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Abstract 
 

Viral hashtags spread across a large population of 
Internet users very quickly. Previous studies use 
features mostly in an aggregate sense to predict the 
popularity of hashtags, for example, the total number 
of hyperlinks in early tweets adopting a tag. Since each 
tweet is time stamped, many aggregate features can be 
decomposed into fine-grained time series such as a 
series of numbers of hyperlinks in early adopting 
tweets. This research utilizes frequency domain tools to 
analyze these time series. In particular, we apply 
scalogram analysis to study the series of adoption time 
lapses and the series of mentions and hyperlinks in 
early adopting tweets. Besides continuous wavelet 
transforms (CWTs), we also use fast wavelet 
transforms (FWTs) to analyze the time series. Through 
experiments with two sets of tweets collected in 
different seasons, out-of-sample cross validations show 
that wavelet spectral features can generally improve 
the prediction performance, and discrete FWT yields 
results as good as the more complicated CWT-based 
methods with scalogram analysis. 
 
1. Introduction  
 

The rapid development of information and 
communication technologies (ICTs) enables every 
Internet user to be both an information consumer and a 
producer. Founded on human's nature to connect and 
share, social networking sites and services have 
burgeoned in the past few years. 

Facebook is the world's largest social networking 
site, while Twitter is the largest microblogging site. In 
comparison to Facebook, Twitter allows users to send 
only short messages (tweets), but the application 
devices and channels can be more flexible than 
Facebook. A tweet is a short message containing no 
more than 140 characters in its context.  

Users can embed topical items called hashtags in 
their tweets. A hashtag is a string of characters without 
spaces following the hash sign (#). Hashtags can be 
lexically meaningful or not. Each day, many hashtags 
are created and diffused with tweets. Once created and 

diffused, hashtags may be mutated by new ideas or 
current events and compete with other hashtags for 
users’ attention; some die immediately after creation, 
and others may survive for a longer time and become 
viral at some future time. 

According to Twitter’s own research, tweets with at 
least one hashtag receive 2 times more engagements 
than tweets with no hashtags [1]. Here, engagements 
can be defined as clicks, retweets, replies and favorites. 
Different studies regarding the boosting of engagement 
via hashtags may show the result differently [2], yet 
hashtags are a “hard feature” of Twitter and used with 
photos, links and videos to promote tweets engagement 
[3]. Predicting hashtags' virality at their early age 
allows marketers to design effective marketing 
practices and may have real applications in business. 
The research community has paid much attention to 
tackle this problem and created many interesting 
results. 

Previous research shows that tag content and tweet 
context are useful features to predict a tag’s popularity 
level [4][5]. The embedded network structures of tweet 
adopters are also useful because Twitter’s follow 
network provides a convenient conduit to spread 
hashtags [6]. Other types of tag features may include 
the adoption time series [7], because different adoption 
time patterns indicate different diffusion speeds.  

Like previous research, our goal is to predict the 
popularity level of a hashtag by using its early adoption 
properties. By early, we mean the earliest few tweets 
adopting a tag. Previous studies often use prediction 
features in an aggregate sense, e.g., the total number of 
hyperlinks in early tweets adopting a tag. Since each 
tweet is time stamped, we may decompose this 
aggregate feature into a series of numbers of 
hyperlinks according to timestamps. Thus, fine-grained 
time series data may be obtained. 

Even though fine-grained time series data can be 
obtained via decomposition, they were mostly analyzed 
by using simple statistics such as the mean and 
standard deviation [7]. Notice that these statistics 
cannot capture wavy properties of a time series 
because they are invariant no matter how we rearrange 
the time series. Wavy properties describe energy of 
time series. If we do not consider them, we may lose 
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opportunities to extract valuable features from the fine-
grained time series. 

In order to capture energy features, frequency 
domain tools are often used to analyze time series. 
Wavelet transforms (WTs) were used in [8] to expand 
the adoption time series of [7] in time-frequency 
domain, and wavelet spectrum was extracted and used 
as prediction variables.  

We explore the opportunities of spectral analysis to 
analyze time series decomposed from aggregate 
features that have been used in literature. In particular, 
scalogram analyses are used to analyze spectrum 
obtained from CWTs. Alternatively, discrete FWTs are 
also used to study the time series. 

This paper is organized as follows. Section 2 is 
devoted to a literature review on hashtag popularity 
prediction, frequency domain tools and scalogram 
analysis. Methodology and experimental data sets are 
described in section 3 followed by experimental results 
and discussions in section 4. We conclude the paper 
with remarks in section 5. 
 
2. Literature review 
 

Twitter is the world’s largest microblogging service 
offering both weblog functions and social networking 
features. By following a user, tweets created or 
retweeted by the followee will automatically show up 
in the follower’s home timeline. This follow network is 
a directed network and has made Twitter very different 
from other social networking services such as 
Facebook.  
 
2.1. Hashtags popularity prediction 
 

Like many data mining tasks, the first step in 
predicting the popularity of a hashtag is choosing a 
suitable set of predictors. Unlike data mining tasks 
based on relational databases, there are many ways to 
extract features from hashtags. 

The inherent content of a hashtag is considered to 
be an important factor for its popularity. Content based 
features such as the number of words, lexical items and 
emotional characteristics have been used to study the 
spread of hashtags in Twitter [5]. Contextual features 
from tweets have also been used in literature. Ma et al. 
used fractions of tweets containing URLs, fractions of 
tweets containing mentions (@), and fractions of 
polarized sentiments of tweets as contextual features of 
hashtags in their study [4]. Suh et al. found that the 
numbers of URLs and hashtags in a tweet are strongly 
correlated to the retweetability of the tweet [9].  

Using the follow network, tweets and hashtags may 
be disseminated conveniently. Central dogma in social 

influence theory predicts that influential nodes of a 
network are more likely to spread messages 
successfully, albeit there are many ways to define the 
influential capability. The in-degree (follower) count in 
the Twitter network is arguably the simplest indicator 
to measure influential capability. Weng et al. 
considered the community structure of Twitter 
sociogram in their study [6]. Sociogram is dynamic in 
time and difficult, if not impossible, to obtain in 
Twitter, thus community structures are not considered 
in this study. 

Early popularity of a hashtag is closely related to its 
later popularity [10]. Weng et al. used the early 
adoption time series to predict the popularity of a 
hashtag [7]. However, they considered only the mean 
and standard deviation statistics. Doong adds spectral 
features derived from the Fourier transform (FT) and 
WT of the series [8]. 
 
2.2. Frequency domain analysis 
 

The venerable FT has been used in engineering to 
study waves for a long time. FT converts a time series 
into its frequency domain data. Using a global 
convolution with the basic harmonic functions, FT 
loses time resolution in the transformed domain. Thus, 
with FT we can hear pitches (frequencies) but cannot 
tell when they happen. Short time Fourier transform 
(STFT) with windowing functions has been developed 
to overcome some shortages of FT.  

In order to recover the time resolution in frequency 
domain analysis, WT uses multiple scales of a mother 
wavelet to decompose time series [11]. The output of 
WT is in a time-frequency-amplitude format, whereas 
FT has frequency-amplitude resolution only. WT can 
be divided into the categories of CWT and discrete 
wavelet transform (DWT) depending on whether the 
scaling factor is continuous or not [12]. 

Let )(nψ denote a mother wavelet. The CWT of 
series nx with scale s is given by the formula 
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In the above formula, * indicates the complex 

conjugate and δ is the time difference between two 
successive events. Being a mother wavelet function, 

)(nψ has a finite effective support in the time domain, 
thus the above transform is a local convolution around 
the focal point m. In this study, we use the Mexican hat 
mother wavelet, which is also called the derivate of 
Gaussian (DOG) wavelet because it is the second 
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derivative of the Gaussian function. The Mexican hat 
wavelet is given by the formula 
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By varying the scale s, we obtain a picture of the 

time series at different resolutions. Though scale s can 
be varied continuously, it is not necessary to do so 
because nearby scales produce highly correlated 
wavelet coefficients. We follow instructions in [11] to 
choose discrete samples of scales. For the DOG 
wavelet, the corresponding Fourier wave length is 
approximately equal to 4s, thus the Fourier frequency 
is about 1/(4s). 

Unlike CWT, scales in DWT can be varied only 
discretely. Most of the time, scales in DWT are dyadic 
scales (2n). One needs to choose a scaling function 

)(xφ  and a wavelet function )(xψ  in the application of 
DWT. The former is used to approximate a given 
function while the latter is used to detail the difference 
between two successive levels of approximations. The 
expansion bases in equations (3) and (4) describe 
dyadic scaling and integral translation of these two 
functions. A given function f(x) is expanded in 
equation (5) with these bases [12]. Many DWT 
expansion bases exist in literature, and we adopt the 
classical Haar bases in the following experiments. 
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Using orthogonality, the expansion coefficients 
kjc ,0

and kjd , are computed with a convolution 
operator like equation (1). Mallat developed an FWT 
algorithm to compute these coefficients without 
tedious convolution operation [13]. The output of FWT 
is a series with the same length as the input series. This 
series stores detail coefficients from the finest scale to 
the approximation coefficients of the coarsest scale. 
 
2.3. Scalogram analysis 
 

When amplitudes for CWT of a time series are 
plotted against time and frequency, we get a scalogram 
for the time series. The horizontal axis is the time 
domain, the vertical axis is the frequency (scale) 
domain, and the color of a pixel indicates the strength 

(amplitude) of the wavelet coefficient at that specific 
time and frequency position. Using data set I (to be 
described later), we pick three hashtags with different 
popularity levels (low, medium and high) and plot their 
scalograms in Figure 1. The amplitude ranges from 
very weak in red to very strong in violet. We can see 
that for a substantial time and frequency domain, the 
amplitude of a low popularity tag (left panel) is very 
weak. More activities are detected for the medium 
popularity tag (middle panel) and the high popularity 
tag (right panel). However, it is difficult to tell 
differences between the last two scalograms with the 
naked eye.  

Scalograms are considered textures and 2D DWT 
have been used to analyze these textures in many 
applications [14][15]. We follow [16] to decompose a 
scalogram into 2D DWT image. Figure 2 shows the 
two-level decomposition of a scalogram. The left panel 
decomposes the scalogram into four quadrants by using 
separable discrete wavelet bases. The lower right 
quadrant (HH1) contains detail coefficients in both 
directions, the upper right quadrant (HL1) contains 
detail coefficients in x (time in Figure 1) and 
approximation coefficients in y (frequency in Figure 1), 
the lower left quadrant (LH1) contains approximation 
coefficients in x and detail coefficients in y, and the 
upper left quadrant (LL1) contains approximation 
coefficients in both directions. The LL1 region can be 
further decomposed into the second level coefficients 
with a coarser scale (right panel). 

In the following experiments, we use three-level 2D 
DWT decompositions to split scalograms into ten 
regions (HH1, HL1, LH1, HH2, HL2, LH2, HH3, HL3, 
LH3 and LL3). For each region, we compute the mean 
magnitude of coefficients in that region. Thus, each 
scalogram is represented by 10 features. 

 
 

 

LL1 HL1 

LH1 HH1 HH1 

HL1 

LH1 

LL2 HL2 

LH2 HH2 

 
Figure 2: 2D DWT of a scalogram. 

 
3. Methodology  
 

We describe our data collection method and basic 
statistics of the collected data, followed by feature 
preparation. The experimental procedure is explained 
next. 
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3.1. Data collection 
 

Twitter has released two types of APIs (REST and 
Streaming) allowing authenticated users to collect or 
manipulate tweet data [17]. The REST API provides 
programming interfaces to read and write Twitter data, 
author a new tweet, read author profiles and follower 
data. The Streaming API gives developers low latency 
access to Twitter’s global stream of public tweets. 
According to Twitter, the streaming API can return up 
to a maximum of 1% public tweets that are currently 
being created [17]. 

We use the GET statuses/sample Streaming API to 
collect two sets of public tweets. The first set (data set 
I) was collected between May 13, 2015 and June 2, 
2015. After excluding non-English based tweets, we 
ended up with more than 18 million tweets. Each tweet 
is processed to preserve the screen name of the author, 
followed by user id, timestamp, status id and the tweet 
context. The tweet context may contain RT (indicating 
a retweet), mentions, hyperlinks or hashtags. 

From each tweet, we extracted user id, timestamp, 
status id, number of mentions, number of hyperlinks 
and hashtags after discarding the screen name and the 
remaining tweet context. By ignoring case, we found 
748224 different tags in data set I. In order to conduct 
the experiments, we deleted tags supported by less than 
300 tweets and tags with one character only. This left 
us with 2287 tags. Table 1 lists the support distribution 
for hashtags in data set I. The popularity field is the 
dependent variable for the current study. 

 
Table 1. Distribution for data set I. 
Support (cnt) Floor # of tags Popularity (level) 
300~999 2 1657 Low (1) 
1000~9999 3 581 Medium (2) 
10000~99999 4 48 High (3) 
100000 and up 5 1 High (3) 
Floor is the integer part of log10(cnt). 

 
The second set (data set II) of tweets was collected 

between October 7, 2015 and November 28, 2015. This 
corpus has about 46 million tweets and spans over a 
period of 7 weeks. After processing tweets as above, 
we ended up with 1463802 different tags. By deleting 
tags with support less than 500 and tags with one 
character, there are 3774 remaining tags. The support 
distribution of data set II is listed in table 2. For both 
data sets, we combine the very popular tags with 
support greater than 100000 and popular tags of the 
previous level to form the class of hashtags with high 
popularity. 

 
 

Table 2. Distribution for data set II. 
Support (cnt) Floor # of tags Popularity (level) 
500~999 2 1792 Low (1) 
1000~9999 3 1871 Medium (2) 
10000~99999 4 103 High (3) 
100000 and up 5 8 High (3) 
Floor is the integer part of log10(cnt). 
 

The reason to use different support thresholds (300 
vs. 500) to extract tags of interest in the two data sets is 
we would like to prepare experimental data of 
comparable size in the class of low popularity. Had we 
chosen a threshold of 300 (400) to extract tags in data 
set II, there were 4015 (2608) tags in the class of low 
popularity.  

 
3.2. Feature extraction 

 
We use early adoption properties of a hashtag to 

prepare the predictor variables. By using timestamps of 
tweets, we can extract the earliest n (=16, 32, 64, 128 
and 256 in experiments) tweets that contain the hashtag. 
In order to use 2D DWT analysis for scalograms, we 
consider series lengths of powers of 2 only.  

Let A denote the author set of these n tweets. Since 
a user may use the same tag in different tweets, the 
cardinality of A (denoted as na) is less than or equal to 
n. The number of early adopters has been used in [7] 
and represents one of our predictors. An early adopter 
may retweet a tweet containing the tag or simply starts 
a new tweet containing the tag. 

The next two predictors are cm and ch which 
respectively represents the total number of mentions 
and hyperlinks (http or https) in all early tweets 
containing the tag. These two variables represent the 
contextual properties from tweets. Previous research 
has indicated that tweets containing mentions and/or 
links may increase the attention of readers, and thus 
enhance the exposure rate of the tag [4]. 

Since our data contain timestamps of all tweets, we 
can decompose cm and ch temporally into two series. 
The first series contains the number of mentions in 
early tweets and the second series contains the number 
of hyperlinks of these tweets. 

The next set of variables comes from the adoption 
timestamps of early tweets. Let nttt ,..,, 21  represent the 
adoption time of these n tweets. A differential series is 
derived from this series by taking differences between 
successive adoptions: ,01 =δ  ,1−−= iii ttδ ni ,...,3,2= . 
Elements of differential series are nonnegative since 
we have ordered tweets according to their timestamps. 
These series may reveal unique diffusion patterns for 
tags with different popularity levels. For example, an 
increasing differential series indicates that it takes 
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more and more time to spread a tag into the next tweet. 
Thus, the popularity of this tag may be diminishing. 
For most tags, the differential series is not entirely 
increasing or decreasing, and diffusion speed of the tag 
may speed up or slow down from time to time. Due to 
this reason, we should consider wavy properties of the 
differential series. Weng et al. uses the mean (mu) and 
standard deviation (sd) to describe this differential 
series [7]. Like [8], we add spectral features to capture 
wavy properties of differential series. 

Together, there are three series for each tag. The 
first two are the decomposed cm and ch series, and the 
third one is the differential time series. In order to 
explore the applicability of frequency domain analysis, 
we consider 3 types of spectral features.  

The first type of spectral feature is similar to the 
one in [8]. Each time series is analyzed with CWT with 
proper sampled scales [11]. We assume the time gap is 
one in all our series, thus the equivalent Fourier 
frequency is between 0 and .5. This domain is equally 
divided into 10 regions (0~.05, .05~.1, …, .45~.5). In 
each region, the marginal spectrum is summed up to 
represent a spectral feature. In total, there are ten 
spectral features. 

The second type of spectral feature is also based on 
CWT of the time series. Instead of ten equal frequency 
regions, we divide the frequency domain into 64 equal 
regions. For each time point, amplitudes within the 
same frequency region are summed up to form a 
scalogram of size n x 64, where n is the length of the 
series. In theory, this scalogram contains more 
information than the ten spectral features presented 
above. In order to extract features from scalograms, we 
use three-level 2D DWT to decompose scalograms. 
The total number of spectral features is also ten in this 
case. 

The third type of spectral feature is based on 
discrete FWTs of the time series. The original series is 
processed with FWT to obtain 4 segments: H1 (n/2 
elements), H2 (n/4 elements), H3 (n/8 elements) and 
L3 (n/8 elements), where H1 contains detail 
coefficients of the finest scale and L3 contains 
approximation coefficients of the coarsest scale. Then, 
magnitudes in each segment are averaged to obtain a 
representative feature. In total, four spectral features 
are obtained for each time series. Without resorting to 
CWT and scalogram analysis, we would like to see 
how this naive FWT compares to other spectral 
features in predictions. 

The various variables used in the following 
experiments are summarized in Table 3. The process of 
extracting spectral features (s1~ sk) is applied to each of 
the 3 time series explained above. 
 
 

Table 3. Variables used in the study. 
Variable Role Meaning 
na Input Number of early adopters 
cm Input Total count of mentions 
ch Input Total count of hyperlinks 
mu Input Mean of differential series 
sd Input Standard deviation of differential series 
s1~ sk Input CWT marginal spectrum, Scalogram 

features or FWT features 
cla Output Popularity level from Table 1 and 2 
 
3.3. Experimental procedure 
 

After extracting features from the collected tweets, 
we have a table of 2287 and 3774 records for data sets 
I and II respectively. The cla variable is the output 
variable, while the other variables are the predictor 
variables. The random forest (RF) algorithm [18] is 
used as the classification algorithm. 

RF is an ensemble classification algorithm that has 
been used in many data mining problems. Being a 
bagging algorithm, RF creates multiple decision trees 
in the training stage and aggregates decisions from 
these trees to make a final prediction in the operational 
stage [18]. Each decision tree is trained with cases 
sampled with replacements from the original training 
set. At a decision node, RF chooses a random subset of 
predictors and picks the best one from this subset for 
the node. By using multiple trees in the operational 
stage, the problem of over-fitted trees can be avoided. 

The prediction performance for each class can be 
measured in three perspectives: precision (p), recall (r) 
and F1 score. In classification problems, precision is 
the percentage of predicted samples that are actually 
relevant, while recall is the percentage of relevant 
samples that are predicted by the classification 
algorithm. The F1 score combines both precision and 
recall in a simple formula in equation (6). It is between 
0 and 1 with a higher score indicating a better 
prediction result. Since high popularity tags have 
higher stakes in practical applications, we focus on the 
F1 score of this class. 

 
)/(21 rpprF +=    (6) 

 
Accuracy of a prediction model is the ratio of 

correctly predicted cases to total test cases. It is 
commonly used to assess the overall performance of a 
prediction model. Accuracy can also be defined as the 
weighted sum of recall rates from all classes.  

 
4. Experimental results and discussions 
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We compare prediction results from four models 
based on different predictors. Model 1 (Basic) uses 
basic variables (na, cm, ch, mu, sd) only, Model 2 (Cwt) 
uses basic variables plus 10 marginal spectral features 
from CWT for each time series, Model 3 (Scalog) uses 
basic variables plus 10 scalogram features for each 
time series, and Model 4 (FWT) uses basic variables 
and 4 FWT features for each time series. Three time 
series are considered: the decomposed cm series, the 
decomposed ch series and the differential time series. 

If the performance of a classifier is measured on the 
training set, the result is usually over-optimistic. Thus 
traditional doctrine in machine learning sets aside a test 
data set not seen in the training stage to assess the 
performance of a classifier. When the experimental 
data set is of moderate sizes, cross validations (CVs) 
are commonly used to assess the classifier in an out-of-
sample setting. A k-fold CV starts with a random 
partition of the data set into k disjoint subsets of 
approximately equal size. Each time, one subset is 
chosen as the test set and the remaining k-1 subsets 
form the training set. After each subset has taken the 
role of a test set, the k out-of-sample prediction rates 
are averaged to get a final prediction rate. Though CVs 
attempt to provide a fairer judgment of the classifier, 
their results still depend on initial partitions of the data 
set. Thus, several runs of CVs are needed to get a more 
robust judgment of the classifier. 

In the following, each prediction task is conducted 
in a 10-fold CV setting. In order to minimize the effect 
of partition randomization in CV, 10 runs of 10-fold 
CV were performed for each experimental scenario (5 
early tweet sizes x 4 models of predictors). Regarding 
the classifier, RF is used in a setting with 300 trees and 
log2(number-of-predictors)+1 random features for node 
decision. 

 
4.1. Prediction results 
 

Accuracies (%) from 10 runs of 10-fold CVs were 
averaged and reported in Table 4 for data set I and 
Table 5 for data set II. The results show that accuracy 
increases with the number of early tweets. This can 
also be seen in Figures 3 and 4. For a fixed size of 
early tweets, differences between any two models are 
moderate. The biggest improvement (1.02%) over the 
Basic model comes from FWT model in data set II 
when 16 early tweets are used. Experimental scenarios 
where spectral features add prediction power to the 
Basic model are highlighted in yellow. For data set I, 
FWT model beats the Basic model 4 times; for data set 
II, both Scalog and FWT models beat the Basic model 
4 times. In general, FWT model performs better than 
the more complicated Cwt model. 

Because accuracy is the weighted recall rate, class 
1 has a dominant effect. Class 3 has the lowest impact 
on accuracy, yet it contains tags of high stakes in most 
applications. We turn our attention to the result of this 
class next. The F1 score for class 3 prediction is 
reported in Tables 6 and 7 for data sets I and II 
respectively. Again, FWT model has a better 
performance than the other two models in terms of 
beating the Basic model. The biggest improvement 
(2.8%) over the Basic model happens when 128 early 
tweets are used with FWT in data set II.  

 
Table 4. Accuracy(%) for data set I. 

Length Basic Cwt Scalog FWT 
16 81.49 80.90 81.29 81.95 
32 82.19 81.62 81.33 82.26 
64 84.01 83.60 83.66 83.99 
128 85.33 85.18 85.08 85.51 
256 86.28 86.56 86.32 86.45 
 

Table 5. Accuracy(%) for data set II. 
Length Basic Cwt Scalog FWT 
16 70.96 71.95 71.77 71.98 
32 73.16 73.75 74.05 73.84 
64 75.23 75.20 75.46 75.98 
128 77.08 77.56 77.66 77.59 
256 80.05 79.40 79.46 79.75 

 

 
Figure 3: Accuracy for data set I. 

 

 
Figure 4: Accuracy for data set II. 
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Table 6. F1 score for data set I. 
Length Basic Cwt Scalog FWT 
16 .397 .370 .357 .419 
32 .338 .345 .315 .348 
64 .440 .368 .400 .417 
128 .431 .393 .392 .446 
256 .489 .390 .416 .441 

 
Table 7. F1 score for data set II. 

Length Basic Cwt Scalog FWT 
16 .547 .495 .500 .525 
32 .545 .518 .545 .536 
64 .556 .575 .545 .573 
128 .590 .613 .614 .618 
256 .666 .672 .690 .657 

 
4.2. Handling imbalanced data 
 

It can be argued that class 3 is the most interesting 
class in practical applications. Unfortunately, this class 
has the lowest percentage (2.1% in data set I and 2.9% 
in data set II) in the collected data sets. Though RF has 
many advantages to overcome over-fitting issues, it 
still suffers from the curse of imbalanced data in 
sampling training records. The minority class may not 
be sampled enough for tree learning. 

We adopt a balanced random forest (BRF) solution 
to overcome the data imbalance issue, that is, when 
sampling training data, the majority class is down-
sampled while the minority class is up-sampled [19]. In 
the following, we use BRF to tackle the high 
popularity class prediction problem after combining 
low and medium popularity classes into a single class. 
The tertiary prediction problem is effectively converted 
to a binary prediction problem.  

The same experimental settings are adopted for 
BRF: 300 decision trees in a forest, log2(number-of-
predictors)+1 random features in node decision, and 10 
runs of 10-fold CVs. 

Tables 8 and 9 show the averaged prediction 
accuracy for data sets I and II respectively. It is 
obvious that accuracy has improved significantly from 
the original tertiary prediction problem. Tables 10 and 
11 report F1 score of the viral class for data sets I and II 
respectively. The F1 score improves as well, though not 
as significant as improvements in accuracy. Again, 
FWT model out-performs the other two models in 
beating the Basic model. 

 
 
 
 
 
 
 

Table 8. Accuracy(%) for data set I. 
Length Basic Cwt Scalog FWT 
16 97.19 97.25 97.55 97.39 
32 97.02 97.51 97.57 97.49 
64 97.61 97.44 97.58 97.58 
128 97.58 97.50 97.51 97.64 
256 97.94 97.80 97.78 97.82 

 
Table 9. Accuracy (%) for data set II. 

Length Basic Cwt Scalog FWT 
16 97.09 97.32 97.49 97.29 
32 97.32 97.46 97.48 97.49 
64 97.59 97.60 97.58 97.69 
128 97.89 97.94 98.03 98.01 
256 98.05 98.13 98.09 98.22 

 
Table 10. F1 score for data set I. 

Length Basic Cwt Scalog FWT 
16 .429 .392 .451 .444 
32 .381 .414 .401 .400 
64 .435 .427 .427 .425 
128 .416 .394 .362 .432 
256 .501 .469 .447 .446 

 
Table 11. F1 score for data set II. 

Length Basic Cwt Scalog FWT 
16 .504 .488 .483 .500 
32 .521 .506 .509 .519 
64 .551 .528 .539 .555 
128 .594 .592 .605 .597 
256 .621 .623 .603 .632 

 
 

4.3. Discussions 
 

In general, adding spectral features to the Basic 
model improves prediction performance in terms of 
accuracy and F1 score. Since CWT renders more wavy 
properties than FWT, we had expected Cwt and Scalog 
models to out-perform FWT model. Due to the fine-
grained features of scalograms, we also expected 
Scalog model to out-perform Cwt model. 

Experiments show that FWT model out-performs 
the other two models in beating the Basic model and 
Scalog model is not much better than Cwt model. One 
possible cause for the unexpected under-performance 
of Scalog model could be coming from the scalogram 
analysis, which averages out wavelet magnitudes in 
different regions. Though we know that scalograms 
capture more information than spectrum in Cwt model 
or FWT model, averaging magnitudes may just level 
out advantages of these fine-grained features. As sharp 
turns in time series normally indicate special events in 
social data, we may develop more effective features to 
spot sharp turns and analyze scalograms. 
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In terms of F1 score for the viral class, FWT model 
beats the Basic model with large tweet size in data set 
II. We had expected the major improvement would go 
to cases with small tweet size as in data set I. When 
short early tweet history, e.g. 16 or 32, is used, the 
distinguishing power of mu between popular and 
unpopular tags is often not significant statistically. On 
the other hand, when long early tweet history is used, 
mu often provides significant differences between 
popular and unpopular tags. The failure of FWT to 
improve F1 score for short early tweet history in data 
set II may come from the inherent distribution of data 
in the set. 
 
5. Conclusions  
 

Online social networks provide communication 
channels to spread an idea, behavior, style or usage 
throughout the Internet. Twitter, the largest 
microblogging service site of the world, provides both 
social network and microblogging functions. Hashtags 
with proper topics may spread through the Twitter 
network like a virus. Viral hashtags are rare, but may 
have useful applications for marketing companies. 
Detecting hashtags' popularity at their early age of life 
is interesting and practical. In this study, we use early 
adoption properties of a hashtag to predict its future 
popularity level.   

Previous studies have used many types of features 
to predict the virality of hashtags. These features may 
be categorized into 3 areas: content/context, network, 
and time series. The first two types of features have 
been much more investigated in literature than the third 
type of features. By using timestamps of tweets, many 
aggregate features in literature may be decomposed 
into fine-grained time series which can be investigated 
with frequency domain tools. 

We used CWT to produce a detailed scalogram for 
each time series, and sought methods to extract 
meaningful features from scalograms. Literature shows 
that texture analysis with 2D DWT may help classify 
textural scalograms. Thus, two prediction models 
based on CWT have been proposed: Cwt and Scalog. 
The Cwt model adds marginal spectrum to the Basic 
model, and the Scalog model uses 2D DWT scalogram 
analysis to augment the Basic model. By resorting to 
DWT, we also considered a third prediction model 
based on FWT. 

By using Twitter Streaming API, we collected two 
sets of sampled public tweets in different seasons. The 
first set covers a 3-week period in the middle of 2015, 
and the second set covers a period of more than 7 
weeks near the end of 2015. Extensive experiments 
show that the simple FWT model out-performs the 

more complicated CWT based models in beating the 
Basic model. One possible cause for the under-
performance of Scalog model has been discussed 
above. Effective features need to be designed in order 
to extract CWT spectrum from scalograms.  

Many DWT expansion bases exist in literature. We 
only experimented with the Haar bases in this study. 
Future work may investigate whether the choice of 
DWT bases affects the performance of FWT model. 

Another direction for future work is to design a 
decision rule to tell when to use the decomposed time 
series. For example, if aggregate features already 
provide distinguishing power to separate viral classes 
from nonviral classes, is decomposition and spectral 
analysis still needed? Experiments with other 
aggregate features may also be conducted, e.g., a 
decomposed series containing numbers of emoticons in 
early adoption tweets.  

In addition to the above feature-based consideration, 
classification algorithms may affect the prediction rate 
as well. In this study, due to the experimental time 
constraints, we have used a forest of 300 decision trees 
in RF. In practice, between 500 and 1000 trees are 
commonly used. Future work may consider using a 
bigger forest in RF.  

One may argue that using an odd number of trees 
helps the performance of RF since RF uses a voting 
mechanism to decide the final label of a prediction. 
This claim is probably true for a binary prediction 
problem, e.g., viral vs. nonviral hashtags, because tied 
votes will never happen with odd numbered trees. 
Regarding the original tertiary prediction problem, the 
help of odd numbered trees is unclear. 

RF is an ensemble classification algorithm using 
bagging techniques on a forest of trees. Other ensemble 
algorithms on trees may use boosting techniques as 
well. XGBoost (eXtreme Gradient Boosting) is a 
gradient tree boosting system that is scalable and has 
been successfully applied in many studies and 
competitions [20]. RF algorithm in this study may be 
replaced with XGBoost in a future study. 
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Figure 1: Scalogram for a tag with low (left), medium (middle) and high 
(right) popularity level. 
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