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Abstract 
Socio-technical networks can be productively 

modeled at several granularities, including the 
interaction of actors, how this interaction is mediated 
by digital artifacts, and sociograms that model direct 
ties between the actors themselves. Cohesive subgraph 
detection algorithms (CSDA, a.k.a. “community 
detection algorithms”) are often applied to 
sociograms, but also have utility in analyzing graphs 
corresponding to other levels of modeling. This paper 
illustrates applications of CSDA to graphs modeling 
interaction and mediated association. It reviews some 
leading candidate algorithms (particularly InfoMap, 
link communities, the Louvain method, and weakly 
connected components, all of which are available in 
R), and evaluates them with respect to how useful they 
have been in analyzing a large dataset derived from a 
network of educators known as Tapped In. This 
practitioner-oriented evaluation is a complement to 
more formal benchmark based studies common in the 
literature.  

1. Introduction 

Social network analysis has made substantial 
contributions to the study of networks of actors 
mediated by technology, which we will term “socio-
technical networks”. Much of this work applies 
network analytic methods to networks of actor-actor 
ties (hence “social network” analysis), but socio-
technical systems may be modeled productively at 
other levels of analysis, using different kinds of 
networks. A “tie” abstracts away from the actual acts 
of the actors involved and the relationships between 
these acts that constitute interaction. It also abstracts 
away from the means by which the actors interact: the 
media involved. Our (see acknowledgements) work has 
explored the utility of alternative levels of 
representation for understanding a complex socio-
technical system, representations that retain some of 
the information that is lost when abstracting to actor-
actor ties. We represent interaction using networks in 

which nodes represent actions and directed edges 
represent uptake (ways in which the actions are 
contingent upon other actions): we call these “uptake 
graphs” [24]. We represent mediated associations with 
networks in which nodes include both actors and the 
media objects through which they interact and directed 
edges represent read-write relationships weighted by 
frequency: we call these “associograms” [26].  

Although we have applied various network 
analytic methods to these alternative graph 
representations, this paper focuses on the application of 
cohesive subgraph detection algorithms commonly 
known as “community detection algorithms”. We 
prefer to avoid the connotations of the term 
“community”, except when claiming that we are 
detecting communities as the layman might understand 
the term. In addition to finding communities or sub-
communities of actors in actor-tie networks, these 
algorithms can also be used on other types of graphs, 
such as the two just introduced, to find structures that 
represent other phenomena of interest. We show that 
cohesive subgraph detection on associograms finds 
“communities” of actors and artifacts that are more 
strongly affiliated with each other that with others. 
This is of interest from an actor-network theory 
perspective [13] as we can now find clusters of not 
only human but also media actors that participate in 
‘assembling’ social phenomena. We also evaluate 
cohesive subgraph detection on uptake (interaction) 
graphs to find clusters of activity that are more 
strongly related to each other, and hence (depending on 
the kind of activity represented and the granularity of 
analysis) can be interpreted as “sessions” of 
interaction.  

This paper will illustrate applications of cohesive 
subgraph detection algorithms (henceforth CSDA) to 
these alternative representations, drawing on a 
substantial corpus of participants in a socio-technical 
network known as “Tapped-In”. Thus the paper will 
exemplify the broader applicability of CSDAs as a 
class to different kinds of questions we might ask 
about socio-technical systems. Yet there are many 
different instances of CSDA, which vary in their 
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requirements, strengths and indeed quality. This paper 
will introduce readers not familiar with the diversity of 
these algorithms to some of the leading candidates, 
chosen because they perform well in published 
benchmark studies, are computationally efficient, and 
are available in data analytics packages. We emphasize 
algorithms available in igraph (http://igraph.org/), 
because this package has a comprehensive collection of 
cohesive subgraph analysis algorithms and is 
implemented in C, Python and R. For each of the 
applications the paper will identify algorithms that 
meet basic requirements, and then compare them 
empirically on how well they helped analyze relevant 
aspects of Tapped-In. The empirical comparisons 
offered here will not be systematic and exhaustive as 
one might find in papers based on automated 
benchmarks (e.g., [10, 17]), but have the advantage 
that they illustrate issues and practical value relevant to 
those who want to apply analytics to real world 
problems.  

The remainder of this paper offers a brief survey 
of cohesive subgraph algorithms, elaborates on the 
levels of analysis of socio-technical networks 
discussed above, and introduces the Tapped-In data 
corpus used for comparing different algorithms. Then 
there is one section for each level/representation, in 
which the merits of the candidate algorithms are 
compared and illustrated using examples on Tapped-In 
data. Finally the paper summarizes recommendations 
and directions for further work mandated by the 
limitations of this study.  

2. Cohesive Subgraph Detection 

During the past decade there has been 
considerable development of cohesive subgraph or 
“community” detection algorithms, resulting in a 
substantial literature and diversity of algorithms. The 
field is complicated by the fact that there is no single 
accepted definition of what constitutes a cohesive 
subgraph, although there are several widely used 
metrics. This section identifies several types of CSDA 
and identifies top contenders in terms of functionality, 
performance and availability. See [2, 7, 16] for more 
comprehensive reviews. 

Connected components are maximal subgraphs in 
which every vertex is reachable from every other 
vertex. In a directed graph, a strongly connected 
component is what one obtains by applying this 
definition respecting arc (directed edge) direction, 
while a weakly connected component is what one 
obtains by ignoring edge direction (treating the graph 
as undirected). Connected components are 
straightforward to compute, and algorithms for doing 
so can be useful, as will be exemplified by one portion 

of the case study of this paper. However, this definition 
is too strict for most applications. Consider for 
example two large groups of people in which everyone 
within a group interacts with everyone else but there is 
no interaction between groups, so they form two 
connected components. If just a single person in one 
group now interacts with someone in the other group 
by this definition the two groups collapse into one 
“community”, violating our intuition that members of a 
community should be more uniformly connected with 
each other. We want a definition that allows for some 
ties between the two large clusters but still recognizes 
that most of the connectivity is within-cluster.  

Newman’s modularity metric [15] captures this 
intuition well. Given a proposed partitioning of a 
graph, it provides a measure of the extent to which 
edges in the graph connect vertices in the same 
partition greater than would be expected at random. 
(This is equivalent to measuring the extent to which 
edges connect vertices within the partition more than 
between partitions.) The assumption that a good 
cohesive subgraph detection algorithm should partition 
vertices in a manner achieving high modularity scores 
has led to algorithms that seek the optimal partitioning 
under the modularity metric [17].  

Brandes et al. [4] have shown that finding the 
partitioning that gives the maximum modularity score 
is NP-Hard, which in layman’s terms means that any 
possible algorithm for doing so is expected to take a 
very long time on large graphs (e.g., days, weeks or 
even years depending on graph size). Various faster 
approximation methods have been developed (more 
than we can review here). An approximation algorithm 
by Blondel et al. [3] and known as the Louvain 
method for the university at which it was developed is 
widely used. This greedy hierarchical algorithm is fast 
and produces good quality results in benchmark studies 
[10], although it is known to suffer from resolution 
problems [11], meaning that it will lump fine-grained 
cohesive subgraphs together. This will be another of 
the algorithms used this paper.   

Modularity is based on a static view of the 
structure of a graph. An alternative view is to see the 
graph as a structure in which dynamic processes take 
place. Examples include communication, flow of 
substances, or travel. Information or substances move 
throughout the network according to its connectivity. 
Cohesive subgraphs can then be defined according to 
how the information or substance of interest would 
tend to stay within a region of the graph (due to its 
high internal connectivity) rather than move between 
regions.  

Based on these intuitions (and other mathematical 
background that cannot be reviewed here), Rosvall and 
colleagues [20] have developed a class of cohesive 
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subgraph detection algorithms called InfoMap. 
InfoMap is described metaphorically (this is not the 
actual computation done) in terms of a “random 
walker” that moves to adjacent vertices chosen 
randomly from among the neighbors of its current 
location. We can encode the walk by giving each 
vertex a binary ID. The description of the walk will 
take a certain amount of space to store. We can 
compress this description by using a “map”: partition 
the graph and give each partition a code. When a 
walker enters a partition we give the code, and 
thereafter only need to give the shorter local label of 
the vertices within the partition. This reduces the 
overall length of the coding, but the amount by which 
the length of the coding is reduced will be determined 
by how well our partition corresponds to regions in 
which the random walker spends more ‘time’ (steps) 
before exiting. The best partition is one with the 
shortest description of the walk. We don’t actually 
code walks: this metaphor motivates an information 
theoretic approach. A Map Equation L is defined that 
predicts the hypothetical encoding length just 
described, and the algorithm tries to minimize the 
value of L using a hierarchal strategy similar to the 
Louvain method. InfoMap has also performed very 
well on benchmarks [10], and does not suffer from the 
resolution limit of modularity based methods. 
However, InfoMap is known to have a field of view 
limit that results in over-partitioning of “long-range” or 
linear communities into smaller segments [21].  

The above algorithms all provide partitions of the 
vertices of a graph. That is, each vertex can be in only 
one cohesive subgraph or “community”. It is easy to 
imagine situations in which this is not a viable 
assumption. For example, a person may participate in 
professional, recreational, and family communities; 
communities that overlap on this person. The 
“overlapping community detection” problem is at least 
as ill-defined as the community detection problem, as 
there are not universally agreed upon criteria for what 
constitutes a good solution, but again many algorithms 
are proposed and several are promising. Here we 
discuss two that are prominent in the literature.  

One of the earliest algorithms, by Palla et al. [18], 
uses a method known as clique percolation. A k-clique 
is a graph of k vertices, all connected to each other. 
Clique percolation is based on the intuition that 
members of a community need not be connected to 
everyone else in the community, but they should be 
fully connected to some subset (a clique), and this 
subset should be well connected to other cliques.  For a 
given k, the algorithm finds all k-cliques and then 
“percolates” them to find adjacent cliques that overlap 
on k-1 members. A given vertex can belong to more 
than one clique, and hence multiple communities. The 

algorithm can be directed to find clique communities 
on cliques of sizes 3 on up, giving a hierarchical 
analysis of community structure. Clique percolation 
has been applied successfully in various domains [18]. 
The original version does not work on bipartite graphs, 
as bipartite graphs have no cliques above k=2. This 
problem has been remedied, but the algorithm remains 
computationally slow [2].   

Evans & Lambiotte [5] and Ahn et al. [1] take an 
alternate approach: compute link communities, 
partitions of edges or links rather than vertices. It is 
reasonable to assume that edges can be partitioned into 
non-overlapping communities, as the placement of 
each edge is more highly constrained by the 
relationship between vertices rather than the role of a 
single vertex. Evans & Lambiotte [5] find link 
communities by first constructing a line graph, a graph 
in which vertices represent edges in the original graph 
and edges are placed between vertices in the line graph 
representing edges in the original graph that are co-
incident upon some vertex. Conventional partitioning 
is then applied to the line graph. Ahn et al. [1] compute 
link communities directly in the original graph as 
follows. Two edges are considered for potential 
similarity if they share a “keystone” vertex on one end. 
The similarity of the two edges is then computed based 
on the connectivity of the vertices on the other end, 
specifically the extent to which the two vertices 
themselves connect to overlapping sets of vertices, 
using the Jaccard index or the more general Tanimoto 
coefficient in the case of directed weighted graphs (see 
supplement to [1]). This similarity metric then drives 
traditional agglomerative (bottom-up) hierarchical 
clustering of the edges, and a partition density metric 
(playing a role similar to modularity) is applied to 
choose the granularity of partition. Regardless of the 
method used, the resulting link communities then 
induce overlapping sets on the vertices, as a vertex can 
participate in more than one community if multiple 
edges that have been partitioned differently from each 
other are incident on the vertex. This approach is 
theoretically appealing because it treats relationships as 
primary and agents as multidimensional based on the 
relationships they participate in.  

Various computer-generated graphs have been 
used as “benchmarks” to test CSDAs. For example, 
Newman & Girvan [17] used randomly generated 
graphs in which all of the target subgraphs are of the 
same size and all vertices have the same degree. Since 
real world networks exhibit power-law distributions of 
community size and degree, the LFR benchmark of 
Lancichinetti, Fortunato & Radicchi [12] construct 
benchmark graphs that follow these distributions. 
Benchmark-based tests provide valuable information 
about the various proposed algorithms and have been 
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used by many other authors. The present paper adds a 
different perspective to this literature, illustrating 
various specific applications of CSDA and comparing 
and assessing their practical value in answering 
relevant questions using data we have already 
analyzed, enabling comparison of the CSD results to 
the “ground truth” of our existing understanding.  

The algorithms chosen for the following case 
study were chosen in part based on their prominence in 
the literature and quality of results in prior benchmark 
studies. Another criterion was availability of efficient 
implementations enabling the experiments described 
below and use by readers of this paper. For these 
reasons we restrict this study to clustering and cohesive 
subgraph detection algorithms available in the igraph 
package (http://igraph.org/), which is implemented in 
R, Python and C: connected components, Louvain, 
InfoMap, and link communities. 

3. Levels of Analysis in STNs 

This work was motivated in part by a view of 
socio-technical networks as complex systems in which 
relevant phenomena involve processes at multiple 
levels of agency (e.g., individual, small group, 
network). Ties arise from many individual events, and 
network level phenomena such communities arise from 
the aggregation of many ties. We developed a 
framework for multi-level analysis known as Traces 
[26, 23]. In this framework, logs of events in the 
various media are abstracted and merged into a single 
abstract transcript of events, and this is used to derive a 
series of representations that support levels of analysis 
of interaction, affiliations and ties. Three kinds of 
graphs model interaction. Contingency graphs record 
how events such as chatting or posting a message are 
observably related to prior events by temporal and 
spatial proximity and by content. There may be 
multiple contingencies between any pair of events. 
Uptake graphs aggregate the multiple contingencies 
between each pair of events into a single directed edge 
weighted by a vector of contingency weights, to model 
how each act may be “taking up” prior acts [24]. 
Session graphs are abstractions of uptake graphs: they 
cluster events into spatiotemporal sessions with uptake 
relationships between sessions. Relationships between 
actors and media artifacts are abstracted from 
interaction graphs to obtain directed (read/write 
relations) weighted (by number of events) bipartite 
(actor vs artifact) graphs that we call associograms 
[26], Associograms can be folded (factoring out media 
artifacts) into traditional sociograms. The entire 
process is automated from the log files to the graphs 
[23]. Links are retained between these levels of 
representation, so that (for example) information 

concerning how ties came about is not lost once we 
reach the summative sociograms.  

We explored the utility of cohesive subgraph 
detection algorithms on some of the graphs just 
described. CSD was applied to uptake graphs for two 
analytic tasks: to find subgraphs that correspond to 
spatiotemporal sessions, and to characterize the 
internal interactive structure of single sessions. The 
suitability of several algorithms (Louvain, InfoMap 
and variations on connected components) for the first 
analytic task will be discussed in this paper. CSD was 
also applied to associograms for community detection, 
with the novelty that the communities are formed by 
both human and non-human “actants” [13], and we can 
characterize the mediated nature of the communities by 
examining the nature of the media artifacts involved 
[25]. We also discuss four algorithms (Louvain, 
InfoMap, clique percolation, and link communities) for 
this application in the present paper, and test two of 
them. Finally, we applied CSDA to sociograms, but the 
analytic value of CSD at this level of representation is 
already well known and will not be discussed further in 
this paper. 

4. Tapped In 

We describe the specific setting studied briefly so 
that the examples and claims about utility of the 
algorithms will make sense to the reader. We have 
been studying a data corpus from SRI International’s 
Tapped In® (tappedin.org), an international online 
network of educators engaged in diverse forms of 
informal and formal professional development and 
peer support designed by Mark Schlager and 
colleagues [6, 22]. Tapped In was motivated by the 
desire to understand how to initiate and manage large 
heterogeneous communities of educators, how such 
communities evolve, and the benefits that participants 
derive from their involvement (Mark Schlager, 
personal communication). It included activities that 
were sponsored by formal organizations mixed with 
volunteer driven and other unsponsored activities, in 
both synchronous and asynchronous media, with 
participants from across all career stages and 
occupations related to education. Online activity 
included tenant-sponsored courses, workshops, 
seminars, mentoring programs, and other collaborative 
activities; approximately 40-60 public activities per 
month designed by Tapped In members; and 
considerable volunteer activity. Data collection 
capabilities captured all activity, including chat data, 
discussion board interactions, and file sharing. The 
trend in current social media is for such data to be 
treated as a proprietary asset unavailable to external 
researchers, so the Tapped In data corpus offers a 
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valuable opportunity for study of how large 
heterogeneous socio-technical networks evolve. The 
case studies in the following sections illustrate 
applications of CSDA that we have found to be useful 
in understanding Tapped In as a socio-technical system 
at several levels of analysis in the Traces framework. 

5. Finding Sessions  

The analytic task discussed in this section is 
segmenting records of interaction over spans of time in 
multiple synchronous chat rooms into “sessions”. In 
technical terms, the problem is to parse interaction 
graphs (such as our uptake graphs) into subgraphs that 
correspond to spatiotemporal regions in which 
continuous sessions of interaction separable from other 
such sessions took place. The internal structure of each 
such subgraph can then be analyzed to understand the 
nature of the sessions. A secondary task is to construct 
an inter-session graph of relationships between 
sessions. Interaction graphs consist of vertices for 
events (e.g., chat contributions) and edges for 
relationships between these events (in our case, 
contingencies that have been aggregated into uptake). 
CSDA that partition this graph such that the density of 
edges within a partition is greater than between 
partitions (e.g., as measured by modularity or the map 
equation) offer plausible candidates for sessions. The 
remaining edges that cross partitions can then be used 
to construct the inter-session graph.  

Some of the synchronous chat activity in Tapped 
In was scheduled in a public calendar of events. 
However, we did not want to rely on the calendar, as 
the actual interactive session might start and end at 
times different than the advertised times, and we also 
wanted to also detect opportunistic unscheduled 
sessions. Participants would typically begin to show up 
in the designated room shortly before the event began 
and have informal chat until the start time arrived. 
There might be some informal discussion at the end, 
after which participants left and the room was 
unoccupied. The interaction graphs for scheduled 
sessions usually have clear gaps between sessions, but 
in a few rooms (particularly the site-wide “Reception” 
room), activity is semi-continuous, with indistinct 
boundaries between what might be called “sessions”. 
We find that each of these kinds of graphs is best 
handled with a different CSDA, as discussed below. 
All of the tests were on time spans of data that we had 
studied extensively previously, so the author was quite 
familiar with the sessions that should be detected.   

Initially the author explored how to construct an 
uptake graph in a manner such that the Louvain 
method (as implemented in Gephi, gephi.org) would 
partition the graph in a manner that corresponded well 

to the scheduled sessions. Uptake graphs were derived 
from combinations of contingencies (proximal event, 
lexical overlap, address and reply by name, same actor: 
see [23]) for one month of chat data. The tests 
examined different weightings on these contingencies 
to see how the weighting affected the outcome. One of 
these contingencies, proximal event (PE 120), is placed 
between two events occurring within a 120 second 
time window in the same room, with a decaying 
weight. The initial finding was that the higher PE was 
weighted relative to the others, the better the results. 
Therefore a test was run using only the PE 
contingency, leading to greatly improved results. That 
is, sessions are best detected when looking for clusters 
of events close in time and space ignoring other 
relationships between events. The only loss is that the 
very few sessions that traveled between rooms were 
fragmented. There were also a few cases where 
manually identified sessions were split in half due to a 
long silence, e.g., when teachers were asked to look at 
an external web page. Extending the time window of 
PE to 240 combined some of these sessions. (These 
numbers are clearly specific to the dataset, as different 
populations carrying out different tasks would vary in 
rate of interaction. For example, [19] found a 30 
second window to be sufficient for analyzing student 
IRC chats.) But longer windows incur greater 
computational cost since there are many more 
contingencies in the graph.  

The author then realized that the computation was 
nearly equivalent to finding weakly connected 
components (WCC) on the interaction graph. If only 
PE contingencies with a 120 second window are used 
and there is typically a gap between sessions during 
which a room is empty, there will be no contingencies 
between sessions, so a simpler and faster algorithm for 
identifying weakly connected components would be 
sufficient to identify the majority of sessions correctly. 
This motivated inclusion of a WCC algorithm in 
subsequent tests. The tests also included InfoMap, a 
new algorithm at the time that was receiving a lot of 
attention in the literature and that performed well on 
benchmarks.  

These subsequent tests compared three algorithms 
on one day of data, the day that we have studied most 
extensively, using uptake graphs based on the PE 120 
second contingency alone. The Python implementation 
of igraph (http://igraph.org/python/doc/igraph.Graph-
class.html) versions of the algorithms were used: 
igraph’s community_multilevel for the Louvain 
method, community_infomap for InfoMap, and 
components with mode=WEAK for WCC. InfoMap 
broke sessions up into roughly equal sized chunks 
(2628 clusters with modularity 0.918). Recall that 
InfoMap is known to have a field of view limit that 
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results in over-partitioning of “long-range” or linear 
communities: these are precisely the kinds 
communities we expect in a directed acyclic graph of 
chronologically oriented phenomena such as chats. 
Louvain did fairly well, with some small problems that 
have known explanations based on issues with the data. 
There were 2502 clusters and 7 inter-session edges, 
with modularity 0.934. All the intersession edges were 
between portions of sessions in the same room where 
there was a bit of a lull. WCC did the best in terms of 
clean partitioning. There are 2496 clusters with 
modularity 0.928, and by definition no inter-session 
links. All the sessions inspected had sensible start, end 
and contents. Based on these analyses, WCC was 
chosen as the best method to quickly identify sessions 
for further analysis.  

It is not necessary to construct an interaction graph 
with PE to identify sessions demarcated by periods of 
complete inactivity in chat rooms. To avoid the 
computational complexity of constructing a graph and 
calling igraph’s components on it, a queue-based 
method of assigning sessions according to time gaps 
was implemented. A global session ID is set to 0 and 
an event queue is created for each room, limited to a 
time window (presently 120 seconds). Every time a 
new event is seen in a room the algorithm first updates 
the queue to flush events older than 120 seconds. If no 
events remain in the queue then the global session ID 
is incremented, and the room and the new event are 
given this new session ID. If events remain in the 
queue the present session ID for the room is assigned 
to the neevent. Results were verified to be equivalent 
to the graph based WCC method.  

This simple scheme works well with our data to 
single out the majority of sessions, but fails to capture 
three kinds of situations of interest. (1) Sometimes two 
sessions may be scheduled back to back in the same 
room: this would only be detectable by consulting the 
calendar or (if none exists) attempting to discern 
changes in participants or interaction structure (perhaps 
using the Louvain method). (2) There are also a few 
cases of sessions crossing rooms. In particular, Tapped 
In sometimes ran orientation sessions for newbies, who 
might meet in the Reception room and then follow the 
facilitator to different rooms. The Louvain method run 
on an interaction graph that includes the “same actor” 
contingency (which was allowed to cross rooms) was 
able to detect these moving sessions and cluster the 
events in different rooms as a single session. (3) Some 
interaction in Tapped In was opportunistic and ongoing 
in a manner not clearly demarcated by gaps. The most 
common example of this was the main Reception 
room. When users logged in, if they had not changed 
their preferences otherwise, they were directed to this 
room. Volunteers were almost always present during 

waking hours for North America, and spontaneous 
conversations ensued (e.g., to greet a known person or 
to direct a newbie to the appropriate room for a 
scheduled event). Tenant organizations also had their 
own receptions and public rooms. Uptake graphs of 
interaction in these kinds of settings have indistinct 
boundaries between sessions. There might be bursts of 
activity when participants log in for a scheduled event, 
but there can also be continuous interactions over 
periods of time as participants chat while waiting for 
new arrivals. For these regions of activity, the Louvain 
method was found to be capable of discerning general 
periods of discussion (InfoMap being hampered by the 
field of view limit on these linear graphs).  

In summary, we found that CSD can be used to 
identify spatiotemporal regions of activity or 
“sessions” in the socio-technical network that form the 
settings of events by which phenomena seen at more 
abstracted levels of analysis are constructed (e.g., 
actor-actor ties, or online communities). Different 
algorithms may be more suited to this task depending 
on the desired definition of a setting and how this is 
reflected in the structural and attribute characteristics 
of the interaction graph. The Louvain method works 
well, but for networks that have structured events, 
simpler algorithms that detect WCC may apply.  

6. Segmenting Sessions  

The second application is less developed and will 
be discussed only briefly. Once sessions have been 
identified in a corpus of data on a socio-technical 
network, the analyst may wish to characterize the 
internal structure of sessions, perhaps to automate 
selecting sessions with certain interactional attributes, 
or to study a particular session of interest. CSDA may 
have some utility in segmenting sessions into internal 
episodes or phases of activity, to the extent that the 
graph reflects such phases structurally.  

We experimented with chat sessions chosen based 
on prior knowledge of their structure. One session took 
place during a Tapped In online festival and consisted 
of two invited talks, so it is dominated first by one and 
then another speaker. If the Louvain method is run 
with a slightly coarser resolution (1.5 in Gephi), it 
identifies three phases that match the actual 
conversation well: the two speakers’ talks and some 
concluding discussion. Another session is more 
challenging: an interactive discussion between teachers 
in a session on mentoring in the schools. The facilitator 
plays a strong role in helping the discussion progress 
through a series of essential questions. Here the 
partitioning appears to have some logic, but we have 
not yet done formal evaluation.  
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A limitation of CSDAs for this application is that 
they are based purely on the structure of the graph. 
Vital information may be found in the qualitative 
nature of the uptake relations (in Traces, these are 
encoded in vectors on the edges but are not available to 
the CSD algorithms), and other information that is best 
found by natural language processing. Successful 
application of CSD would require capturing relevant 
information more directly in the graph structure.  

Another caveat is that if the same CSDA algorithm 
used to find sessions is applied within a session it may 
have already found all the structure it has to offer. 
Therefore, something different may need to be done to 
find structure within the sessions, whether (for 
example) changing a resolution parameter or applying 
a different method altogether.  

7. Communities of Actors and Artifacts  

At the level of analysis considered in this section, 
we are concerned with how actors form communities 
in conjunction with the digital artifacts through which 
the actors interact. The approach is inspired partly by 
Latour’s [13] presentation of actor-network theory, 
which emphasizes how human and non-human actors 
or “actants” together assemble to form what we call 
social phenomena. It is also inspired by Licoppe & 
Smoreda’s [14] studies of how the nature of the 
medium of interaction chosen by an actor reflects and 
reaffirms the nature of that actor’s relationships with 
other actors, and our own observation that the same 
might be said of how communities (rather than 
individuals) choose to interact. To understand socio-
technical networks at this level of analysis, we use 
bipartite multimodal directed weighted graphs. They 
are bipartite because all edges go strictly between 
actors and artifacts, and multimodal because the 
artifact nodes can be categorized into different kinds of 
mediators that they represent, in our case including 
chat rooms, discussion forums and files. Directed 
edges (arcs) indicate read/write relations: an arc goes 
from an actor to an artifact if the actor has read that 
artifact, and from an artifact to an actor if the actor 
modified the artifact (the direction indicates a form of 
dependency). Weights on the arcs indicate the number 
of events on which the arc is based. We refer to these 
graphs as associograms to distinguish them within the 
more general category of affiliation networks by 
highlighting how they capture mediated associations 
[26]. Cohesive subgraph detection of associograms is 
proposed as a way to identify not only networks of 
actors that form communities but also the mediated 
nature of those communities.  

An associogram was constructed for our Tapped 
In data, including vertices for human actors, chat 

rooms, discussion forums, and file sharing. Write 
relations were derived from chatting in a room, posting 
to a forum, or uploading a file (weighted in the former 
two cases). Weighted read relations were derived from 
being present in a chat room when someone chats, 
opening a discussion forum, or downloading a file. 
Detection of cohesive subgraphs of this graph 
identifies not only communities of participants, but 
also whether synchronous chat or asynchronous 
discussion forums and file sharing mediate these 
communities. Attributes of both the human actors and 
the mediating artifacts can be used to identify the real-
world attributes of the communities behind the 
partitions. The graphs we are working with are too 
large and complex for visualization of the full graph to 
be helpful: generally interpretation is done by applying 
a filter to inspect the members of one partition at a time 
in a tabular display such as Gephi’s Data Laboratory.  

In an analysis previously published [25], we 
applied the Louvain method to this graph to identify 
mediated communities. A contribution of that 
publication was to show that cohesive subgraphs 
obtained purely through graph-theoretic characteristics 
produced partitions that can be interpreted as 
corresponding to real-world social activities. (The 
paper also characterized the distribution of 
communities in Tapped In and their diverse character.) 
Former Tapped In staff members manually examined 
the attributes of leading human and digital participants 
in each partition and identified the known underlying 
activities. They were able to form meaningful 
interpretations of all partitions inspected.  

For example, the largest partition was immediately 
identified as consisting of activity around the Tapped 
In reception room along with popular After School 
Online (ASO) events. Participants would often enter 
the reception, interact with volunteer facilitators, and 
go to the appropriate room for ASO events. The 
reception, various ASO rooms, and facilitators were in 
this partition, along with various individuals for whom 
this was presumably their primary form of 
participation as they were not classified elsewhere. 
Another large partition corresponded to an 
communities of practice program run by a major 
Midwestern school district, a paid tenant of Tapped In. 
The artifacts were balanced between chats and 
discussions. Interestingly, offline organizations do not 
necessarily map one-to-one to online communities. 
Another major tenant, a West Coast university with a 
teacher education program, manifested in distinct 
partitions corresponding to various online classes and 
professors working with in-service teachers. Two 
offline organizations in a Southern state showed up as 
a single online community because they were both 
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facilitated by the same person and there was known to 
be crossover between them.  

In addition to reflecting activities that our Tapped 
In colleagues were aware of, the analysis also 
identified communities that they were unaware of, but 
that made sense once they inspected the attributes of 
the participating actors and media (e.g., room 
descriptions). The Tapped In colleagues felt that this 
would have been a valuable tool when they were 
stewarding the site. For example, if a hithero unknown 
community was found they could use centrality metrics 
to identify key actors and provide these persons with 
support.  

The results also showed some limitations of 
modularity partitioning. The large Reception/ASO 
partition actually includes distinct sub communities 
holding ASO events in various rooms for specific 
topics (e.g., Art, Math, Blogging, Language Arts, 
Teacher Training, Web tools, Writing), but they were 
apparently bound together by the Reception common 
entry point and presence of the same volunteer 
facilitators in both the reception and ASO events. The 
facilitators themselves were placed in this partition and 
so were not present in many other partitions 
corresponding to events that they were known to 
participate in under various roles. This obscures 
important information about who potentially bridges 
between sub-communities, providing the Tapped In 
network with overall coherence or a “transcendent 
community” [8]. We particularly noted this problem 
for seven facilitators. Although a comparison of the 
quality of partitioning by the Louvain method to 
InfoMap would be interesting to see whether InfoMap 
more appropriately partitions the first mega-
community, the need for overlapping community 
detection is much greater, so we turn instead to this 
alternative.  

The assumption that each human actor or digital 
actant participates in only one community was tenable 
when segmenting interaction data into sessions because 
the whole point was to identify sets of events that can 
be analyzed for their internal structure. In contrast, 
with the associogram we are interested in how actors 
and actants assemble into communities without this 
assumption. Thus, algorithms for finding potentially 
overlapping communities in graphs are relevant.   

Link communities [1, 5] work efficiently on 
bipartite graphs and are appropriate for this 
application, not only because (like other overlapping 
community algorithms) they allow multiple community 
membership, but also because they leverage the 
structure of the associogram in the right way. First, 
consider the fact that an edge (link) in an associogram 
connects an actor to an artifact mediating interaction 
with other actors. Thus, basing communities on edges 

brings the assemblage of both the actor and artifact into 
one community, reflecting the fact that the community 
is constructed by the interaction represented by this 
assemblage. This addresses the problem we had with 
strict partitioning where the mediating artifact (e.g., a 
topic room) might end up in one partition and the 
relevant actors (e.g., facilitators) in another. 
Furthermore, Ahn’s algorithm [1] brings the right 
entities together through the computation of the 
Jaccard similarity metric. Consider two cases: (1) Two 
edges share an artifact as the keystone vertex: The 
edges are placed in the same community only if the 
actor nodes at the other end are similar, i.e., they have 
a high overlap in the nodes to which they connect. This 
would mean that the two actors sharing the keystone 
artifact also share other artifacts. Their pattern of 
mediation is similar, so they are likely to have some 
kind of mediated association via the keystone artifact 
and all the other ones. Thus, it is appropriate for these 
two edges to induce placement of the two actors in the 
same community as the mediating artifact. (2) Two 
edges share an actor as the keystone vertex: There are 
artifacts at the other end, and the two edges are placed 
in the same community only if the actors that these 
artifacts connect to have high overlap. In other words, 
many actors are sharing these artifacts as a means of 
interaction. So, putting the edges in the same 
community brings together the actor and two of the 
artifacts via which the actor interacts with similar sets 
of other actors into one community. Thus we expect 
link communities to give better results both by telling 
us which entities overlap between communities and by 
producing more accurate communities overall.  

A package called linkcomm is available in R [9], 
so link communities meet our criteria of CSDA 
available in common analysis packages. However, this 
was not available at the time we tested link 
communities. Instead, a member of our lab, Anthony 
Christe, obtained the C++ and Python versions of the 
Ahn algorithm from Yong-Yeol Ahn, and then ported 
the C++ version to Java in order to implement some 
improvements we needed for data input and output. 
Christe’s implementation uses the resulting clusters to 
produce overlapping community graphs suitable for 
inspection in tools such as Gephi as follows: a vertex 
for each link community is created, and directed arcs 
are created from this vertex to all of the vertices of the 
original graph that are incident on the edges in the 
given link community. Each vertex is also given an 
integer count of the number of communities it 
participates in. Then we can use Gephi’s Ego Network 
filter to inspect each community by choosing the 
community node as the ego with a distance of 1. 
Entering Gephi’s Data Laboratory with Visible Graph 
Only checked in Configuration, we have a table of all 
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members of the community. Vertex attributes from the 
original graph are transferred to this new graph as well 
to aid in the interpretation. A known issue with link 
communities is that it produces large numbers of small 
communities, some of which consist of single edges. 
This long tail can be ignored and we focus on the 
larger vertex communities induced by link 
communities.  

The link community results allow actors and 
artifacts to be assigned to multiple cohesive subgraphs, 
enabling us to identify those that bridge communities. 
As expected, the two most active volunteer facilitators 
are each found in hundreds of link communities, and 
the other known facilitators also show up in about a 
hundred each. The associogram representation also lets 
us identify media actants that participate in multiple 
communities. As expected, the Tapped In Reception 
room is involved in hundreds of communities, 
reflecting its role for a way station onto other activities, 
and the ASO room, the location of multiple scheduled 
events, appears in dozens of communities. Other less 
expected community bridging actants were also 
identified, including facilitator offices, two public 
discussion forums, and a third floor reception room.  

Turning now to the clusters themselves, the large 
cluster that absorbed the Tapped In Reception, 
facilitators, and ASO has been broken up. The largest 
cluster includes only the Tapped In Reception, the 
facilitators, and large numbers of other actors (10234 
of the 17619 actors in the data). This appears to be the 
“chatting in reception community”. Now the After 
School Online activity and other activity associated 
with facilitator offices has been separated out. The 
well-defined partitions from the Louvain analysis have 
corresponding clusters based on link communities. For 
example, we see clusters for the previously mentioned 
Midwestern community of practice program, another 
for the two organizations in a southern state, and again 
multiple clusters for educators in the Western 
university running classes. We have not yet undertaken 
a systematic comparison of the Louvain and link 
community clusters because interpretation is time 
consuming, but all indications are that the link 
community clusters are equally interpretable and find 
similar important communities.  

This work shows that CSD on graphs that 
represent directed weighted mediated associations 
between actors and the media via which they interact 
can find not only communities of actors but also 
identify the nature of their interaction (e.g., 
synchronous or asynchronous, and whether affiliated 
with an organization). Although the Louvain method of 
CSD by modularity partitioning used in [25] enabled 
us to identify the presence of communities in a 
network, accurate identification of individual 

participation and especially of individuals who bridge 
communities (quite important for those managing the 
network) requires overlapping community detection. 
This section made a theoretical argument that the link 
community algorithm of Ahn et al. [1] is particularly 
suited to the associogram structure, and summarized 
results showing that such an algorithm identifies 
individuals bridging communities and shows promise 
for more refined clustering of a giant partition from the 
Louvain analysis.  

8. Conclusions  

Socio-technical networks are complex systems, 
with relevant processes and phenomena occurring at 
multiple granularities from individual through small 
group to network levels of agency, and mediated by 
multiple digital artifacts. Understanding such systems 
requires more than summary representations such as 
actor-tie sociograms. We developed a hierarchical 
analytic framework called Traces to help address this 
problem. Each level of analysis uses different graph 
representations to capture phenomena of interest. This 
paper adds to the literature on understanding socio-
technical networks by showing how cohesive subgraph 
detection on these graphs can expose useful structural 
information.  

The paper also adds to the literature on 
“community detection” or cohesive subgraph detection 
algorithms (CSDA). Although it is already well known 
that CSDA can be applied to graphs representing a 
variety of phenomena, the present paper describes and 
illustrates further applications of CSDA, and also 
provides a practitioner-oriented guide to which CSDA 
algorithms may be useful for which applications, 
complementing the more abstract benchmark literature.  

The paper outlined several investigations, each of 
which can be taken further and some of which are in 
progress for future publication. Other algorithms can 
be investigated for session detection in graphs that lack 
discrete boundaries required by the WCC algorithm. 
The area needing the most work within the Traces 
framework is the construction of uptake graphs that 
make the structure of a session structurally apparent. 
We have yet to evaluate InfoMap in comparison to the 
Louvain method with ground-truthed community data 
using the Tapped-In associograms, and a more 
systematic ground-truthed comparison to overlapping 
communities induced by link communities is required 
as well. Rather than evaluating new algorithms only on 
abstract benchmarks, we advocate considering how 
they fare on specialized graphs constructed to answer 
questions of interest to those who study socio-technical 
networks, and then evaluating the algorithms using real 
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world data for which some of the painstaking work of 
constructing “ground truth” has been done.  
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