
Applications of Cohesive Subgraph Detection Algorithms to Analyzing Socio-
Technical Networks

Dan Suthers

Dept. of ICS, University of Hawaii
suthers@hawaii.edu

Abstract
Socio-technical networks can be productively

modeled at several granularities, including the
interaction of actors, how this interaction is mediated
by digital artifacts, and sociograms that model direct
ties between the actors themselves. Cohesive subgraph
detection algorithms (CSDA, a.k.a. “community
detection algorithms”) are often applied to
sociograms, but also have utility in analyzing graphs
corresponding to other levels of modeling. This paper
illustrates applications of CSDA to graphs modeling
interaction and mediated association. It reviews some
leading candidate algorithms (particularly InfoMap,
link communities, the Louvain method, and weakly
connected components, all of which are available in
R), and evaluates them with respect to how useful they
have been in analyzing a large dataset derived from a
network of educators known as Tapped In. This
practitioner-oriented evaluation is a complement to
more formal benchmark based studies common in the
literature.

1. Introduction

Social network analysis has made substantial
contributions to the study of networks of actors
mediated by technology, which we will term “socio-
technical networks”. Much of this work applies
network analytic methods to networks of actor-actor
ties (hence “social network” analysis), but socio-
technical systems may be modeled productively at
other levels of analysis, using different kinds of
networks. A “tie” abstracts away from the actual acts
of the actors involved and the relationships between
these acts that constitute interaction. It also abstracts
away from the means by which the actors interact: the
media involved. Our (see acknowledgements) work has
explored the utility of alternative levels of
representation for understanding a complex socio-
technical system, representations that retain some of
the information that is lost when abstracting to actor-
actor ties. We represent interaction using networks in

which nodes represent actions and directed edges
represent uptake (ways in which the actions are
contingent upon other actions): we call these “uptake
graphs” [24]. We represent mediated associations with
networks in which nodes include both actors and the
media objects through which they interact and directed
edges represent read-write relationships weighted by
frequency: we call these “associograms” [26].

Although we have applied various network
analytic methods to these alternative graph
representations, this paper focuses on the application of
cohesive subgraph detection algorithms commonly
known as “community detection algorithms”. We
prefer to avoid the connotations of the term
“community”, except when claiming that we are
detecting communities as the layman might understand
the term. In addition to finding communities or sub-
communities of actors in actor-tie networks, these
algorithms can also be used on other types of graphs,
such as the two just introduced, to find structures that
represent other phenomena of interest. We show that
cohesive subgraph detection on associograms finds
“communities” of actors and artifacts that are more
strongly affiliated with each other that with others.
This is of interest from an actor-network theory
perspective [13] as we can now find clusters of not
only human but also media actors that participate in
‘assembling’ social phenomena. We also evaluate
cohesive subgraph detection on uptake (interaction)
graphs to find clusters of activity that are more
strongly related to each other, and hence (depending on
the kind of activity represented and the granularity of
analysis) can be interpreted as “sessions” of
interaction.

This paper will illustrate applications of cohesive
subgraph detection algorithms (henceforth CSDA) to
these alternative representations, drawing on a
substantial corpus of participants in a socio-technical
network known as “Tapped-In”. Thus the paper will
exemplify the broader applicability of CSDAs as a
class to different kinds of questions we might ask
about socio-technical systems. Yet there are many
different instances of CSDA, which vary in their

2128

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41412
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

requirements, strengths and indeed quality. This paper
will introduce readers not familiar with the diversity of
these algorithms to some of the leading candidates,
chosen because they perform well in published
benchmark studies, are computationally efficient, and
are available in data analytics packages. We emphasize
algorithms available in igraph (http://igraph.org/),
because this package has a comprehensive collection of
cohesive subgraph analysis algorithms and is
implemented in C, Python and R. For each of the
applications the paper will identify algorithms that
meet basic requirements, and then compare them
empirically on how well they helped analyze relevant
aspects of Tapped-In. The empirical comparisons
offered here will not be systematic and exhaustive as
one might find in papers based on automated
benchmarks (e.g., [10, 17]), but have the advantage
that they illustrate issues and practical value relevant to
those who want to apply analytics to real world
problems.

The remainder of this paper offers a brief survey
of cohesive subgraph algorithms, elaborates on the
levels of analysis of socio-technical networks
discussed above, and introduces the Tapped-In data
corpus used for comparing different algorithms. Then
there is one section for each level/representation, in
which the merits of the candidate algorithms are
compared and illustrated using examples on Tapped-In
data. Finally the paper summarizes recommendations
and directions for further work mandated by the
limitations of this study.

2. Cohesive Subgraph Detection

During the past decade there has been
considerable development of cohesive subgraph or
“community” detection algorithms, resulting in a
substantial literature and diversity of algorithms. The
field is complicated by the fact that there is no single
accepted definition of what constitutes a cohesive
subgraph, although there are several widely used
metrics. This section identifies several types of CSDA
and identifies top contenders in terms of functionality,
performance and availability. See [2, 7, 16] for more
comprehensive reviews.

Connected components are maximal subgraphs in
which every vertex is reachable from every other
vertex. In a directed graph, a strongly connected
component is what one obtains by applying this
definition respecting arc (directed edge) direction,
while a weakly connected component is what one
obtains by ignoring edge direction (treating the graph
as undirected). Connected components are
straightforward to compute, and algorithms for doing
so can be useful, as will be exemplified by one portion

of the case study of this paper. However, this definition
is too strict for most applications. Consider for
example two large groups of people in which everyone
within a group interacts with everyone else but there is
no interaction between groups, so they form two
connected components. If just a single person in one
group now interacts with someone in the other group
by this definition the two groups collapse into one
“community”, violating our intuition that members of a
community should be more uniformly connected with
each other. We want a definition that allows for some
ties between the two large clusters but still recognizes
that most of the connectivity is within-cluster.

Newman’s modularity metric [15] captures this
intuition well. Given a proposed partitioning of a
graph, it provides a measure of the extent to which
edges in the graph connect vertices in the same
partition greater than would be expected at random.
(This is equivalent to measuring the extent to which
edges connect vertices within the partition more than
between partitions.) The assumption that a good
cohesive subgraph detection algorithm should partition
vertices in a manner achieving high modularity scores
has led to algorithms that seek the optimal partitioning
under the modularity metric [17].

Brandes et al. [4] have shown that finding the
partitioning that gives the maximum modularity score
is NP-Hard, which in layman’s terms means that any
possible algorithm for doing so is expected to take a
very long time on large graphs (e.g., days, weeks or
even years depending on graph size). Various faster
approximation methods have been developed (more
than we can review here). An approximation algorithm
by Blondel et al. [3] and known as the Louvain
method for the university at which it was developed is
widely used. This greedy hierarchical algorithm is fast
and produces good quality results in benchmark studies
[10], although it is known to suffer from resolution
problems [11], meaning that it will lump fine-grained
cohesive subgraphs together. This will be another of
the algorithms used this paper.

Modularity is based on a static view of the
structure of a graph. An alternative view is to see the
graph as a structure in which dynamic processes take
place. Examples include communication, flow of
substances, or travel. Information or substances move
throughout the network according to its connectivity.
Cohesive subgraphs can then be defined according to
how the information or substance of interest would
tend to stay within a region of the graph (due to its
high internal connectivity) rather than move between
regions.

Based on these intuitions (and other mathematical
background that cannot be reviewed here), Rosvall and
colleagues [20] have developed a class of cohesive

2129

subgraph detection algorithms called InfoMap.
InfoMap is described metaphorically (this is not the
actual computation done) in terms of a “random
walker” that moves to adjacent vertices chosen
randomly from among the neighbors of its current
location. We can encode the walk by giving each
vertex a binary ID. The description of the walk will
take a certain amount of space to store. We can
compress this description by using a “map”: partition
the graph and give each partition a code. When a
walker enters a partition we give the code, and
thereafter only need to give the shorter local label of
the vertices within the partition. This reduces the
overall length of the coding, but the amount by which
the length of the coding is reduced will be determined
by how well our partition corresponds to regions in
which the random walker spends more ‘time’ (steps)
before exiting. The best partition is one with the
shortest description of the walk. We don’t actually
code walks: this metaphor motivates an information
theoretic approach. A Map Equation L is defined that
predicts the hypothetical encoding length just
described, and the algorithm tries to minimize the
value of L using a hierarchal strategy similar to the
Louvain method. InfoMap has also performed very
well on benchmarks [10], and does not suffer from the
resolution limit of modularity based methods.
However, InfoMap is known to have a field of view
limit that results in over-partitioning of “long-range” or
linear communities into smaller segments [21].

The above algorithms all provide partitions of the
vertices of a graph. That is, each vertex can be in only
one cohesive subgraph or “community”. It is easy to
imagine situations in which this is not a viable
assumption. For example, a person may participate in
professional, recreational, and family communities;
communities that overlap on this person. The
“overlapping community detection” problem is at least
as ill-defined as the community detection problem, as
there are not universally agreed upon criteria for what
constitutes a good solution, but again many algorithms
are proposed and several are promising. Here we
discuss two that are prominent in the literature.

One of the earliest algorithms, by Palla et al. [18],
uses a method known as clique percolation. A k-clique
is a graph of k vertices, all connected to each other.
Clique percolation is based on the intuition that
members of a community need not be connected to
everyone else in the community, but they should be
fully connected to some subset (a clique), and this
subset should be well connected to other cliques. For a
given k, the algorithm finds all k-cliques and then
“percolates” them to find adjacent cliques that overlap
on k-1 members. A given vertex can belong to more
than one clique, and hence multiple communities. The

algorithm can be directed to find clique communities
on cliques of sizes 3 on up, giving a hierarchical
analysis of community structure. Clique percolation
has been applied successfully in various domains [18].
The original version does not work on bipartite graphs,
as bipartite graphs have no cliques above k=2. This
problem has been remedied, but the algorithm remains
computationally slow [2].

Evans & Lambiotte [5] and Ahn et al. [1] take an
alternate approach: compute link communities,
partitions of edges or links rather than vertices. It is
reasonable to assume that edges can be partitioned into
non-overlapping communities, as the placement of
each edge is more highly constrained by the
relationship between vertices rather than the role of a
single vertex. Evans & Lambiotte [5] find link
communities by first constructing a line graph, a graph
in which vertices represent edges in the original graph
and edges are placed between vertices in the line graph
representing edges in the original graph that are co-
incident upon some vertex. Conventional partitioning
is then applied to the line graph. Ahn et al. [1] compute
link communities directly in the original graph as
follows. Two edges are considered for potential
similarity if they share a “keystone” vertex on one end.
The similarity of the two edges is then computed based
on the connectivity of the vertices on the other end,
specifically the extent to which the two vertices
themselves connect to overlapping sets of vertices,
using the Jaccard index or the more general Tanimoto
coefficient in the case of directed weighted graphs (see
supplement to [1]). This similarity metric then drives
traditional agglomerative (bottom-up) hierarchical
clustering of the edges, and a partition density metric
(playing a role similar to modularity) is applied to
choose the granularity of partition. Regardless of the
method used, the resulting link communities then
induce overlapping sets on the vertices, as a vertex can
participate in more than one community if multiple
edges that have been partitioned differently from each
other are incident on the vertex. This approach is
theoretically appealing because it treats relationships as
primary and agents as multidimensional based on the
relationships they participate in.

Various computer-generated graphs have been
used as “benchmarks” to test CSDAs. For example,
Newman & Girvan [17] used randomly generated
graphs in which all of the target subgraphs are of the
same size and all vertices have the same degree. Since
real world networks exhibit power-law distributions of
community size and degree, the LFR benchmark of
Lancichinetti, Fortunato & Radicchi [12] construct
benchmark graphs that follow these distributions.
Benchmark-based tests provide valuable information
about the various proposed algorithms and have been

2130

used by many other authors. The present paper adds a
different perspective to this literature, illustrating
various specific applications of CSDA and comparing
and assessing their practical value in answering
relevant questions using data we have already
analyzed, enabling comparison of the CSD results to
the “ground truth” of our existing understanding.

The algorithms chosen for the following case
study were chosen in part based on their prominence in
the literature and quality of results in prior benchmark
studies. Another criterion was availability of efficient
implementations enabling the experiments described
below and use by readers of this paper. For these
reasons we restrict this study to clustering and cohesive
subgraph detection algorithms available in the igraph
package (http://igraph.org/), which is implemented in
R, Python and C: connected components, Louvain,
InfoMap, and link communities.

3. Levels of Analysis in STNs

This work was motivated in part by a view of
socio-technical networks as complex systems in which
relevant phenomena involve processes at multiple
levels of agency (e.g., individual, small group,
network). Ties arise from many individual events, and
network level phenomena such communities arise from
the aggregation of many ties. We developed a
framework for multi-level analysis known as Traces
[26, 23]. In this framework, logs of events in the
various media are abstracted and merged into a single
abstract transcript of events, and this is used to derive a
series of representations that support levels of analysis
of interaction, affiliations and ties. Three kinds of
graphs model interaction. Contingency graphs record
how events such as chatting or posting a message are
observably related to prior events by temporal and
spatial proximity and by content. There may be
multiple contingencies between any pair of events.
Uptake graphs aggregate the multiple contingencies
between each pair of events into a single directed edge
weighted by a vector of contingency weights, to model
how each act may be “taking up” prior acts [24].
Session graphs are abstractions of uptake graphs: they
cluster events into spatiotemporal sessions with uptake
relationships between sessions. Relationships between
actors and media artifacts are abstracted from
interaction graphs to obtain directed (read/write
relations) weighted (by number of events) bipartite
(actor vs artifact) graphs that we call associograms
[26], Associograms can be folded (factoring out media
artifacts) into traditional sociograms. The entire
process is automated from the log files to the graphs
[23]. Links are retained between these levels of
representation, so that (for example) information

concerning how ties came about is not lost once we
reach the summative sociograms.

We explored the utility of cohesive subgraph
detection algorithms on some of the graphs just
described. CSD was applied to uptake graphs for two
analytic tasks: to find subgraphs that correspond to
spatiotemporal sessions, and to characterize the
internal interactive structure of single sessions. The
suitability of several algorithms (Louvain, InfoMap
and variations on connected components) for the first
analytic task will be discussed in this paper. CSD was
also applied to associograms for community detection,
with the novelty that the communities are formed by
both human and non-human “actants” [13], and we can
characterize the mediated nature of the communities by
examining the nature of the media artifacts involved
[25]. We also discuss four algorithms (Louvain,
InfoMap, clique percolation, and link communities) for
this application in the present paper, and test two of
them. Finally, we applied CSDA to sociograms, but the
analytic value of CSD at this level of representation is
already well known and will not be discussed further in
this paper.

4. Tapped In

We describe the specific setting studied briefly so
that the examples and claims about utility of the
algorithms will make sense to the reader. We have
been studying a data corpus from SRI International’s
Tapped In® (tappedin.org), an international online
network of educators engaged in diverse forms of
informal and formal professional development and
peer support designed by Mark Schlager and
colleagues [6, 22]. Tapped In was motivated by the
desire to understand how to initiate and manage large
heterogeneous communities of educators, how such
communities evolve, and the benefits that participants
derive from their involvement (Mark Schlager,
personal communication). It included activities that
were sponsored by formal organizations mixed with
volunteer driven and other unsponsored activities, in
both synchronous and asynchronous media, with
participants from across all career stages and
occupations related to education. Online activity
included tenant-sponsored courses, workshops,
seminars, mentoring programs, and other collaborative
activities; approximately 40-60 public activities per
month designed by Tapped In members; and
considerable volunteer activity. Data collection
capabilities captured all activity, including chat data,
discussion board interactions, and file sharing. The
trend in current social media is for such data to be
treated as a proprietary asset unavailable to external
researchers, so the Tapped In data corpus offers a

2131

valuable opportunity for study of how large
heterogeneous socio-technical networks evolve. The
case studies in the following sections illustrate
applications of CSDA that we have found to be useful
in understanding Tapped In as a socio-technical system
at several levels of analysis in the Traces framework.

5. Finding Sessions

The analytic task discussed in this section is
segmenting records of interaction over spans of time in
multiple synchronous chat rooms into “sessions”. In
technical terms, the problem is to parse interaction
graphs (such as our uptake graphs) into subgraphs that
correspond to spatiotemporal regions in which
continuous sessions of interaction separable from other
such sessions took place. The internal structure of each
such subgraph can then be analyzed to understand the
nature of the sessions. A secondary task is to construct
an inter-session graph of relationships between
sessions. Interaction graphs consist of vertices for
events (e.g., chat contributions) and edges for
relationships between these events (in our case,
contingencies that have been aggregated into uptake).
CSDA that partition this graph such that the density of
edges within a partition is greater than between
partitions (e.g., as measured by modularity or the map
equation) offer plausible candidates for sessions. The
remaining edges that cross partitions can then be used
to construct the inter-session graph.

Some of the synchronous chat activity in Tapped
In was scheduled in a public calendar of events.
However, we did not want to rely on the calendar, as
the actual interactive session might start and end at
times different than the advertised times, and we also
wanted to also detect opportunistic unscheduled
sessions. Participants would typically begin to show up
in the designated room shortly before the event began
and have informal chat until the start time arrived.
There might be some informal discussion at the end,
after which participants left and the room was
unoccupied. The interaction graphs for scheduled
sessions usually have clear gaps between sessions, but
in a few rooms (particularly the site-wide “Reception”
room), activity is semi-continuous, with indistinct
boundaries between what might be called “sessions”.
We find that each of these kinds of graphs is best
handled with a different CSDA, as discussed below.
All of the tests were on time spans of data that we had
studied extensively previously, so the author was quite
familiar with the sessions that should be detected.

Initially the author explored how to construct an
uptake graph in a manner such that the Louvain
method (as implemented in Gephi, gephi.org) would
partition the graph in a manner that corresponded well

to the scheduled sessions. Uptake graphs were derived
from combinations of contingencies (proximal event,
lexical overlap, address and reply by name, same actor:
see [23]) for one month of chat data. The tests
examined different weightings on these contingencies
to see how the weighting affected the outcome. One of
these contingencies, proximal event (PE 120), is placed
between two events occurring within a 120 second
time window in the same room, with a decaying
weight. The initial finding was that the higher PE was
weighted relative to the others, the better the results.
Therefore a test was run using only the PE
contingency, leading to greatly improved results. That
is, sessions are best detected when looking for clusters
of events close in time and space ignoring other
relationships between events. The only loss is that the
very few sessions that traveled between rooms were
fragmented. There were also a few cases where
manually identified sessions were split in half due to a
long silence, e.g., when teachers were asked to look at
an external web page. Extending the time window of
PE to 240 combined some of these sessions. (These
numbers are clearly specific to the dataset, as different
populations carrying out different tasks would vary in
rate of interaction. For example, [19] found a 30
second window to be sufficient for analyzing student
IRC chats.) But longer windows incur greater
computational cost since there are many more
contingencies in the graph.

The author then realized that the computation was
nearly equivalent to finding weakly connected
components (WCC) on the interaction graph. If only
PE contingencies with a 120 second window are used
and there is typically a gap between sessions during
which a room is empty, there will be no contingencies
between sessions, so a simpler and faster algorithm for
identifying weakly connected components would be
sufficient to identify the majority of sessions correctly.
This motivated inclusion of a WCC algorithm in
subsequent tests. The tests also included InfoMap, a
new algorithm at the time that was receiving a lot of
attention in the literature and that performed well on
benchmarks.

These subsequent tests compared three algorithms
on one day of data, the day that we have studied most
extensively, using uptake graphs based on the PE 120
second contingency alone. The Python implementation
of igraph (http://igraph.org/python/doc/igraph.Graph-
class.html) versions of the algorithms were used:
igraph’s community_multilevel for the Louvain
method, community_infomap for InfoMap, and
components with mode=WEAK for WCC. InfoMap
broke sessions up into roughly equal sized chunks
(2628 clusters with modularity 0.918). Recall that
InfoMap is known to have a field of view limit that

2132

results in over-partitioning of “long-range” or linear
communities: these are precisely the kinds
communities we expect in a directed acyclic graph of
chronologically oriented phenomena such as chats.
Louvain did fairly well, with some small problems that
have known explanations based on issues with the data.
There were 2502 clusters and 7 inter-session edges,
with modularity 0.934. All the intersession edges were
between portions of sessions in the same room where
there was a bit of a lull. WCC did the best in terms of
clean partitioning. There are 2496 clusters with
modularity 0.928, and by definition no inter-session
links. All the sessions inspected had sensible start, end
and contents. Based on these analyses, WCC was
chosen as the best method to quickly identify sessions
for further analysis.

It is not necessary to construct an interaction graph
with PE to identify sessions demarcated by periods of
complete inactivity in chat rooms. To avoid the
computational complexity of constructing a graph and
calling igraph’s components on it, a queue-based
method of assigning sessions according to time gaps
was implemented. A global session ID is set to 0 and
an event queue is created for each room, limited to a
time window (presently 120 seconds). Every time a
new event is seen in a room the algorithm first updates
the queue to flush events older than 120 seconds. If no
events remain in the queue then the global session ID
is incremented, and the room and the new event are
given this new session ID. If events remain in the
queue the present session ID for the room is assigned
to the neevent. Results were verified to be equivalent
to the graph based WCC method.

This simple scheme works well with our data to
single out the majority of sessions, but fails to capture
three kinds of situations of interest. (1) Sometimes two
sessions may be scheduled back to back in the same
room: this would only be detectable by consulting the
calendar or (if none exists) attempting to discern
changes in participants or interaction structure (perhaps
using the Louvain method). (2) There are also a few
cases of sessions crossing rooms. In particular, Tapped
In sometimes ran orientation sessions for newbies, who
might meet in the Reception room and then follow the
facilitator to different rooms. The Louvain method run
on an interaction graph that includes the “same actor”
contingency (which was allowed to cross rooms) was
able to detect these moving sessions and cluster the
events in different rooms as a single session. (3) Some
interaction in Tapped In was opportunistic and ongoing
in a manner not clearly demarcated by gaps. The most
common example of this was the main Reception
room. When users logged in, if they had not changed
their preferences otherwise, they were directed to this
room. Volunteers were almost always present during

waking hours for North America, and spontaneous
conversations ensued (e.g., to greet a known person or
to direct a newbie to the appropriate room for a
scheduled event). Tenant organizations also had their
own receptions and public rooms. Uptake graphs of
interaction in these kinds of settings have indistinct
boundaries between sessions. There might be bursts of
activity when participants log in for a scheduled event,
but there can also be continuous interactions over
periods of time as participants chat while waiting for
new arrivals. For these regions of activity, the Louvain
method was found to be capable of discerning general
periods of discussion (InfoMap being hampered by the
field of view limit on these linear graphs).

In summary, we found that CSD can be used to
identify spatiotemporal regions of activity or
“sessions” in the socio-technical network that form the
settings of events by which phenomena seen at more
abstracted levels of analysis are constructed (e.g.,
actor-actor ties, or online communities). Different
algorithms may be more suited to this task depending
on the desired definition of a setting and how this is
reflected in the structural and attribute characteristics
of the interaction graph. The Louvain method works
well, but for networks that have structured events,
simpler algorithms that detect WCC may apply.

6. Segmenting Sessions

The second application is less developed and will
be discussed only briefly. Once sessions have been
identified in a corpus of data on a socio-technical
network, the analyst may wish to characterize the
internal structure of sessions, perhaps to automate
selecting sessions with certain interactional attributes,
or to study a particular session of interest. CSDA may
have some utility in segmenting sessions into internal
episodes or phases of activity, to the extent that the
graph reflects such phases structurally.

We experimented with chat sessions chosen based
on prior knowledge of their structure. One session took
place during a Tapped In online festival and consisted
of two invited talks, so it is dominated first by one and
then another speaker. If the Louvain method is run
with a slightly coarser resolution (1.5 in Gephi), it
identifies three phases that match the actual
conversation well: the two speakers’ talks and some
concluding discussion. Another session is more
challenging: an interactive discussion between teachers
in a session on mentoring in the schools. The facilitator
plays a strong role in helping the discussion progress
through a series of essential questions. Here the
partitioning appears to have some logic, but we have
not yet done formal evaluation.

2133

A limitation of CSDAs for this application is that
they are based purely on the structure of the graph.
Vital information may be found in the qualitative
nature of the uptake relations (in Traces, these are
encoded in vectors on the edges but are not available to
the CSD algorithms), and other information that is best
found by natural language processing. Successful
application of CSD would require capturing relevant
information more directly in the graph structure.

Another caveat is that if the same CSDA algorithm
used to find sessions is applied within a session it may
have already found all the structure it has to offer.
Therefore, something different may need to be done to
find structure within the sessions, whether (for
example) changing a resolution parameter or applying
a different method altogether.

7. Communities of Actors and Artifacts

At the level of analysis considered in this section,
we are concerned with how actors form communities
in conjunction with the digital artifacts through which
the actors interact. The approach is inspired partly by
Latour’s [13] presentation of actor-network theory,
which emphasizes how human and non-human actors
or “actants” together assemble to form what we call
social phenomena. It is also inspired by Licoppe &
Smoreda’s [14] studies of how the nature of the
medium of interaction chosen by an actor reflects and
reaffirms the nature of that actor’s relationships with
other actors, and our own observation that the same
might be said of how communities (rather than
individuals) choose to interact. To understand socio-
technical networks at this level of analysis, we use
bipartite multimodal directed weighted graphs. They
are bipartite because all edges go strictly between
actors and artifacts, and multimodal because the
artifact nodes can be categorized into different kinds of
mediators that they represent, in our case including
chat rooms, discussion forums and files. Directed
edges (arcs) indicate read/write relations: an arc goes
from an actor to an artifact if the actor has read that
artifact, and from an artifact to an actor if the actor
modified the artifact (the direction indicates a form of
dependency). Weights on the arcs indicate the number
of events on which the arc is based. We refer to these
graphs as associograms to distinguish them within the
more general category of affiliation networks by
highlighting how they capture mediated associations
[26]. Cohesive subgraph detection of associograms is
proposed as a way to identify not only networks of
actors that form communities but also the mediated
nature of those communities.

An associogram was constructed for our Tapped
In data, including vertices for human actors, chat

rooms, discussion forums, and file sharing. Write
relations were derived from chatting in a room, posting
to a forum, or uploading a file (weighted in the former
two cases). Weighted read relations were derived from
being present in a chat room when someone chats,
opening a discussion forum, or downloading a file.
Detection of cohesive subgraphs of this graph
identifies not only communities of participants, but
also whether synchronous chat or asynchronous
discussion forums and file sharing mediate these
communities. Attributes of both the human actors and
the mediating artifacts can be used to identify the real-
world attributes of the communities behind the
partitions. The graphs we are working with are too
large and complex for visualization of the full graph to
be helpful: generally interpretation is done by applying
a filter to inspect the members of one partition at a time
in a tabular display such as Gephi’s Data Laboratory.

In an analysis previously published [25], we
applied the Louvain method to this graph to identify
mediated communities. A contribution of that
publication was to show that cohesive subgraphs
obtained purely through graph-theoretic characteristics
produced partitions that can be interpreted as
corresponding to real-world social activities. (The
paper also characterized the distribution of
communities in Tapped In and their diverse character.)
Former Tapped In staff members manually examined
the attributes of leading human and digital participants
in each partition and identified the known underlying
activities. They were able to form meaningful
interpretations of all partitions inspected.

For example, the largest partition was immediately
identified as consisting of activity around the Tapped
In reception room along with popular After School
Online (ASO) events. Participants would often enter
the reception, interact with volunteer facilitators, and
go to the appropriate room for ASO events. The
reception, various ASO rooms, and facilitators were in
this partition, along with various individuals for whom
this was presumably their primary form of
participation as they were not classified elsewhere.
Another large partition corresponded to an
communities of practice program run by a major
Midwestern school district, a paid tenant of Tapped In.
The artifacts were balanced between chats and
discussions. Interestingly, offline organizations do not
necessarily map one-to-one to online communities.
Another major tenant, a West Coast university with a
teacher education program, manifested in distinct
partitions corresponding to various online classes and
professors working with in-service teachers. Two
offline organizations in a Southern state showed up as
a single online community because they were both

2134

facilitated by the same person and there was known to
be crossover between them.

In addition to reflecting activities that our Tapped
In colleagues were aware of, the analysis also
identified communities that they were unaware of, but
that made sense once they inspected the attributes of
the participating actors and media (e.g., room
descriptions). The Tapped In colleagues felt that this
would have been a valuable tool when they were
stewarding the site. For example, if a hithero unknown
community was found they could use centrality metrics
to identify key actors and provide these persons with
support.

The results also showed some limitations of
modularity partitioning. The large Reception/ASO
partition actually includes distinct sub communities
holding ASO events in various rooms for specific
topics (e.g., Art, Math, Blogging, Language Arts,
Teacher Training, Web tools, Writing), but they were
apparently bound together by the Reception common
entry point and presence of the same volunteer
facilitators in both the reception and ASO events. The
facilitators themselves were placed in this partition and
so were not present in many other partitions
corresponding to events that they were known to
participate in under various roles. This obscures
important information about who potentially bridges
between sub-communities, providing the Tapped In
network with overall coherence or a “transcendent
community” [8]. We particularly noted this problem
for seven facilitators. Although a comparison of the
quality of partitioning by the Louvain method to
InfoMap would be interesting to see whether InfoMap
more appropriately partitions the first mega-
community, the need for overlapping community
detection is much greater, so we turn instead to this
alternative.

The assumption that each human actor or digital
actant participates in only one community was tenable
when segmenting interaction data into sessions because
the whole point was to identify sets of events that can
be analyzed for their internal structure. In contrast,
with the associogram we are interested in how actors
and actants assemble into communities without this
assumption. Thus, algorithms for finding potentially
overlapping communities in graphs are relevant.

Link communities [1, 5] work efficiently on
bipartite graphs and are appropriate for this
application, not only because (like other overlapping
community algorithms) they allow multiple community
membership, but also because they leverage the
structure of the associogram in the right way. First,
consider the fact that an edge (link) in an associogram
connects an actor to an artifact mediating interaction
with other actors. Thus, basing communities on edges

brings the assemblage of both the actor and artifact into
one community, reflecting the fact that the community
is constructed by the interaction represented by this
assemblage. This addresses the problem we had with
strict partitioning where the mediating artifact (e.g., a
topic room) might end up in one partition and the
relevant actors (e.g., facilitators) in another.
Furthermore, Ahn’s algorithm [1] brings the right
entities together through the computation of the
Jaccard similarity metric. Consider two cases: (1) Two
edges share an artifact as the keystone vertex: The
edges are placed in the same community only if the
actor nodes at the other end are similar, i.e., they have
a high overlap in the nodes to which they connect. This
would mean that the two actors sharing the keystone
artifact also share other artifacts. Their pattern of
mediation is similar, so they are likely to have some
kind of mediated association via the keystone artifact
and all the other ones. Thus, it is appropriate for these
two edges to induce placement of the two actors in the
same community as the mediating artifact. (2) Two
edges share an actor as the keystone vertex: There are
artifacts at the other end, and the two edges are placed
in the same community only if the actors that these
artifacts connect to have high overlap. In other words,
many actors are sharing these artifacts as a means of
interaction. So, putting the edges in the same
community brings together the actor and two of the
artifacts via which the actor interacts with similar sets
of other actors into one community. Thus we expect
link communities to give better results both by telling
us which entities overlap between communities and by
producing more accurate communities overall.

A package called linkcomm is available in R [9],
so link communities meet our criteria of CSDA
available in common analysis packages. However, this
was not available at the time we tested link
communities. Instead, a member of our lab, Anthony
Christe, obtained the C++ and Python versions of the
Ahn algorithm from Yong-Yeol Ahn, and then ported
the C++ version to Java in order to implement some
improvements we needed for data input and output.
Christe’s implementation uses the resulting clusters to
produce overlapping community graphs suitable for
inspection in tools such as Gephi as follows: a vertex
for each link community is created, and directed arcs
are created from this vertex to all of the vertices of the
original graph that are incident on the edges in the
given link community. Each vertex is also given an
integer count of the number of communities it
participates in. Then we can use Gephi’s Ego Network
filter to inspect each community by choosing the
community node as the ego with a distance of 1.
Entering Gephi’s Data Laboratory with Visible Graph
Only checked in Configuration, we have a table of all

2135

members of the community. Vertex attributes from the
original graph are transferred to this new graph as well
to aid in the interpretation. A known issue with link
communities is that it produces large numbers of small
communities, some of which consist of single edges.
This long tail can be ignored and we focus on the
larger vertex communities induced by link
communities.

The link community results allow actors and
artifacts to be assigned to multiple cohesive subgraphs,
enabling us to identify those that bridge communities.
As expected, the two most active volunteer facilitators
are each found in hundreds of link communities, and
the other known facilitators also show up in about a
hundred each. The associogram representation also lets
us identify media actants that participate in multiple
communities. As expected, the Tapped In Reception
room is involved in hundreds of communities,
reflecting its role for a way station onto other activities,
and the ASO room, the location of multiple scheduled
events, appears in dozens of communities. Other less
expected community bridging actants were also
identified, including facilitator offices, two public
discussion forums, and a third floor reception room.

Turning now to the clusters themselves, the large
cluster that absorbed the Tapped In Reception,
facilitators, and ASO has been broken up. The largest
cluster includes only the Tapped In Reception, the
facilitators, and large numbers of other actors (10234
of the 17619 actors in the data). This appears to be the
“chatting in reception community”. Now the After
School Online activity and other activity associated
with facilitator offices has been separated out. The
well-defined partitions from the Louvain analysis have
corresponding clusters based on link communities. For
example, we see clusters for the previously mentioned
Midwestern community of practice program, another
for the two organizations in a southern state, and again
multiple clusters for educators in the Western
university running classes. We have not yet undertaken
a systematic comparison of the Louvain and link
community clusters because interpretation is time
consuming, but all indications are that the link
community clusters are equally interpretable and find
similar important communities.

This work shows that CSD on graphs that
represent directed weighted mediated associations
between actors and the media via which they interact
can find not only communities of actors but also
identify the nature of their interaction (e.g.,
synchronous or asynchronous, and whether affiliated
with an organization). Although the Louvain method of
CSD by modularity partitioning used in [25] enabled
us to identify the presence of communities in a
network, accurate identification of individual

participation and especially of individuals who bridge
communities (quite important for those managing the
network) requires overlapping community detection.
This section made a theoretical argument that the link
community algorithm of Ahn et al. [1] is particularly
suited to the associogram structure, and summarized
results showing that such an algorithm identifies
individuals bridging communities and shows promise
for more refined clustering of a giant partition from the
Louvain analysis.

8. Conclusions

Socio-technical networks are complex systems,
with relevant processes and phenomena occurring at
multiple granularities from individual through small
group to network levels of agency, and mediated by
multiple digital artifacts. Understanding such systems
requires more than summary representations such as
actor-tie sociograms. We developed a hierarchical
analytic framework called Traces to help address this
problem. Each level of analysis uses different graph
representations to capture phenomena of interest. This
paper adds to the literature on understanding socio-
technical networks by showing how cohesive subgraph
detection on these graphs can expose useful structural
information.

The paper also adds to the literature on
“community detection” or cohesive subgraph detection
algorithms (CSDA). Although it is already well known
that CSDA can be applied to graphs representing a
variety of phenomena, the present paper describes and
illustrates further applications of CSDA, and also
provides a practitioner-oriented guide to which CSDA
algorithms may be useful for which applications,
complementing the more abstract benchmark literature.

The paper outlined several investigations, each of
which can be taken further and some of which are in
progress for future publication. Other algorithms can
be investigated for session detection in graphs that lack
discrete boundaries required by the WCC algorithm.
The area needing the most work within the Traces
framework is the construction of uptake graphs that
make the structure of a session structurally apparent.
We have yet to evaluate InfoMap in comparison to the
Louvain method with ground-truthed community data
using the Tapped-In associograms, and a more
systematic ground-truthed comparison to overlapping
communities induced by link communities is required
as well. Rather than evaluating new algorithms only on
abstract benchmarks, we advocate considering how
they fare on specialized graphs constructed to answer
questions of interest to those who study socio-technical
networks, and then evaluating the algorithms using real

2136

world data for which some of the painstaking work of
constructing “ground truth” has been done.

9. Acknowledgements

Many thanks to Anthony Christe, Kar-Hai Chu, Nathan
Dwyer and Devan Rosen for their collaboration on this
project; Mark Schlager, Patti Schank and Judi Fusco of
SRI for sharing their data and expertise; and the
reviewers for excellent suggestions for a longer version
of this paper. This work was partially supported by
NSF Award 0943147.

10. References

[1] Y.-Y. Ahn, J. P. Bagrow and S. Lehmann, Link
communities reveal multiscale complexity in networks,
Nature, 466 (2010), pp. 761-765.

[2] A.-L. Barabási, Network Science, Cambridge University
Press, 2016.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E.
Lefebvre, Fast unfolding of communities in large
networks, Journal of Statistical Mechanics: Theory and
Experiment, doi:/10.1088/1742-5468/2008/10/P10008
(2008).

[4] U. Brandes, D. Delling, M. Gaertler, R. Görke, M.
Hoefer, Z. Nikoloski and D. Wagner, On modularity
clustering, IEEE Transactions on Knowledge and Data
Engineering, 20 (2008), pp. 172-188.

[5] T. S. Evans and R. Lambiotte, Line graphs, link
partitions, and overlapping communities, Physical
Review E, 80 (2009), pp. 016105-1-8.

[6] U. Farooq, P. Schank, A. Harris, J. Fusco and M.
Schlager, Sustaining a community computing
infrastructure for online teacher professional
development: A Case Study of Designing Tapped In,
Computer Supported Cooperative Work, 16 (2007), pp.
397-429.

[7] S. Fortunato, Community detection in graphs, Physics
Reports, 486 (2010), pp. 75-174.

[8] S. Joseph, V. Lid and D. D. Suthers, Transcendent
Communities, in C. Chinn, G. Erkens and S.
Puntambekar, eds., The Computer Supported
Collaborative Learning (CSCL) Conference 2007,
International Society of the Learning Sciences, New
Brunswick, 2007, pp. 317-319.

[9] A. T. Kalinka, The generation, visualization, and
analysis of link communities in arbitrary networks with
the R package linkcomm, Cran R Project, 2014.

[10] A. Lancichinetti and S. Fortunato, Community detection
algorithms: A comparative analysis, Physical Review E,
80 (2009), pp. 056117-1-11.

[11] A. Lancichinetti and S. Fortunato, Limits of modularity
maximization in community detection, Phys. Rev. E, 84
(2011), pp. 066122.

[12] A. Lancichinetti, S. Fortunato and F. Radicchi,
Benchmark graphs for testing community detection
algorithms, Physical Review E, 78 (2008), pp. 046110-
1-5.

[13] B. Latour, Reassembling the Social: An Introduction to
Actor-Network-Theory, Oxford University Press, New
York, 2005.

[14] C. Licoppe and Z. Smoreda, Are social networks
technologically embedded? How networks are changing
today with changes in communication technology,
Social Networks, 27 (2005), pp. 317-335.

[15] M. E. J. Newman, Mixing patterns in networks, Physical
Review E, 67 (2003), pp. 026126.

[16] M. E. J. Newman, Networks: An Introduction, Oxford
University Press, 2010.

[17] M. E. J. Newman and M. Girvan, Finding and
evaluating community structure in networks, Physical
Review E, 69 (2004), pp. 026113-1-15.

[18] G. Palla, I. Derényi, I. Farkas and T. Vicsek,
Uncovering the overlapping community structure of
complex networks in nature and society, Nature, 435
(2005), pp. 814-818.

[19] D. Rosen and M. Corbit, Social network analysis in
virtual environments, Proc. 20th ACM conference on
Hypertext and hypermedia (HT '09), ACM, New York,
NY, 2009, pp. 317-322.

[20] M. Rosvall, D. Axelsson and C. T. Bergstrom, The map
equation, arXiv:0906.1405v2 [physics.soc-ph] (2009),
pp. 1-9.

[21] M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki and M.
Barahona, Markov dynamics as a zooming lens for
multiscale community detection: non clique-like
communities and the field-of-view limit, PLOS ONE, 7
(2012), pp. e32210.

[22] M. Schlager, J. Fusco and P. Schank, Evolution of an
Online Education Community of Practice, in K.
Renninger and W. Shumar, eds., Building Virtual
Communities, Cambridge University Press, Cambridge,
2002, pp. 129-158.

[23] D. D. Suthers, From micro-contingencies to network-
level phenomena: Multilevel analysis of activity and
actors in heterogeneous networked learning
environments, Proc. Fifth International Conference on
Learning Analytics and Knowledge. ACM, New York,
NY, USA. , ACM, New York, NY, 2015, pp. 368-377.

[24] D. D. Suthers, N. Dwyer, R. Medina and R. Vatrapu, A
framework for conceptualizing, representing, and
analyzing distributed interaction, International Journal
of Computer Supported Collaborative Learning, 5
(2010), pp. 5-42.

[25] D. D. Suthers, J. Fusco, P. Schank, K.-H. Chu and M.
Schlager, Discovery of community structures in a
heterogeneous professional online network, Proc.
Hawaii International Conference on the System
Sciences (HICSS-46), January 7-10, 2013, Grand
Wailea, Maui, Hawai‘i (CD-ROM), Institute of
Electrical and Electronics Engineers, Inc. (IEEE), New
Brunswick, 2013.

[26] D. D. Suthers and D. Rosen, A unified framework for
multi-level analysis of distributed learning in G. Conole,
D. Gašević, P. Long and G. Siemens, eds., Proceedings
of the First International Conference on Learning
Analytics & Knowledge, Banff, Alberta, February 27-
March 1, 2011, ACM, New York, NY, 2011, pp. 64-74.

2137

