
Towards a Cyber Defense Framework for SCADA Systems Based on Power
Consumption Monitoring ⇤

Jarilyn M. Hernández
⇤

Lane Dept. of Computer
Science and Electrical

Engineering
West Virginia University
jhernan7@mix.wvu.edu

Qian Chen, Chelsea Calhoun,
and Summer Sykes

Department of Engineering:
Computer Science Technology
Savannah State University
chenq@savannahstate.edu

Je↵rey A. Nichols
Cyber and Information
Security Research Group

Oak Ridge National
Laboratory

nicholsja2@ornl.gov

Abstract
Supervisory control and data acquisition (SCADA) sys-
tems are industrial automation systems that remotely
monitor and control critical infrastructures. SCADA
systems are major targets for espionage and sabotage
attackers. Current commercial o↵-the-shelf security so-
lutions are insu�cient in protecting SCADA systems
against sophisticated cyber-attacks. Furthermore, these
breaches are not detected in real-time or fast enough to
prevent further damages. To address this challenge we
present a feasibility study that proves monitoring power
consumption of SCADA devices is an e↵ective approach
to detect cyber-attacks. We built a testbed containing
a Programmable Logic Controller (PLC) that was in-
strumented to record its power usage. Three SCADA-
specific cyber-attacks were simulated and we report the
power consumption of the PLC under these normal and
anomalous scenarios. We show that it is possible to dis-
tinguish the PLC power utilization between these sce-
narios. In route to this result we found and describe
vulnerabilities in the DF-1 protocol.

1. Introduction
SCADA (Supervisory Control and Data Acquisition)

systems refer to control systems that are used to moni-
tor and control enterprise-wide operations of large-scale
and distributed critical infrastructures. For example,
SCADA systems are widely used to monitor electrical
assets (i.e., substations and transformer), telecommuni-
cation facilities (i.e., switches and transmitters), water
and waste equipment (i.e., water pumps and valves) and
oil and gas pipelines (i.e., gas pumps and valves). Usu-
ally SCADA systems contain a set of devices such as sen-
sors, actuators, programmable logic controllers (PLCs),
remote terminal units (RTUs), human machine inter-

⇤
This manuscript has been authored by UT-Battelle, LLC under Con-

tract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or al-
low others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Ac-
cess Plan (http://energy.gov/downloads/doe-public-access-plan). Research
sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the
U. S. Department of Energy.⇤
Also affiliated with the Cyber and Information Security Research Group

at Oak Ridge National Laboratory

faces (HMIs), and master terminal units (MTUs).
Attackers can compromise SCADA systems by ex-

ploiting vulnerabilities residing in security policies, soft-
ware, communication channels, wireless channels, and
social engineering. Recently, SCADA systems have
become a target for cyber-attacks, according to a re-
cent report from the Organization of American States
(OAS) [1] , due to their potential impacts on properties,
economies, and human lives. The annual threat report
from Dell shows that cyber-attacks against SCADA sys-
tems increased from 91,676 to 163,228 between January
2012 to January 2013 and increased to 675,186 at the
end of January 2014 [2].

Specific, recent examples producing widespread dam-
age include:

• In 2000, a disgruntled employee compromised the
Maroochy Shire (Queensland computerized waste
management system) causing millions of gallons
of sewage spill into waterways, local parks and
rivers [3].

• In 2010, a worm called Stuxnet [4] was detected
in Iranian uranium enrichment facilities. This
worm increased the operating speed of the Ira-
nian IR-1 centrifuge from 1,064 Hz to 1,410 Hz
for fifteen minutes before returning to its normal
running frequency [5, 6]. This incident temporar-
ily derailed Iran’s nuclear program by destroying
roughly 1,000 centrifuges.

• In 2013, a cyber-espionage group known as “Drag-
onfly” used phishing sites and Trojans to compro-
mise more than 1,000 energy supplier organiza-
tions in Europe and North America [7].

In this paper, we demonstrate a new approach to
monitor and analyze the power consumption of a
SCADA device (e.g., PLC) in order to detect SCADA-
specific cyber-attacks. Our primary goal is to prove
that there are detectable di↵erences in the power pro-
files between normal behavior and behavior when under
cyber-attacks. We describe a SCADA testbed that en-
abled us to monitor and collect the power consumption
of a PLC under normal operations, command injection
attacks, denial of service attacks, and replay attacks.

The rest of this paper is organized as follows. Sec-
tion 2 presents a literature review on detection tech-

2915

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41508
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND



niques for identifying SCADA-specific cyber-attacks.
Section 3 describes the experimental design (hardware
and software configuration). Section 4 introduces the
approach to collect PLC power consumption data. Sec-
tion 5 validates our proposed approach by analyzing
power consumption data under various scenarios. Fi-
nally, we present our conclusions and suggestions for
future work in Section 6.

2. Related Work
The SCADA-specific cyber-attacks introduced in Sec-

tion 1 show that traditional prevention mechanisms such
as firewalls and anti-virus software are not enough to
protect SCADA systems against sophisticated cyber-
attacks. Researchers therefore are focusing on specific
techniques to defend SCADA systems in depth. For ex-
ample, Chen et al. [8, 9] adopted the idea of autonomic
computing and created self-protecting systems that can
estimate known attacks before they impact devices in
the network. If an attack bypasses an Intrusion De-
tection System (IDS), a second line of defense provides
patterns of known attacks to an Intrusion Response Sys-
tem (IRS). A controller in the IRS evaluates candidate
protection mechanisms considering pre-defined criteria
and then selects the optimal protection mechanisms to
regulate system behavior back to normal. Unknown at-
tack patterns were investigated by an online-learning
module and were sent to the IRS similar to the known
attack scenario. As the result, the self-protecting sys-
tems were validated to protect SCADA systems against
both known and unknown attacks in near real-time with
little or no human intervention.
Rule-based signature techniques are commonly used

to detect SCADA-specific cyber-attacks. Particularly,
this technique is often adopted to detect those cyber-
attacks that interrupt, fabricate, intercept or modify
communication messages between the HMI and PLC. H.
Bao et al. [10] proposed a behavior rule-based method-
ology monitoring devices in the smart grid for insider
threat detection. Results showed that this approach
could detect abnormal behaviors in pervasive smart grid
applications. However, the number of rules for detect-
ing polymorphic and metamorphic malware can be ex-
tremely large. Thus, a more e�cient approach must be
developed to speedup the detection and enhance accu-
racy.
The objective of this research paper is to prove the

concept that cyber-attacks can be detected by using
power usage profiles. Similar power-based cyber-attack
detection techniques have emerged for detecting cyber-
attacks in other domains (or computing systems) by col-
lecting power profiles. For example, smartphones with
in-band power collection [11], medical devices with AC
power [12], and software defined radio [13].
J.Ho↵man et al. [11] tried to detect smartphone mal-

ware by analyzing the power consumption of the device.
However, this approach failed due to the noise caused by
unpredictable users and environment interactions. Em-
pirical tests with both artificial and real-world malware
indicated that the additional power consumed by such
apps was too small to be detectable with the mean error-

rates of state-of-the-art measurement tools.
A similar approach was tested on an embedded med-

ical device and a compounder by S. Clark et. al. [12].
Supervised machine learning techniques (i.e., 3-nearest
neighbor, multilayer perceptron, and random forest)
were used to model permissible behavior and detect de-
viations. Experimental results showed that the three
techniques provide high detection rates, between 93.6%
and 94.4%, for detecting di↵erent types of malware.

A power fingerprinting approach was presented by
C. González et al. [13]. This approach relied on ex-
tracting distinctive power consumption signatures and
then used pattern recognition techniques to determine if
they matched expected behaviors. Preliminary results
showed the feasibility of this approach. This research
was expanded, and this method was used by the PFP
firm1, which provides a commercial product that detects
anomalies on a device by analyzing its power consump-
tion.

Our work is di↵erent from C. González et al. [13]. The
primary di↵erence is that we detect cyber-attacks by
collecting and analyzing the internal DC power utiliza-
tion of the compromised devices. Moreover, we monitor
all the rails supplying power to the PLC, whereas they
only monitored power utilization of the central proces-
sor. In our previous work [14], we examined whether
malware (particularly rootkits) generates a detectable
signal in the power consumption of a general-purpose
computer. Unsupervised machine learning techniques
were used to analyze CPU and motherboard power
data measured from the power supply for detecting the
Alureon rootkit with a high detection rate.

In this paper, we monitor internal DC power of a PLC
for identifying di↵erent power profiles when the SCADA
systems were operated normally and maliciously. Our
work was based on the hypothesis that cyber-attacks
would require more of the device’s resources which
would be reflected in power usage. To the best of our
knowledge, this is the first work to collect DC power of
SCADA devices for identifying cyber-attacks.

3. Experimental Design
In this section, we first introduce the SCADA testbed

used for launching experiments and simulating cyber-
attacks. After that, we demonstrate the approach to
monitor PLC power consumption with detailed steps
for hardware configuration. We also discuss the DF-1
protocol, a communication protocol for exchanging mes-
sages between the HMI and PLC, and present the
data frame structure of DF-1 messages. We discovered
several vulnerabilities in the DF-1 protocol, exploited
these vulnerabilities, and successfully compromised the
SCADA testbed system by command injection attacks,
replay attacks and denial of service (DoS) attacks.

3.1 SCADA Testbed Hardware Configuration
The SCADA testbed consisted of two PCs and an

Allen Bradley SLC 5/03 7 slot PLC which was hosted
in a Allen Bradley CM-184 PLC Trainer. The Trainer,

1http://www.pfpcybersecurity.com/

2916



designed for educational purposes, provided a panel of
switches and LED lights wired with relays for interact-
ing with the PLC. One PC was used to establish a com-
munication with the PLC via HMI software. The HMI
software was used to program, monitor, and control the
PLC. The second PC was used to save the data col-
lected by a Data Acquisition System (DAQ). Only four
slots of the PLC were used in our experiments. A de-
scription of each slot is shown in Table 1. Operational
commands and responses were communicated between
the HMI application and the PLC through an RS232
cable. The main components of the SCADA testbed
are shown in Figure 3.

Table 1: PLC 7-Slot description
Slot # Description

1 8K memory SLC-5/03 controller
2 Input interface (8 switches)
3 Output interface (8 LED lights)
4 Input and output interface

(1 switch and 1 LED light)
5-7 Unused

To monitor the power consumption of the PLC, we
probed the power supply unit (PSU) on the PLC printed
circuit board (PCB). We found four power rails in total.
Two +5V rails and one +24V rail are from the back-
plane of the PLC. The other +24V rail is an external
power supply for the output switches. Note that only
one of the +5V rails and one +24V rail were required
to supply the analog I/O modules of the PLC. Based
on the power consumption data we monitored for the
two +5V rails, we determined the +5V rail used by the
CPU board. We plot the figures of power consumption
data for this +5V rail and the +24V rail power supplied
by the backplane of the PLC in Section 5.
We used a 16-bit multifunction data acquisition

(DAQ) device [15] to collect digital power consumption
data of these four rails in real-time. The DAQ provides
power data with timestamps, is able to sample at a rate
of 250KHz, and can monitor up to 16 channels. The
DAQ was attached to the PLC’s power supply through
a DC current sensor board (described later) which pro-
vided both voltage and current data. For these exper-
iments, we only monitored the three PCB voltage rails
(both of the +5V rails and one of the +24V rails). The
other +24V rail was on a di↵erent ground and confused
the results when we included it.
The main challenge we encountered while monitoring

the current consumption of the PLC was that the sen-
sors we used in [14] were not sensitive enough to obtain
clear current signals in the mA range. To address this
challenge, a di↵erent breakout board (INA169 analog
DC current sensor) was used. The INA169 sensor [16] is
a“high-side current monitor”, which means that a shunt
resistor is placed on the positive power rail and mea-
sures the voltage drop across that resistor. This sensor
thus provides both voltage and current data. Figure 1
shows the analog DC current sensor that was used to
obtain the current consumption, while Figure 2 shows

the hardware configuration that was used for our exper-
iments.

Figure 1: INA169
analog DC current
sensor

Figure 2: Hard-
ware configuration

3.2 DF-1 Protocol
The DF-1 protocol is an asynchronous byte-oriented

protocol used to communicate between the HMI and
the PLC via the RS232 link [17]. Figure 3 shows our
complete SCADA testbed. Legitimate users can con-
trol the SCADA testbed by sending commands to the
PLC through the HMI. RSLogix 500 [18] was the HMI
application we used for interacting with the PLC.

Figure 3: SCADA testbed

The data in the messages sent between the HMI and
the PLC were DF-1 protocol hex data in full duplex.
As a consequence, commands sent from the HMI to
the PLC were transmitted as hex bytes in the data-
link layer. To simulate cyber-attacks on the SCADA
testbed, reverse engineering was performed on the hex
byte frames. Figure 4 shows a single data-link layer
command message frame of the DF-1 full duplex pro-
tocol that was transmitted from the HMI to the PLC,
Table 2 shows a description for each field of this mes-
sage. See [17] for more details on the DF-1 protocol.

Our test PLC had a physical key on the front for
switching between Program, Run, and Remote modes.
We assumed this would provide a hard interlock pre-
venting switching modes.

The DF-1 protocol contains commands for switching
modes. An example of a malicious code that could be
used by an attacker to change the PLC Run mode to
Program mode is 0x 10 02 01 00 0f 00 01 00 80 01
10 03 8f 29. An explanation of the message frame can

2917



also be found in Table 2. Note that the highlighted
0x01 character after “FNC” (0x80) is the optional Mode
field. Here 0x01 means changing the current mode to
the Program mode; 0x06 would place the PLC into Run
mode.

Figure 4: DF1 Full duplex data-link layer mes-
sage frame

Table 2: Meaning of DF-1 full duplex data-link
layer message frame

Field/Symbol Meaning/Content Example Packet

DLE STX

Sender symbol
separating the multi
multi-drop header
from data 0x10 0x02

DST
Destination node
for the message 0x01

SRC
Source node for the
message 0x00

CMD Command Code 0x0f
STS Status Code 0x00

TNS
transaction number
(2 bytes) 0x01 0x00

FNC Function Code 0x80

ADDR
Address of memory
location (2 bytes) 0x10 0x03

Size
Number of bytes
to be transferred NA

Data
Data values
transferred by the
message NA

DLE ETX CRC
Sender symbol
terminating a 0x10 0x03 0x8f
message 0x29

CRC
check characters
(2 bytes) 0x8f 0x29

3.3 Vulnerabilities of SCADA Systems
The forms of attacks against SCADA systems are dif-

ferent than those for general PCs. Vulnerabilities resid-
ing in the HMI computer, communication channels be-
tween the HMI and PLC, and software can be exploited
to compromise SCADA systems. Forms of SCADA at-
tacks include:

• Communication Vulnerabilities: Messages sent by
the DF-1 protocol are not encrypted or protected.
Hex byte messages can be easily monitored and
fabricated. Examples of types of communication
vulnerabilities are:

– Sni�ng : A Serial Protocol Analyzer tool
can be used to monitor and capture un-
encrypted communications transmitted be-
tween the HMI and the PLC.

– Command Injection: Attackers send mali-
cious commands to change PLC operations.
As an example, changing the PLC Run mode

to Program Mode can be easily achieved by
sending the message shown in Figure 4.

– Response Injection: Attackers modify the re-
ply messages sent from the PLC to the HMI.
By monitoring normal response messages, at-
tackers could modify the bytes in order to
deceive the HMI as to the PLC’s true status
and vice versa.

– Replay : Attackers send repeated commands
to the PLC in order to control the sys-
tem. Attackers first sni↵ legitimate com-
mands that were sent from the HMI to the
PLC, then record these commands and re-
send them to the PLC in a malicious way.
This can be to confuse or disable the device.

• Spoofing: Introducing software on the controlling
PC that mimics the HMI software.

• Denial of Service: An attacker sends various com-
mands via the RS232 link exhausting the PLC’s
CPU resources.

For our testbed system, as a Response Injection-type
attack, we composed a Python script that masqueraded
as the RSLogix 500 to the PLC with the objective to in-
terject itself in between. As a consequence, the response
messages from the PLC were captured by the Python
script rather than being sent directly to the HMI. This
demonstrated a successful Man-in-the-Middle (MITM)
insertion that would allow the HMI and PLC to be ma-
nipulated independently.

4. Data Collection
To collect precise data, a measurement computing

data acquisition system (DAQ) was used. The DAQ
device collected analog power consumption data with
the help of INA169 sensors, and converted analog data
to digital data which was sent to the data collection
PC running the TraceDAQ Pro application via a USB
cable. TracerDAQ Pro is an out-of-the box virtual in-
strument that displays and analyzes data and general
signals with a customized sampling time [19]. This tool
ran on a separate PC from the one running the HMI
software in order to provide reliability during the ex-
perimentation process. Data was saved as a CSV file.
The sampling time for collecting the power consumption
data for these experiments was one second.

We first collect power consumption data under two
normal scenarios. The first normal scenario had one
closed switch lighting one LED light. The second nor-
mal scenario had one closed switch lighting all eight
LED lights. This was a sanity check that demonstrated
that our power measurement system functioned cor-
rectly and could measure the di↵erence in power be-
tween these two normal scenarios.

The three attack scenarios we tested are command
injection attacks, replay attacks and denial of service
attacks, which were introduced in Section 3.3. For
command injection we remotely changed the operation
of the PLC to switch from run mode to program

2918



mode. This would allow the PLC to be unknowingly
reprogrammed by an attacker with enough knowledge
of the PLC. For the denial of service attack we sent
a large amount of communication packets to exhaust
the PLC’s resources. For the replay attack, sequences
of legitimate commands were captured, modified and
repeated to the PLC. Python scripts were written
to simulate these cyber-attacks on the experimental
machine.

5. Experimental Results
As part of the data pre-processing, the voltage and

current for each of the monitored rails were multiplied
to obtain the power consumption of the PLC. The next
step was to compare normal behavior with the abnormal
behavior.
Our primary goal was to prove that there is a de-

tectable di↵erence in the power profile between normal
behavior, termed normal, and behavior when under at-
tacks, termed abnormal. To do this, we plotted the
normal data against the abnormal behavior.

5.1 Analysis for the +5V and +24V Rails
Several comparisons were made as part of our data

analysis. The first scenario tested was to verify the
power consumption of the PLC when one light was
turned on versus when all eight lights of the PLC
Trainer were on.
From the rails that were monitored, the +24V rail

and one of the +5V rails were the ones that showed an
increase in the power usage when all the lights of the
PLC Trainer were cycled. Figure 5 shows a comparison
of the PLC’s power usage for one light versus when all
the lights of the PLC were on for the +24V rail, while
Figure 6 shows the same comparison for one of the +5V
rails.

Figure 5: Comparing PLC’S power usage when
all lights were turned on vs. when one light was
turned on for the +24V rail

As expected, the power usage of the PLC increases
when all eight lights were turned on in comparison to
when only one light was turned on. Note that the +24V
rail monitored is being used by the PLC and is not sup-
plying voltage to the lights themselves. We designed
this scenario as a confirmation of our system to measure

Figure 6: Comparing PLC’S power usage when
all lights were turned on vs. when one light was
turned on for one of the +5V rails

the di↵erence when a larger amount of power (switch-
ing more lights) was obviously occurring. Even in this
nascent phase, this type of comparison could be used
as a second-party verification system for a monitored
SCADA system to assure it is switching as it was de-
signed.

For the cyber-attack scenarios, we compared normal
power usage of the PLC (one light of the PLC was
turned on) with the power usage when cyber-attacks
were simulated. The command injection attack changes
the mode of the PLC from running mode to program
mode. In other words, emulating malicious users at-
tempting to disable a PLC, our Python scripts would,
over a ten second cycle, change the mode from run mode
to program mode after two seconds, then pause for eight
seconds before switching back. Therefore, the PLC was
in the program mode and was waiting for new com-
mands. We did not send new commands, but kept the
PLC waiting for eight seconds and then changed the
PLC mode back to the running mode, in which mode
the PLC performed normally again. This was repeated
and power data was collected. Figure 7 and Figure 8
show a comparison of the PLC’s power usage when one
light was turned on versus the command injection at-
tack for the +24V and +5V rails.

Figure 7: Comparing PLC’S power usage when
one light was turned on vs. command injection
attack for the +24V rail

As we can see from the figures, when the PLC oper-
ated normally, in which case all eight lights were flash-

2919



Figure 8: Comparing PLC’S power usage when
one light was turned on vs. command injection
attack for the +5V rail

ing, the power consumption of the +24V rail was be-
tween 3 to 3.5 milliwatts. When the PLC mode was
changed to the program mode, the power consumption
dropped to 1 milliwatts, which was even lower than the
power consumption of the normal scenario when one
light was turned on. Similar patterns can be found in
Figure 8. This experiment validated that the power con-
sumption feature can be adopted to easily distinguish
normal scenarios and command-injection attacks.
We also simulated a Denial of Service (DoS) attack

and collected power consumption data of the PLC.
In this scenario, malicious users kept sending a large
amount of diagnostic node requests to read a block of
status information from the RAM of PLC. The PLC
was therefore busy with receiving messages and reply-
ing with status information. Since the PLC processor
only allows up to 4,096 inputs and outputs and the
instruction memory capacity is only 8K, the PLC re-
sources were exhausted immediately after DoS attacks
were launched, thus DoS attacks prevented legitimate
usage of the PLC. Figure 9 and Figure 10 show a com-
parison of the PLC’s power usage when one light was
turned on versus +24 and +5 rails power usages when
the PLC was under the DoS attack.

Figure 9: Comparing PLC’S power usage when
one light was turned on vs. DoS for the +24V
rail

From the figures we can see that the PLC power con-
sumption was much higher than the normal scenario.
Although we can distinguish the power profiles of DoS

Figure 10: Comparing PLC’S power usage when
one light was turned on vs. DoS for the +5V
rail

attacks and one light on, when comparing the DoS data
with another normal case when all lights turned on, the
di↵erences are not pronounced.

Finally, we emulated the replay attack. In this sce-
nario, malicious users sni�ng normal commands sent
from the HMI to the PLC and resent them to the PLC
to retrieve useful information. As shown in Figure 11
and Figure 12, replay attack power consumption data is
much higher than the normal case with one light turned
on.

Figure 11: Comparing PLC’S power usage when
one light was turned on vs. replay attack for the
+24V rail

Therefore, we can easily distinguish replay attacks
from the normal scenario. Note that we did not compare
various attack benchmarks but comparing each attack
benchmark with the normal benchmark since this pa-
per aims to prove that there is a detectable di↵erence
between SCADA normal and abnormal operations. In
the future, we will compare attack data and use un-
supervised techniques to identify and classify attacks
regarding to the PLC power consumption.

6. Conclusion
This paper presents how we developed a SCADA

testbed with the objective to detect cyber-attacks by
monitoring and analyzing the power consumption of a
PLC. The power consumption of the PLC was mon-
itored under three attack scenarios: command injec-

2920



Figure 12: Comparing PLC’S power usage when
one light was turned on vs. replay attack for the
+5V rail

tion, DoS, and replay. Results shown that these cyber-
attacks leave a detectable signal on the power consump-
tion of a PLC.
For the cases that were di�cult to distinguish, we plan

to apply new techniques, which we have successfully ap-
plied on general-purpose computers to detect minute
changes in power signals caused by malware. We are
also planning to apply unsupervised machine learning
techniques to discern these signals. Machine learning
can take advantage of the the repetitive nature of PLCs
(i.e., they generally perform a few tasks repeatedly) in
normal operation. Furthermore,we will also attempt to
characterize the types of cyber-attacks using machine
learning techniques.

7. References
[1] “Report on Cybersecurity and Critical

Infrastructure in the Americas.” Retrieved in
September 2016 from http://www.trendmicro.com
/cloud-content/us/pdfs/security-intelligence/repo
rts/critical-infrastructures-west-hemisphere.pdf.

[2] “Dell Security Annual Threat Report 2015.”
Retrieved in September 2016 from
https://software.dell.com/docs/2015-dell-securit
y-annual-threat-report-white-paper-15657.pdf.

[3] B. Miller and D. Rowe, “A survey SCADA of and
Critical Infrastructure Incidents,” in Proceedings
of the 1st Annual Conference on Research in
Information Technology, RIIT ’12, (New York,
NY, USA), pp. 51–56, ACM, 2012.

[4] J. Norman, “The First Malware to Spy on and
Subvert Industrial Systems,” 2010.

[5] D. H. J. M. Aleksandr Matrosov,
Eugene Rodionov, “Stuxnet Under the
Microscope,” Epistemics in Science, Engineering
and Technology (ESET), 2011.

[6] H. Stark, “Mossad’s Miracle Weapon: Stuxnet
Virus Opens New Era of Cyber War,” 2011.
Retrieved in August 2016 from
http://www.spiegel.de/international/world/mossa
d-s-miracle-weapon-stuxnet-virus-opens-new-era
-of-cyber-war-a-778912.html.

[7] R. V. Nell Nelson, “The Impact of Dragonfly

Malware on Industrial Control Systems,” SANS
Institute, 2016.

[8] Q. Chen and S. Abdelwahed, “A Model-Based
Approach to Self-Protection in SCADA Systems,”
in 9th International Workshop on Feedback
Computing, USENIX Association, June 2014.

[9] Q. Chen, S. Abdelwahed, and A. Erradi, “A
Model-Based Validated Autonomic Approach to
Self-Protect Computing Systems,” Internet of
Things Journal, IEEE, vol. 1, pp. 446–460, Oct
2014.

[10] H. Bao, R. Lu, B. Li, and R. Deng, “BLITHE:
Behavior Rule-Based Insider Threat Detection for
Smart Grid,” IEEE Internet of Things Journal,
vol. 3, no. 2, pp. 190–205, 2016.

[11] J. Ho↵mann, S. Neumann, and T. Holz, “Mobile
Malware Detection Based on Energy Fingerprints:
A Dead End?,” in Research in Attacks, Intrusions,
and Defenses, Springer, 2013.

[12] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau,
J. Sorber, W. Xu, K. Fu, A. Rahmati,
M. Salajegheh, D. Holcomb, et al., “Wattsupdoc:
Power Side Channels to Nonintrusively Discover
Untargeted Malware on Embedded Medical
Devices,” in HealthTech, 2013.

[13] C. R. A. Gonzalez and J. H. Reed, “Power
Fingerprinting in SDR and CR Integrity
Assessment,” in Military Communications
Conference, 2009. MILCOM 2009. IEEE, pp. 1–7,
2009.

[14] J. M. Hernández, R. Bridges, J. Nichols,
S. Prowell, and K. Goseva-Popstojanova,
“Towards a Malware Detection Framework Based
on Power Consumption Monitoring,” 2016.
Retrieved in September 2016
http://www.ieee-security.org/TC/SP2016/poster
-abstracts/46-poster abstract.pdf.

[15] “USB-1608g Series 16-bit High-Speed
Multifunction DAQ Devices.” Retrieved in August
2016 from http://www.mccdaq.com/usb-data-acq
uisition/USB-1608G-Series.aspx.

[16] “INA169 Analog DC Current Sensor Breakout -
60v 5a Max.” Retrieved in September 2016 from
https://www.adafruit.com/product/1164.

[17] Allen-Bradley, “DF-1 Protocol and Command Set
Reference Manual.” Retrieved in August 2016
from
http://docplayer.net/224339-Allen-bradley-df1-p
rotocol-and-command-set-reference-manual.html.

[18] “Rockwell Software RSLogix 500.” Retrieved in
September 2016 from
http://www.rockwellautomation.com/rockwellsof
tware/products/rslogix500.page.

[19] “TracerDAQ Pro.” Retrieved in August 2016 from
http://www.mccdaq.com/daq-software/tracerda
q-pro.aspx.

2921


