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Abstract 
Z-Wave is low-power, low-cost Wireless Personal 

Area Network (WPAN) technology supporting Critical 
Infrastructure (CI) systems that are interconnected by 
government-to-internet pathways.  Given that Z-wave 
is a relatively unsecure technology, Radio Frequency 
Distinct Native Attribute (RF-DNA) Fingerprinting is 
considered here to augment security by exploiting 
statistical features from selected signal responses. 
Related RF-DNA efforts include use of Multiple 
Discriminant Analysis (MDA) and Generalized 
Relevance Learning Vector Quantization-Improved 
(GRLVQI) classifiers, with GRLVQI outperforming 
MDA using empirically determined parameters.  
GRLVQI is optimized here for Z-Wave using a full 
factorial experiment with spreadsheet search and 
response surface methods.  Two optimization 
measures are developed for assessing Z-Wave 
discrimination: 1) Relative Accuracy Percentage 
(RAP) for device classification, and 2) Mean Area 
Under the Curve (AUCM) for device identity (ID) 
verification.  Primary benefits of the approach 
include: 1) generalizability to other wireless device 
technologies, and 2) improvement in GRLVQI device 
classification and device ID verification performance. 

 

1. Introduction  
 
The Information Technology (IT) centric focus of 

the 2002 E-Government Act was appropriate at that 
time and highlighted the importance of information 
security and privacy [1].  Since then, wireless 
communication and Critical Infrastructure (CI) control 
technologies have changed considerably and e-
government connectivity now exists well below the IT 
internet backbone.  Although remaining IT-centric, 
the US government has more recently acknowledged 
the importance of addressing “rapidly evolving and 
persistent cyber threats” [2].  Perhaps of greatest 
concern from a protection perspective is that the cyber 
threat and attack surface increases as government-to-
internet connectivity (exposure) increases through 
supporting sub-internet pathways comprised of 
wireless WiFi, Z-Wave, and Bluetooth devices. 

Cyber physical systems (CPS) include Wireless 
Personal Area Network (WPAN) devices supporting 

the Internet of Things (IoT) and CI systems [3], [4], 
[5].  Low-cost, low-power Z-Wave devices are among 
the sub-internet WPAN support technologies that 
enable mesh networks comprised of smart devices [6], 
[7]. These networks support data collection and 
control [8] via Supervisory Control and Data 
Acquisition (SCADA) systems [9].  Mesh networks 
are used, for instance, in hospital [10] and electrical 
smartgrid [11] applications, both of which are CI 
elements within e-government and private sectors.  Of 
particular risk in WPAN applications is that a security 
compromise of one device can threaten the security of 
the entire network.  Thus, vetting of individual Z-
Wave device identities is critical for ensuring robust 
security.  This criticality extends beyond CI, with e-
government CPS applications including interactive 
public displays and urban intervention systems 
(participatory and interactive) that relay information 
of interest to the public [12].   
 Of interest here are CPS implementations using Z-
Wave WPAN devices that 1) lack robust security and 
2) which are readily exploitable (hackable) [13], [14].  
Device hardware ID and operating state 
discrimination for CI security applications has been 
reliably demonstrated using Physical (PHY) layer 
security enhancement [4], [9], [15]. As discussed in 
[16], PHY layer security involves either 1) adding 
physically traceable objects to devices [17] or 2) 
Radio Frequency Distinct Native Attribute (RF-DNA) 
fingerprinting based on PHY device emissions which 
overcome limitations of encryption key-based 
measures [18].  RF-DNA differs from typical WPAN 
defense and security strategies that target higher bit-
level network layers [19], i.e., the Network (NWK) 
and Media Access Control (MAC) layers [20].  Using 
underutilized PHY information [18] with NWK and 
MAC information yields a more robust biometric-like 
wireless security strategy that includes [18], [21]:  

1. “Something you know” (NWK – encryption 
keys) 

2. “Something you have” (MAC – MAC address) 
3. “Something you are” (PHY – RF Fingerprints). 

 The inclusion of PHY-based information is most 
important given that replication of known bit-level ID 
credentials is relative easy and enables unauthorized 
network access [21]. The device dependent PHY 
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features capture intrinsic device differences resulting 
from component and production variation [21] and are 
nearly impossible to replicate. The degree of device 
discrimination is captured through statistical methods 
of feature extraction, device classification (one vs. 
many), and device ID verification (one vs. one) [21] 
[22]. Discrimination is assessed using 1) an 
eigenspace based Multiple Discriminant Analysis 
(MDA) classifier, and 2) a nonlinear Generalized 
Relevance Learning Vector Quantization-Improved 
(GRLVQI) neural network based classifier [23].  

Prior research considered GRLVQI for Z-Wave 
devices [21] but used empirical parameter settings 
derived from related ZigBee work [23]. Given that 
algorithmic settings directly impact LVQ performance 
[24], with setting determination being a balance 
between science and art with “no hard-and-fast rules” 
[25], the focus here was on optimizing GRLVQI 
settings for Z-Wave.  This was done using a 5-factor 
full factorial experimental design and Analysis of 
Variance (ANOVA), methods commonly used for 
industrial process improvement [26].  Optimal settings 
were determined using both a spreadsheet search [27] 
and Response Surface Methodology (RSM) [28], [29], 
[30], [31] with nonlinear optimization [32]. The 
experimental design assessment was aided by 
introducing two performance measures, including: 
1) Relative Accuracy Percentage (RAP) for 
classification, and 2) Mean Area Under the Curve 
(AUCM) for device ID verification.   

The remainder of this paper is organized as 
follows. Section 2 provides a summary of Z-Wave 
devices, RF-DNA Fingerprinting, and the MDA and 
GRLVQI classifiers.  Section 3 addresses ANOVA, 
RSM and RAP and AUCM performance measure 
development.  Section 4 presents performance results 
and Section 5 concludes the paper. 

 

2. RF-DNA and Z-Wave  
 

Z-Wave wireless communication devices are 
small, low-cost hardware devices and are generally 
considered less secure than competing WPAN 
technologies given 1) originally lacked built in 
encryption [33] and 2) the proprietary nature of the 
standard making it difficult for third parties to provide 
enhancements [34]. Z-Wave follows a similar ISO 
architecture to ZigBee, and similarly has a predefined 
preamble and Start of Frame (SoF) [35]. General Z-
Wave signal characteristics are known and presented 
in Table 1 along with a conceptualization of Z-Wave 
PHY packet structure in Figure 1.  The preamble 
response (the first 8.3 ms of Z-Wave bursts) was 
considered the Region Of Interest (ROI) for RF-DNA 
extraction.  Z-Wave also includes a payload-based 
home identification (32-bits) and source identification 
(8-bits) [34]. Due to their proprietary nature, further 
knowledge of Z-Wave signal characteristics is limited 

and thus digital forensic analysis, c.f. [36], [37], of Z-
Wave devices remains an emerging area of interest 
[38]. 

Table 1. Z-Wave Characteristics 

FREQUENCY 906 MHz  

BIT RATE 40 Kbits/s 

SECURITY 

None (200 and 300 series 
models) 

AES 128 (400 series models) 

LATENCY ~1000 ms 

RANGE 30-100 m 

MESSAGE SIZE (BYTES) 64 (max) 

 

 
Figure 1. Z-Wave device signal characteristics 

[33] [34] [35]. 
 

2.1. Z-Wave Signal Collection 
 
The work herein considered the Z-Wave dataset 

first presented in [21], where ND = 3 Aeotec Z-Stick 
S2 transmitter devices were considered for analysis 
with all devices serving in “authorized” roles.  A total 
of 230 preamble responses were collected for each 
device at a sample frequency of fs = 2 Msps.  Burst 
detection was accomplished using an amplitude-based 
leading edge detector with a -6 dB threshold [21]. For 
signal collection, each Z-Stick transmitter was located 
10 cm from a vertically-oriented LP0410 log periodic 
antenna, which was connected via a Gigabit Ethernet 
cable directly to the USRP-2921 RF input [21]. The 
resultant collected Signal-to-Noise Ratio (SNR) was 
at SNRC = 24.0 dB. Independent, like-filtered Additive 
White Gaussian Noise (AWGN) was added to 
collected signals to achieve desired operating 

conditions of SNR  [0 24.0] dB  [21], [22]. 
 

2.2. RF-DNA Fingerprint Generation 
 
Consistent with [21], NS = 3 RF-DNA fingerprint 

features (statistics) of variance (𝜎2), skewness (𝛾), 
and kurtosis (𝜅) were computed for NR = 20 
subregions spanning the ROI within NC = 3 Z-Wave 
instantaneous time domain responses of amplitude 
(𝑎), phase (𝜙), and frequency (𝑓). RF-DNA 
fingerprints were generated, as in [21], [22], by 
1) dividing each response into NR contiguous equal 
length bins, 2) calculating Ns features within each bin 
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and across the entire response (NR + 1 total bins), and 
3) computing regional fingerprint vectors as, 

 𝐹𝑅𝑖 = [𝜎𝑅𝑖
2 , 𝛾𝑅𝑖 , 𝜅𝑅𝑖  ]1×3  ,  

(1) 

where 𝑖 = 1,2, … , 𝑁𝑅 + 1.  A fingerprint vector for 
each of the NC characteristics is formed from (1) as,  

 𝐹𝐶 = [𝐹𝑅1
⋮ 𝐹𝑅2

⋯ 𝐹𝑅(𝑁𝑅+1)
 ]

1×𝑁𝑠(𝑁𝑅+1)
  ,  (2) 

which are concatenated to form the final fingerprint 
vector: 

 𝑭 = [𝑭𝒂 ⋮ 𝑭𝝓 ⋮ 𝑭𝒇 ]
1×𝑁𝑠(𝑁𝑅+1)×𝑁𝐶

  .   
(3) 

 For Z-Wave device discrimination assessments, a 
total of NF = 189 features are computed with 
NTRN = 115 Training (TNG) and NTST = 115 Testing 
(TST) observations per device.  The TNG and TST 
data was sequestered during model development to 
avoid the possibility of overfitting. 

 
2.3. Classifier Models 

 
2.3.1.  GRLVQI Classifier Model. The GRLVQI 
classifier employed herein is based on the work in 
[21], [23]. GRLVQI extends the squared-Euclidean 
distance based gradient descent process of Learning 
Vector Quantization (LVQ) with embellishments of a 
sigmoidal cost function [39], [40], relevance learning 
[41], [42], and conscience learning [25], [43], which 
are employed to train prototype vectors to a given 
class label [21], [23]. GRLVQI extends GRLVQ [42] 
with the conscience learning of DeSieno [44], 
improved PV update logic, and a frequency based 
maximum input update strategy [25].   

As with LVQ and various embellishments, 
GRLVQI has five different factors to consider: 
1) Factor A, gradient descent learning rate (𝜖), 
2) Factor B, relevance learning rate (𝜉), 3) Factor C, 
conscience rate 1 (𝛾), 4) Factor D, conscience rate 2 
(𝛽), and 5) Factor E), the number of prototype vectors 
(NPV) instantiated per class.  For all devices used 
herein, prior probabilities were considered equal 
between devices, with the update logic and GRLVQI 
classifier model as described in [18], [23]. 

 
2.3.2.  Multiple Discriminant Analysis (MDA). 
MDA is both readily interpretable and is 
computationally inexpensive. Furthermore, MDA has 
shown significant performance advantages over 
GRLVQI for many RF-DNA Fingerprinting problems 
and it is thus included to provide a baseline 
performance reference, consistent with [23]. MDA is 
a multi-class extension of Fisher’s two class linear 
classifier [23]. MDA considers input fingerprint 
matrix F and NC classes and involves an eigenvector-
based projection of the data relative to a ratio of 

between-group to within-group sum-of-squares, the 
Fisher criterion [45]. 

 

2.4. Quantifying Classification Performance 
 
Classification is considered for “one vs. many” 

scenarios as in [21], [22]. Two performance measures 
are considered: 1) SNR (dB) “Gain” (GSNR) defined as 
the reduction in SNR for two methods to achieve a 
given average percent correct classification (%C) 
[23], and 2) Relative Average Percentage 
(RAP).   Both GSNR and RAP measures consider 
figures with %C on the y-axis and SNR (dB) on the x-
axis, as seen in Figure 2 for both training (TNG) and 
testing (TST) performance of MDA and GRLVQI 
using the Z-Wave dataset.   

 
Figure 2. Z-Wave Testing (TST) and Training 
(TNG) Classification performance for MDA and 

GRLVQI classifier models. 
 

2.4.1.  SNR Gain. GSNR is computed for authorized 
device TNG and TST datasets [23].  For results 
herein, performance using the full dimensional 
(NF =  189) baseline feature set serves as the reference 
with an arbitrary %C ≥ 90% benchmark as in [21], 
[23].  GSNR is interpreted as:  

1) GSNR < 0.0 (negative), a given method achieves 

the same %C as the baseline at a higher SNR, i.e. 

the method underperforms the baseline method. 

2) GSNR = 0.0, a given method achieves the same 

%C as the baseline at the same SNR 

3) GSNR > 0.0 (positive), a given method achieves 

the same %C as the baseline at a lower SNR, i.e. 

the method outperforms the baseline method. 

For Z-Wave results in Figure 2 at %C = 90%, 
GRLVQI outperforms MDA with GSNR = +3.32 dB 
(TST) and GSNR = +3.72 dB (TNG).  Therefore, when 
considering classification performance, GRLVQI is a 
superior classifier for Z-Wave relative to MDA. 
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2.4.2. Relative Accuracy Percentage (RAP).  In 
cases where %C ≥ 90% is not achieved, GSNR is not 
computable and is thus insufficient for some complete 
analysis. Since determining algorithmic settings by 
examining possible setting combinations is of interest 
herein, the possible lack of GSNR can introduce 
instabilities and the RAP measure was introduced 
herein as an alternative measure. 

RAP is generated by 1) computing the Area Under 
Classification Curve (AUCC) values for each method 
via a trapezoidal approximation, and 2) computing the 
RAP of a given method’s 𝐴𝑈𝐶𝐶𝑀(𝑖) relative to the 

baseline AUCCBase method according to 

 𝑅𝐴𝑃 = 𝐴𝑈𝐶𝐶𝑀(𝑖)/𝐴𝑈𝐶𝐶𝐵𝑎𝑠𝑒   . (4) 

RAP provides the fraction of AUCCM(i) with respect to 

AUCCBase and 1) enables a comparison for methods 

not achieving %C ≥ 90%, and 2) reflects performance 

across all SNR.  RAP is interpreted as: 

1) RAP < 1.0, a given method achieves overall 

lower %C than the baseline 

2) RAP = 1.0, a given method achieves overall %C 

comparable to the baseline 

3) RAP > 1.0, a given method exceeds overall 

baseline %C performance.   

Applying the RAP process to results in Figure 2 
yields MDA AUCCBase = 13.32 (TST) and 
AUCCGRLVQI = 15.06 (TST), with a RAP = 1.13. Thus, 
GRLVQI TST performance is better, on average, 
across all operating points when compared to MDA 
(consistent with a visual assessment of Figure 2). 

 
2.4.3. Classification Performance Results Table 2 
presents overall results for the Z-Wave data for both 
MDA and GRLVQI using AUCC, RAP and Gain.  
Overall, Table 2 shows that GRLVQI performs 
consistently better across all operating points when 
compared to MDA for Z-Wave.   
 

Table 2. Baseline Classification Results 

ALG. SET AUCC 

SNR 

(DB) 

AT %C 

= 90% 

RELATIVE 

MDA 

(TST) 

RAP 

RELATIVE 

MDA GSNR 

(TST) AT 

%C = 90% 

MDA 
TNG 16.39 21.23 1.23 +1.68 

TST 13.32 22.91 1.00 0.00 

GRLVQI 
TNG 15.23 19.19 1.14 +3.72 

TST 15.06 19.59 1.13 +3.32 

 

2.5. Quantifying Verification Performance 
 
Device ID verification is considered in a “one 

versus one” (claimed vs actual) ID assessment.  Here, 
a trained classifier is considered along with 
probability mass functions (PMFs) for authorized 
devices [46].  Computed for ID verification are True 
Verification Rate (TVR) and False Verification Rate 

(FVR) for the y-axis and x-axis, respectively, of 
authorized device Receiver Operating Characteristic 
(ROC) curves [46].  Two measures are considered 
herein to quantify verification performance: percent 
authorized [21], [22], and mean AUC (AUCM). 

 
2.5.1. Percentage Authorized (%Aut).  Consistent 
with [21], [22], ID verification performance is 
commonly evaluated by a percentage correctly 
authorized from a binary grant/deny network access 
decisions based on a verification criteria, e.g. 
TVR ≥ 90% at FVR ≤ 10%. Figure 3 presents analysis 
based on this threshold (denoted by dashed red lines) 
for GRLVQI at SNR = 20 dB, with solid black lines 
indicate successfully achieving this threshold and 
dashed grey lines indicate a failure to achieve this 
threshold. Overall results in Figure 3 show 
%Aut = 1/3 = 33.33% success.   

 
Figure 3. Example Z-Wave Authorized Device ID 

Verification performance at SNR = 20 dB for 
GRLVQI. 

 
2.5.2. Verification Mean AUC (AUCM).  Percentage 
authorized (%Aut) reflects coarse sampling, e.g. 

ND = 3 devices %Aut  [0, 33, 66, 100], and does not 
distinguish between perfectly verified results (a ROC 
Area Under the Curve (AUC) of AUC = 1.0) and 
results that merely achieve the TVR > 90% at 
FVR < 10%.  Therefore, AUCM is proposed as an 
alternative verification performance measure.  This 
involves computing the AUC for each ROC curve, 
one curve is associated with one device, and then 
computing the mean of all curves considered. 

 
2.5.3. Verification Performance Results  
 

Table 3 presents verification results via %Aut, 
AUC and AUCM at SNR = [18, 20, 22] dB; further 
verification results will only be considered herein for 
SNR = 20dB (the SNR at which GRLVQI achieves 
%C = 90%). As seen in the %Aut column Table 3, the 
%Aut rate involves dichotomization, c.f. [47], 
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whereby the continuous response of the ROC curve is 
made discrete, which introduces issues related to 
resolution, c.f. [48], [49], [50], and optimization of a 
dichotomous response variable is nontrivial, c.f. [51], 
[52].  When examining the continuous AUC values, 
one can notice slight differences and thus optimization 
relative to a continuous variable is preferred.   

  

Table 3. Baseline Verification Results 

 

3. Analysis of Variance and GRLVQI 
Optimization Considerations 
 

Due to the small size of the Z-Wave dataset, it is 
intuitive that linear methods (MDA) underperform 
nonlinear methods (GRLVQI). However, determining 
appropriate settings is critically important for Z-Wave 
analysis via GRLVQI since this data is associated 
with unknown operating characteristics. However, 
determining appropriate LVQ algorithm settings is a 
largely unexplored domain; herein, a second-order 
RSM model will be considered to solve for optimal 
algorithmic settings where the target are the 
dependent variables (RAP or AUCM). 

 

3.1. Analysis of Variance (ANOVA) 
 
General linear models, e.g. ANOVA and linear 

regression, work to understanding variability of data 
through sums of squares [28]. Factorial experiments 
consider all combinations of different factors and 
levels to understand significance of factors relative to 
the response and the interaction of factors [28]. 
Herein, a factorial experiment for the 5 GRLVQI 
algorithmic settings is proposed, ANOVA responses 
will be considered as RAPTNG, RAPTST and AUCM. 

 

3.2. Response Surface Methodology (RSM) 
 

RSM extends ANOVA by considering an ANOVA 

model with both squared terms and two-way 

interactions: 

 
𝐽(𝑥) = 𝛣0 + ∑ 𝐵𝑖𝑥𝑖

𝑠
𝑖=1 + ∑ 𝐵𝑖,𝑗𝑥𝑖𝑥𝑗

𝑠
𝑖,𝑗,𝑖=1 +

∑ 𝐵𝑖,𝑖𝑥𝑖
2𝑠

𝑖,𝑗,𝑖=1  , 
(5) 

where 𝑠 represents the number of factors, 𝛣 terms are 
coefficients solved for via a general linear model, and 
x represents a given factor [53]. 

3.3. GRLVQI Algorithmic Settings 
 
To consider a full factorial model, appropriate 

minimum and maximum values for GRLVQI 

algorithmic settings must be developed. However, 

little has been published about LVQ algorithmic 

settings beyond 1) the general hierarchy of 0 ≤
 𝜉(𝑡) ≤ 𝜖(𝑡) ≤ 1  for relevance-based LVQ methods 

[54], 2) specific guidelines for specific applications, 

e.g.  [55], [56], and 3) learning rate convergence 

methods, e.g. [55].  Additionally, appropriately 

specifying NPV is also critical to avoid overfitting 

and/or poor performance [57].   

A few considerations were made in determining 

ranges for appropriate settings. The operational design 

points for each factor appear in Table 4 where the 

baseline settings, coded as “0”, are baseline GRLVQI 

settings used by [23], [58]. The high (+) and low (–) 

settings in Table 4 were determined by 1) taking 

magnitudes of 10 times above (+) and below (–) the 

learning (Factor A) and relevance (Factor B) rates, 

2) conscience rate limits were determined by 

considering the extreme settings explored in [59], and 

3) PV limits were found by going 30% above and 

below the baseline.   

 

Table 4. Experimental Design Region for 

GRLVQI 
 FACTORS 

 A B C D E 

LEVEL 
LEARN. 

RATE (𝜖) 

REL. 

RATE (𝜉) 

CONSC. 

RATE 1 

(𝛾) 

CONSC. 

RATE 2 

(𝛽) 

NPV 

– 0.0025 0.0005 0.5 0.15 7 

0 0.025 0.005 2.0 0.35 10 

+ 0.25 0.05 4.5 0.55 13 

 

4. GRLVQI Optimization Framework  
 

Results were generated using GRLVQI with THE 
Z-Wave datasets for all 3

5
 = 243 combinations of a 

full factorial design using values in Table 4. To 
determine optimal settings, two approaches were 
considered: 1) a spreadsheet search of the full factorial 
results to find the maximum classification and 
verification performance and 2) employing nonlinear 
optimization methods to find potential optimal 
settings within the full factorial settings. Sequestered 
TST data was used to validate the settings in a process 
similar to that of [60]. 

 

4.1. Spreadsheet Search 
 
 A spreadsheet search, consistent with [27], was 

performed to find the highest performing results, and 
resultant settings, from the experimental design. The 
highest performing results were found for: 1) TNG 

METHOD 
SNR 

(DB) 

% 

AUT  
AUC1 AUC2 AUC3 AUCM 

MDA 

18 100 0.978 0.974 0.978 0.977 

20 100 0.978 0.957 0.978 0.971 

22 100 0.978 0.978 0.978 0.978 

GRLVQI 

18 0 0.849 0.902 0.945 0.899 

20 33 0.890 0.937 0.981 0.936 

22 66 0.944 0.961 0.992 0.966 
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results, 2) TST results, and 3) AUCM results. When 
considering TNG results, the highest performance was 
found with Factor A, Factor B, and Factor C at the 
highest setting, Factor D at its mid-range setting, and 
Factor E its lowest setting.  For TST results, the 
highest performance was found with Factor A and 
Factor C at their highest settings, Factor B at its mid-
range setting, and Factor D and Factor E at their 
lowest settings.  For verification AUCM  results, the 
highest performance was found with Factor A and 
Factor B at their  highest settings, Factor C and 
Factor D at mid-range settings, and Factor E at its 
lowest setting.   

 

4.2. Constrained Nonlinear Optimization 
 
 One limitation of the spreadsheet search is that it 

only finds best results in explored combinations. To 
find optimal algorithmic settings within the design 
space, the full factorial results were considered with 
RSM. First, an ANOVA model was computed for 
classification (RAPTST and RAPTNG) and verification 
(AUCM). Next, the statistically significant (α = 10) 
features were selected and a second ANOVA model, 
with only the selected factors, was then created. The 
second ANOVA model was optimized consistent with 
[32]; the optimization process employed constrained 
nonlinear optimization (interior point optimization), 
consistent with [61], and the results provided optimal 
GRLVQI settings. 

 
4.2.1. ANOVA and RSM Results. Table 5 presents 
the ANOVA table for the model, error or residuals, 
and total Sum of Squares (SoS). The model is further 
broken down by each model factor (main effects and 
2

nd
 order interaction) along with its SoS and p-value. 

Although Degrees of Freedom (DoF), Mean Squares, 
and F0 are not shown in Table 4, these are easily 
recomputed due to the underlying relationships: 1) 
each main effect and each interaction has one DoF 
each, 2) Mean Squares (MS) for a factor are MSFactor 
= SoS / DoF, and 3) factor F0 is computed as F0 = 
MSFactor / MSError   [28]. 
 
4.2.2. Sequential Quadratic Programming (SQP).  
A majority voting approach was applied to the 
ANOVA models in Table 5 to determine which 
features to consider for further analysis. Thus, features 
that were on majority statistically significant (dark or 
light gray shading) were retained and further ANOVA 
models were computed. Constrained minimization 
(target values were negated since maximization is 
possible by minimizing a negation) was considered 
where a finite-difference approximation was 
computed by starting with an initial estimate (the 
baseline GRLVQI settings). The relationship between 
variables was optimized via SQP wherein a line 
search was employed [61].  

 The minimization was constrained between the 
minimum and maximum values seen in Table 4 to 
avoid computing values outside those explored (e.g. 
unbounded optimization yielded settings far outside 
the design space, with magnitudes ranging from 10

13
 

to 10
42

). The optimal solution was then computed for 
each factor level with the resultant optimal 
algorithmic settings for each factor are presented in 
Table 6 along with performance results. Optimization 
was considered individually for maximum RAPTST, 
RAPTNG, and AUCM.  Of note, some optimization 
solutions had results that were identical to lower or 
upper bounds, denoted with + or –; otherwise, the 
resultant uncoded setting is presented.  

 

Table 5. Analysis of Variance Table from Full 
Factorial Data.  Dark Grey indicates a variable 

significant at 5%, Light Grey indicates a variable is 
significant at 10% and * indicates a p-value < 0.001 

 RAPTNG RAPTST AUCM 

SOURCE 

OF 

VARIANCE 
SOS P SOS P SOS P 

TOTAL 

MODEL 
0.4459 * 0.3631 * 1.5549 * 

𝜖 0.1595 * 0.1474 * 0.7093 * 

𝜉 0.0089 * 0.0113 * 0.0007 0.854 

𝛾 0.0190 * 0.0294 * 0.0001 0.886 

𝛽 0.0055 * 0.0100 * 0.0023 0.745 

𝑁𝑃𝑉 0.0067 * 0.0389 * 0.1333 0.014 

𝜖2 0.0743 * 0.0953 * 0.6106 * 

𝜉2 0.0113 * 0.0154 * 0.0001 0.952 

𝛾2 0.0025 * 0.0012 0.035 0.0592 0.098 

𝛽2 0.0004 0.153 0.0029 0.001 0.0576 0.103 

𝑁𝑃𝑉
2  0.0033 * 0.0236 * 0.0162 0.386 

𝜖 × 𝜉 0.0013 0.009 0.0046 * 0.4835 * 

𝜖 × 𝛾 0.0011 0.020 0.0053 * 0.0105 0.485 

𝜖 × 𝛽 0.0001 0.508 0.0001 0.815 0.0191 0.347 

𝜖 × 𝑁𝑃𝑉 0.0001 * 0.0053 * 0.0219 0.314 

𝜉 × 𝛾 0.0003 0.234 0.0001 0.682 0.0001 0.960 

𝜉 × 𝛽 0.0001 0.485 0.0004 0.223 0.0095 0.508 

𝜉 × 𝑁𝑃𝑉 0.0001 0.479 0.0007 0.119 0.0001 0.968 

𝛾 × 𝛽 0.0001 0.813 0.0001 0.650 0.0019 0.761 

𝛾 × 𝑁𝑃𝑉 0.0001 0.479 0.0005 0.189 0.0004 0.893 

𝛽 × 𝑁𝑃𝑉 0.0023 0.001 0.0032 * 0.0032 0.699 

ERROR 0.0423 * 0.0589 * 4.773 * 

TOTAL 0.4883 * 0.4221 * 6.328 * 

R2 0.913 0.860 0.245 

R2
 ADJ 0.905 0.848 0.178 
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 Evident in Table 6 is that both classification and 
verification performance improve with the 
spreadsheet search and optimized settings when 
compared to baseline GRLVQI settings. Consistency 
across results indicates that using too many PVs is 
detrimental to performance, logically this could 
facilitate over-fitting, and thus the LVQ architecture 
does not need to be too cumbersome. Although 
TVR = 100% for MDA, overall AUCM is consistent 
between MDA and GRLVQI optimized results. 
 

5. Summary and Conclusions  
 
 From an e-government cyber security and 
protection perspective, sub-internet pathways that are 
comprised of common wireless WiFi, Z-Wave and 
Bluetooth devices increase the cyber attack surface 
and risk of service degradation or disruption.  Risk 
mitigation is a top priority when considering that 
hospital, electrical power grid and other CI systems 
are vulnerable.  The focus here is on demonstrating 
measures to enhanced Z-Wave security, with results 
being generally applicable to other WPANs. 

There are four contributions for improving Z-
Wave device discrimination using RF-DNA Finger-
prints, including: 1) introduction of RAP and AUCM 
performance measures, 2) formalization of a DOE 
approach for classifier model development, 
3) demonstration of a GRLVQI optimization 
framework for classification and verification, and 4) a 
GRLVQI and MDA/ML comparative assessment for 
Z-Wave PHY device identification. 
 Herein, a process was presented to find optimal 
algorithm settings by first performing a designed 
experiment (full factorial) and then employing both a 
spreadsheet search and nonlinear optimization. The 
results collectively illustrate that 1) determining 
appropriate GRLVQI algorithm settings is critical (the 

optimized learning rates differed by no more than 5% 
yet produced larger variations in RAP and AUCM), 
and 2) the viability of DOE methods for RF-DNA 

Fingerprinting algorithm optimization. 
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