
+

NT∑
t=1

V LS
t PLS

t

+

NT∑
t=1

NH∑
h=1

ωht

∣∣T In
ht − TD

ht

∣∣

−
NT∑
t=1

λt

[
NG∑
i=1

Pit + PW
t + PPV

t + PPCC
t + PLS

t

+

NB∑
b=1

(
PD
bt − PC

bt

)
−

ND∑
j=1

Pjt −
NH∑
h=1

uhtP
H
h


+
ρ

2

∥∥∥∥∥
NG∑
i=1

Pi + PW + PPV + PPCC + PLS

+

NB∑
b=1

(
PD

b −PC
b

)
−

ND∑
j=1

Pj −
NH∑
h=1

u
(k)
h PH

h

∥∥∥∥∥∥
2

2

(18)

s.t.
(1) (2) , (4)− (12) , and (14)− (16)

The alternating direction method of multipliers (ADMM)
can be viewed as an attempt to blend the decomposability of
dual decomposition with the superior convergence properties
of augmented Lagrangian methods for constrained optimiza-
tion [24]. It takes the form of a decomposition-coordination
procedure, in which the solutions to small local subproblems
are coordinated to find a solution to a large global problem.
First of all, the augmented Lagrangian problem (18) is
decomposed to suboptimizations at the microgrid level as
(19) and for each customer as (20). For each iteration,
problem (19) and (20) are solved, then the dual variables
are updated uses a step size equal to the penalty parameter
ρ. This procedure will be continued until it converges to a
optimum.

min

NT∑
t=1

NG∑
i=1

[
NI∑
m=1

λPit(m)pit(m) + κiuit

]

+

NT∑
t=1

NG∑
i=1

SUit (uit, ui,t−1) +

NT∑
t=1

λPCC
t PPCC

t

+

NT∑
t=1

NB∑
b=1

Cbt

(
PC
bt + PD

bt

)
+

NT∑
t=1

V LS
t PLS

t

−
NT∑
t=1

λ
(k)
t

[
NG∑
i=1

Pit + PW
t + PPV

t + PPCC
t + PLS

t

+

NB∑
b=1

(
PD
bt − PC

bt

)
−

ND∑
j=1

Pjt −
NH∑
h=1

u
(k)
ht P

H
h


+
ρ

2

∥∥∥∥∥
NG∑
i=1

Pi + PW + PPV + PPCC + PLS

+

NB∑
b=1

(
PD

b −PC
b

)
−

ND∑
j=1

Pj −
NH∑
h=1

u
(k)
h PH

h

∥∥∥∥∥∥
2

2

(19)

s.t.
(4)− (12)
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min

NT∑
t=1

ωht

∣∣T In
ht − TD

ht

∣∣
−

NT∑
t=1

λ
(k)
t

[
NG∑
i=1

P
(k)
it + PW

t + PPV
t + P

PCC,(k)
t

+P
LS,(k)
t +

NB∑
b=1

(
P

D,(k)
bt − PC,(k)

bt

)

−
ND∑
j=1

Pjt −
NH∑
h=1

uhtP
H
h


+
ρ

2

∥∥∥∥∥
NG∑
i=1

P
(k)
i + PW + PPV + PPCC,(k)

+PLS,(k) +

NB∑
b=1

(
P

D,(k)
b −P

C,(k)
b

)

−
ND∑
j=1

Pj −
NH∑
h=1

uhP
H
h

∥∥∥∥∥∥
2

2

(20)

s.t. (1) (2) , and (14)− (16)

λ
(k+1)
t = λ

(k)
t + ρ

[
NG∑
i=1

P
(k)
it + PW

t + PPV
t + P

PCC,(k)
t

+P
LS,(k)
t +

NB∑
b=1

(
P

D,(k)
bt − PC,(k)

bt

)

−
ND∑
j=1

Pjt −
NH∑
h=1

u
(k)
ht P

H
h

 (21)

For the proposed distributed scheduling model, the MCC
broadcasts the updated Lagrange multipliers and the dif-
ference between the total generation at microgrid level as
well as the total consumption submitted by customers to
all residential smart meters through the advanced metering
infrastructure (AMI). For each customer, problem (21) is
solved and the total consumption is sent back the MCC.
In this way, customers don’t reveal the individual appliance
consumption or battery storage profiles. The diagram of this
distributed scheduling method as well as the exchange of
information between MCC and BEMSs is shown in Fig. 2
In ADMM, the variables at microgrid level and customer
level (BEMS) are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.
It should be noted that the ADMM ensures the convergence
of the distributed optimization, but same as other nonconvex
optimization, the global optimum cannot be guaranteed.

V. CASE STUDIES

The proposed community microgrid scheduling model is
demonstrated on the modified ORNL Distributed Energy
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Figure 2: Exchange of Information between MCC and house
BEMSs

Control and Communication (DECC) lab microgrid test sys-
tem. The modified system includes various DERs, including
a wind turbine, PV panel, fuel cell, microturbine, diesel
generator and battery. The parameters for the dispatchable
generators, PV, wind turbine and battery can be found in
[18]. The three dispatchable generators are duplicated to
make sure the microgrid can be operated in islanded mode
without load shedding. The solar irradiance and temperature
data is from [27]. The measured 1-minute data of Oak
Ridge, Tennessee area on August, 1st, 2015 is used for the
simulation. This is a typical summer day in southern states
of the US. The cost of load shedding is set as $2.0/kWh
and the amount of curtailed load should be less than 10%
of the total non-HVAC load. The peak of non-HVAC load is
about 180 kW. Twenty houses are considered, each has a 5
kW HVAC system, which has a coefficient of performance
(COP) ηh = 3. The desired indoor temperature is set at
23 °C and the allowed deviation is ±2 °C. The customer
discomfort factor is set at $0.05/°C. All other parameters
of the houses are taken from [25] (Table 7.1 in [25]). To
represent the variety of the houses, the standard error of
estimate in [25] (Table 7.1) is used to generate random
errors for the parameters of each house. The modified DECC
lab microgrid system includes various generations sources,
such wind turbine, PV panel, fuel cell, microturbine and
diesel generator as well as energy storage devices, such as
battery. On the demand side, it considers multiple houses
with different parameters. Thus, this modified DECC lab
microgrid system represents the majority of both existing
and future community microgrids.

The penalty parameter ρ is set as 0.1 and the day-ahead
market prices at PCC are used as the initial value of the
Lagrangian multiplier in the distributed optimization. The
analysis is conducted for a 24-hour scheduling horizon and
the time interval is set to be 15 minutes. The load profile,
market price and PV model are the same as in [18]. All
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numerical simulations are coded in MATLAB and solved
using CPLEX 12.6. Six cases are studied as in Tab. I.

A. Comparison of Cost Between Different Cases

In order to show the benefit of integrating building thermal
dynamics into community microgrid scheduling, we com-
pare the total operating cost calculated in all cases. The total
operating cost of the community microgrid consists of fuel
cost, purchasing cost, battery degradation cost, voluntary
load shedding cost and the cost associated with customer
discomfort as in (3). In the case of autonomous control, the
on/off state of HVAC system can be directly determined by
solving equation (1) and performing the logic of temperature
controlled relay. Then, the total cost can be calculated by
scheduling the same microgrid with predetermined HVAC
status. Comparing the total costs of centralized optimiza-
tion in Case 3 and 4 with that of autonomous control in
Case 1 and 2, the total costs are reduced by around 10%
in both grid-connected and islanded modes by centralized
optimization. This clearly indicates significant cost savings
can be achieved by integrating building thermal dynamics
and HVAC systems into the optimization. Comparing the
total costs of distributed optimization in Case 5 and 6 with
that of autonomous control in Case 1 and 2, the total costs
are reduced by 6.7% in grid-connected mode and 4.5% in
islanded mode by distributed optimization. The centralized
optimization performs a little better than the distributed
optimization. As mentioned earlier, due to the nonconvexity
of subproblems, the global optimum cannot be guaranteed.

Table I: Total operating cost of the community microgrid in
different cases

Cases Cost ($)

Autonomous Control Case 1: Grid-connected 984.08
Case 2: Islanded 1106.67

Centralized Optimization Case 3: Grid-connected 879.57
Case 4: Islanded 994.28

Distributed Optimization Case 5: Grid-connected 918.73
Case 6: Islanded 1058.55

B. Operation in Grid-Connected Mode

The results of community microgrid scheduling in grid-
connected mode through different control and optimization
methods are compared. Taking house #1 for example, the
indoor temperature and HVAC status are shown in Fig. 3.
Comparing Fig. 3a with Fig. 3b and 3c, it clearly shows
how the centralized and distributed optimization model
considering building thermal dynamics can precool the
house to reduce the HVAC consumption during peak price
intervals. Although the HVAC scheduling by centralized
and distributed optimization are slightly different, the price
signals of the distributed optimization converge to the day-
ahead price at PCC as shown in Fig. 3c. This is reasonable
since the marginal unit of the community microgrid in grid-
connected mode is the PCC.
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(a) Case 1: Autonomous control

0 10 20 30 40 50 60 70 80 90 100
22

23

24

25

Time Interval (15 minutes)
H

ou
se

 T
em

pe
ra

tu
re

 ( °
)

 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

D
ay

-a
he

ad
 P

ric
e 

($
/k

W
h)

House 1 Temperature

Day-ahead Price

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

Time Interval (15 minutes)

O
n/

O
ff

 s
ta

te
 o

f 
H

V
A

C

 

 

House 1 HVAC

(b) Case 3: Centralized optimization
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(c) Case 5: Distributed Optimization
Figure 3: House temperature and HVAC status in grid-
connected mode

C. Operation in Islanded Mode

The results of community microgrid scheduling in is-
landed mode through different control and optimization
methods are compared in Fig. 4. In islanded model, the
microgrid net demand, i.e., the total load (both HVAC and
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(a) Case 2: Autonomous control
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(b) Case 4: Centralized optimization
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(c) Case 6: Distributed Optimization

Figure 4: House temperature and HVAC status in islanded
mode

non-HVAC) minus the renewable generation is calculated.
The net demand is a good indicator of the energy price. With
more net demand, units with higher marginal cost need to be
committed. Thus, the energy price will be higher. As can be
seen in Fig. 4, the peak demand of centralized and distributed
optimization model considering building thermal dynamics
has been reduced compared to autonomous control in Case
2. This indicates the peak energy prices of centralized and
distributed optimization model are reduced compared to
autonomous control. Comparing the centralized and dis-
tributed optimization model, we can see the peak demand
of the distributed optimization model is further reduced, i.e.
the peak energy price of distributed optimization is further
reduced compared to centralized optimization.

Similar to the grid-connected cases, the centralized and
distributed optimization model considering building thermal
dynamics can precool the house to reduce the HVAC con-
sumption during peak price/demand intervals. This effect is
much more obvious in Case 6 as shown in 4c. In addition,
the peak value of net demand is reduced in Case 6. It should
also be noted that the HVAC scheduling by centralized and
distributed optimization are different. This is because the
distributed optimization converges to local optimum due to
the nonconvexity of the subproblems.

D. Convergence of Proposed Distributed Optimization

For the distributed optimization Case 6, the Lagrangian
multiplier and the microgrid net demand are shown as in
Fig. 5. As can be seen, the Lagrangian multiplier and the mi-
crogrid net demand generally follow the same trend, except
the two blue circles. The high prices during these intervals
are due to the start-up cost of dispatchable generators. A
small increase in the net demand can result in start-up of
additional generators, which cause significant change of λ.
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Figure 5: Lagrangian multiplier λ and net demand of the
microgrid in Case 6

For the proposed distributed optimization, a reasonable
stopping criterion is that the primal residual has to be small,
i.e., the total generation equals the total consumption [24].
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The norm of the primal residual as a function of the iteration
number is shown in Fig. 6. The primal residual is calculated
as (22) and used as the stopping criteria.
RP =

NG∑
i=1

Pit + PW
t + PPV

t + PPCC
t + PLS

t −
ND∑
j=1

Pjt

+

NB∑
b=1

(
PD
bt − PC

bt

)
−

NH∑
h=1

uhtP
H
h ∀t (22)

VI. CONCLUSIONS

In this paper, a new distributed optimization model for
community microgrids considering building thermal dynam-
ics is proposed. The total operating cost of community
microgrids can be significantly reduced by integrating the
building thermal dynamics and HVAC systems controller
into BEMSs. The centralized optimization is decomposed
to subproblems at MCC and each customer. The BEMSs of
customers and the MCC exchange information on energy
consumption and prices. ADMM is utilized to guarantee
the convergence of the distributed optimization with non-
convex dual subproblems. Numerical simulations on the
modified ORNL DECC microgrid show the effectiveness of
the proposed distributed optimization model. The results of
community microgrid scheduling through different control
and optimization methods are compared.

APPENDIX

NOMENCLATURE

A symbol with (k) on the upper right position stands
for its value of k-th iteration. A bold symbol stands for its
corresponding vector.

A. Indices and Numbers

i Index of DGs, running from 1 to NG.
j Index of loads, running from 1 to ND.
b Index of batteries, running from 1 to NB .
h Index of houses, running from 1 to NH .
t Index of time periods, running from 1 to NT .
m Index of energy blocks offered by DGs, running

from 1 to NI .

B. Variables

uit 1 if DG i is scheduled on during period t and
0 otherwise.

uht 1 if HVAC of house h is scheduled on during
period t and 0 otherwise.

uCbt, u
D
bt 1 if battery b is scheduled charging/discharging

during period t and 0 otherwise.
pit (m) Power output scheduled from the m-th block of

energy offer by DG i during period t. Limited
to pmax

it (m).
Pit Power output scheduled from DG i during pe-

riod t.
PC
bt , P

D
bt Charging/discharging power of battery b during

period t.
SOCbt State of charge of battery b during period t.
PPCC
t Scheduled power at PCC during period t.
PLS
t Load curtailment during period t.
T In
ht Indoor temperature of house h during period t.
TM
ht The temperature of thermal accumulating layer

of inner walls and floor in house h at period t.
TE
ht The temperature of house envelop at period t.
λt Lagrange multiplier of power balance equation

during period t.

C. Constants

λPit (m) Marginal cost of the m-th block of energy offer
by DG i during period t.

λPCC
t Purchasing price of energy from distribution

grid during period t.
ρ Penalty parameter of augmented Lagrangian

function.
Cbt Degradation cost of battery b during period t.
V LS
t Cost of load curtailment during period t.
Pmax
i , Pmin

i Maximum/minimum output of DG i.
PW
t Wind turbine power output during period t.
PPV
t PV power output during period t.
Pjt Power consumption scheduled for non-HVAC

load j during period t.
PH
h Rated power of HVAC system in house h.
PC,max
b , PD,max

b Maximum charging/discharging power of
battery b.

SOCmax
bt , SOCmin

bt Maximum/minimum state of charge of
battery b during period t.

PLS,max
t Maximum load curtailment during period t.
ηCb , η

D
b Battery charging/discharging efficiency.

ωht Customer discomfort cost of house h during
period t.

δht Allowed temperature deviation of house h dur-
ing period t.

κi Operating Cost of DG i at the point of Pmin
i .

TA
t Ambient temperature during period t.
TD
ht Desired indoor temperature of house h during

period t.
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Φt Solar irradiance during period t.
ηh Coefficient of performance (COP) of HVAC in

house h.
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