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Abstract
Recommender systems have been widely utilized by
online merchants and online advertisers to promote
their products in order to improve profits. By evaluating
customer interests based on their purchase history and
relating it to commodities for sale these retailers could
excavate out products which are most likely to be cho-
sen by a specific customer. In this case, online ratings
given by customers are of great interest as they could
reflect different levels of customers’ interest on differ-
ent products. Collaborative Filtering (CF) approach is
chosen by a large amount of web-based retailers for
their recommender systems because CF operates on
interactions between customers and products. In this
paper, a major approach of CF, Matrix Factorization,
is modified to give more accurate recommendations by
predicting online ratings.

1. Introduction

Most online retailers provide the public, who have
different interests, with a great variety of products and
services. Therefore, in order to cater for customers
interests by helping them in making choices from the
large number of various items, recommender systems
are increasingly used to shrink the range of products
that might be attractive to a specific customer.

Based on accurate recommendations, sellers could
gain their reputation among customers and increase the
possibility that users make a purchase on recommended
products. It has been shown by other researchers that
movie recommender systems could be used to maxi-
mize revenues by applying effective algorithms [1].

Recommender systems usually take into considera-
tion profiles of users and items respectively and give
recommendations by applying algorithms on the in-
formation of attributes and/or users purchase history
retrieved from these profiles and evaluating users po-

tential preferences of each item. There are two main
approaches that could be used for the purpose of rec-
ommending products effectively. One is called Content-
Based filtering, which creates a profile describing the
types of items the user is interested in and a profile
containing descriptions of items, and generates recom-
mendations based on these two profiles [2].

Another approach called Collaborative Filtering gen-
erates recommendations based on users behaviour [3].
This approach focuses on a group of users or items
that have similar behaviour or attributes and establishes
relationships between each user (user-based filtering) or
each item (item-based filtering) by analysing responds
(e.g. movie ratings) each user gives to each item. In
this case, responses from users to items are not only
restricted to what users prefer, implicit feedbacks such
as what users dislike are also of great significance [4].

One of CF approaches, Matrix Factorization (MF),
has been popular in recent years. Most MF researches
improve the accuracy by taking the data (e.g. movie
ratings) as the point of penetration without considering
the impact of item attributes [5], [6], [7]. Although
these new MF approaches can provide more accurate
ratings, an improvement from different perspective will
be necessary when they reach a bottleneck.

Also, a qualified MF-based approach developed by
Koren in [8] shows a problem of extreme long training
time. His approach provides precise predictions for
movie ratings while runs for 17 minutes for each
iteration when there are 50 factors. In this case, if
the practical recommender system updates the models
frequently after receiving feedbacks from users and the
number of active users is high, the server might suffer
from the operation time.

Another trouble most CF approaches (not only MF)
face is the cold-start problem. If a user has only few
historic data available to the recommender system,
it would be difficult to generate accurate recommen-
dations or give accurate predictions to this user. A
free software called MyMediaLite, developed by Zeno,
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Steffen, Christoph and Lars [9], gives predictions to
new users by simply returning the global average of all
the ratings. More precisely, authors of [10] provides a
way to reduce the prediction error a little for those who
have rated for few items.

To address these issues, this paper firstly takes
attributes into consideration to enhance the accuracy
of the original MF approach. Then the theory of k-
nearest-neighbour approach will be implemented along
with the improved MF approach to give more accurate
predictions. Also, an effective method is used deal with
cold-start problem and the effect is compared with [10].

In summary, the contributions of this paper can be
summarized as follows:

• Item attributes are taken into consideration to
enhance the accuracy of the MF approach;

• Ratings of k nearest neighbours of predicted items
are used to modify the predictions for more accu-
rate recommendation;

• An improved MF approach mines the most signif-
icant data to deal with cold-start problem.

The rest of this paper is organized as follows.
Section 2 summarizes related work in Content-Based
recommendations, Collaborative Filtering and Matrix
Factorization (MF) based approaches. Details of MF are
provided in Section 3. After that, we present our MF
based approach in Section 4. Section 5 describes the
experiments that show the effectiveness of our approach
and Section 6 discusses the result. Finally, Section 7
concludes the paper.

2. Related work

Many recommendation methods have been studied
due to the great demand in the current age of big data.
Recommendation approaches are split into two types:
Content-Based (CB) and Collaborative Filtering (CF).

2.1. Content-Based Recommendation

CB consists of three steps: Information Retrieval,
Profile Learning, and Recommendation Generation.

2.1.1. Information Retrieval: In real applications the
attributes of items can be distinguished as structured
or unstructured information, as stated in [2]. Structured
attributes often have explicit meaning and the values
are within a certain range (e.g. age, gender), while
unstructured attributes are often implicit and there are
no restrictive range for their values (e.g. purchase his-
tory). Different from structured attributes which can be
directly used in recommendation systems, unstructured
information needs to be extracted from a fragment of
contents in order to be quantized. An example of Vector

Space Model (VSM) is given in [2], which is the most
commonly used approach to retrieve information from
a section of text.

2.1.2. Profile Learning: This step is to build a model
for a user according to his preference in the past.
Based on this model, recommendation systems can
infer whether this user will like/dislike a new item.
This step can be basically considered as a supervised
classification learning step. A typical profile learning
approach in CB is the k-nearest-neighbour approach
(KNN) which evaluates most similar items according
to their attributes. Naive Bayes (NB) is also com-
monly implemented for profile learning, particularly
for document classification. By calculating posterior
probabilities, NB will assign an item to one of the two
classes: user likes or user dislikes.

2.1.3. Recommendation Generation: This step sim-
ply returns the top-N items which attracts user the most
according to results in profile learning.

2.2. Collaborative Filtering

There are two main types of CF: memory-based
CF (user-based and item-based) and model-based CF
[11]. Examples of memory-based CF approaches are
given in [12], [13]. Memory-based CF finds nearest
neighbours of a user by searching through the entire
user database and generates a list of recommended
items. Ka, Anto, Volker, Xiaowei and Hans-Peter de-
veloped their probabilistic memory-based CF approach
and they stated that the approach needs to scan the
whole database to construct the profile space of users
[14]. In order to deal with the computation complexity
and memory bottleneck problem, their shift of workload
provides an efficient way, in which construction of the
profile space can be considered as a backstage operation
and will be conducted only when there is available
computing power. Also, in order to deal with the
long computation time, an item-based CF, which can
obviously shorten the operation time without negatively
affecting accuracy of prediction, is provided in [15].

Model-based CF uses user database to build a model
to store ratings, which could alleviate scalability and
sparsity issues [10]. Although model-based CF can
provide predictions of similar quality to memory-based
CF, it often takes long time to build and train the
offline model, and it is difficult to update models.
There are some commonly implemented model-based
CF such as clustering algorithm, singular value de-
composition (SVD), and Bayesian network. Clustering
algorithm treats recommendation as a classification
problem, which means that it iteratively computes the
center of clusters and classify which cluster a user
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should be assigned into based on the distance learning
approach, and then give recommendation according
to components in nearest clusters [10], [16]. SVD is
closely related to the Matrix Factorization method that
will be discussed later in this paper. It decomposes the
original rating matrix R by A = U×S×V T , where U
and V are the left and right singular vectors and S is
the diagonal matrix, and then chose the first k singular
values to reduce the dimension of the diagonal matrix
S. The reconstruction of Rk = Uk × Sk × V T

k gives
the rank-k matrix which is the closest approximation of
the original rating matrix [17]. Also, SVD is commonly
used together with principal component analysis (PCA)
to reduce the dimension of the original database [10],
[18]. Bayesian network model, which is also called
probabilistic directed acyclic graphical model, operates
with conditional probability. In the network, probability
of a variable influencing others is evaluated and then
recommendation will be given based on dependencies
between pairs of variables [11], [19], [20].

2.3. Matrix Factorization

There are some other researchers who improved the
MF approach for more accurate predictions. Yifan,
Yehuda and Chris introduced a model with probability
and confidence to obtain more accurate values of user
factors and item factors [5]. Hanhuai and Arindam used
a Gaussian prior with an arbitrary mean over u and
v, and combined the correlated topic model and latent
Dirichlet allocation work with their matrix model [6].
Vikas, Serhat, Jianying and Aleksandra introduced a
new binary matrix, in which 0 means ‘not purchased’
and 1 means ‘purchased’, into the factor-learning pro-
cess in non-negative Matrix Factorization (NMF) ap-
proach [7]. Compared to the above algorithms, the pro-
posed new MF approach in this paper concentrates on
transforming the original rating matrix and modifying
already-predicted ratings using item attributes. It might
be possible to combine the proposed MF with previous
approaches to give more accurate predictions since it
achieves improvement from different perspective.

The k-nearest-neighbour (KNN) approach (different
from KNN in Content-Based approaches) which eval-
uates neighbours based on ratings given by users, has
been studied to be applied in recommender systems
[21], [22]. Compared to the classic KNN technique,
Matrix Factorization (MF) method proved to be more
accurate when it is used to deal with datasets such as
the one provided by the online DVD rental company
Netflix, as stated by the winner of Netflix prize [23],
so it has become a dominant approach of Collaborative
Filtering recommenders and is decided to lead to the

solutions to MovieLens dataset in this paper.

3. Matrix factorization with stochastic
gradient descent

MF is basically based on matrix R containing ratings
given by a user ui to an item vj . The total number of
users and items is M and N respectively.

3.1. Matrix factorization

R =


r1,1 · · · r1,j · · · r1,n

:
. . . :

. . . :
ri,1 · · · ri,j · · · ri,n

:
. . . :

. . . :
ri,1 · · · ri,j · · · ri,n



R =


r1,1 · · · ? · · · ?

:
. . . :

. . . :
? · · · ri,j · · · ?

:
. . . :

. . . :
? · · · ri,j · · · ri,n


As shown by the first M × N matrix, each entity,

denoted by ri,j , in the matrix refers to a rating user ui
gives to the item vj , and the second matrix demon-
strates that in most cases a majority of ratings are
not available and need to be predicted. Therefore, the
aim of MF algorithm is to predict all of the unknown
ratings. Let U denote a M ×K matrix and V denote
a N ×K matrix respectively, where K is the number
of factors which need to be iteratively learned by the
MF algorithm to generate a matrix such that R ≈ R̂,
meaning that each entity in R̂ represents a prediction
of a rating. In this case, a specific rating ri,j can be
evaluated by calculating the dot product of relevant
rows in U and V respectively. Let ui denote the i-th row
of U and vi denote the i-th row of V , and the predicted
rating ri,j can be simply obtained via Equation (1).
ˆui,k and ˆvj,k in the equation are the approximation of

the factors of users and items, which are not given, so
they need to be learned by recommender systems to
implement this formula.

ˆri,j =

K∑
k=1

ui,k × vj,k =

K∑
k=1

ˆui,k × ˆvj,k = ui · vT
j (1)

3.2. Stochastic Gradient Descent

A problem of Equation (1) is that factors of users and
items are undiscovered so that they need to be learned
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by minimizing prediction errors obtained through the
training set T which contains given ratings (2).

erri,j = ˆri,j − ri,j ∀ri,j ∈ T (2)

First of all, normal distribution is used to initialize
factors in U and V . It is too restrictive to require
only local minimization for some problems including
[24], so stochastic gradient descent (SGD) algorithm,
which iteratively modifies parameters to converge to a
stationary point after some number of iterations [25],
is chosen to be implemented iteratively through the
training dataset to find the best-fit factors. Throughout
SGD, each user factor will be updated as shown in (3),
where η is the learning rate/step size (usually set to
less than 0.2) and E is the error denoted by squared
error 1

2 ( ˆri,j − ri,j)2 so that ui,k will be increased by
the gradient of E with respect to ui,k itself. Equation
(4) shows the update for item factor vj,k.

ui,k = ui,k + η
∂E

∂ui,k
(3)

vj,k = vj,k + η
∂E

∂vj,k
(4)

By further calculation, the partial differential com-
ponents in (3) and (4) can be simplified into (5) and
(6), where n is the number of factors

∂E

∂ui,k
=
∂ 1

2 ( ˆri,j − ri,j)2

∂ui,k
=

( ˆri,j − ri,j) · ∂ ˆri,j
∂ui,k

= ( ˆri,j − ri,j)
∂(ui,1vj,1 + · · ·+ ui,nvj,n)

∂ui,k

= ( ˆri,j − ri,j) · vj,k

(5)

∂E

∂vj,k
= ( ˆri,j − ri,j) · ui,k (6)

Below is the pseudo code for SGD algorithm used
for MF. All the ratings in the training set R are sorted in
random order, and within each iteration the randomly
ordered rating will be used in sequence to implement
(5) and (6). After iterating for numIter times, only
factors related to given ratings will be updated to give
the minimum error. For example, if r5,7 is not given in
R, u5,1···numFactors and v7,1···numFactors will remain
the same value as generated by normal distribution at
the start of SGD procedure.

Input: training set R, number of factors
numFactors, number of iteration numIter
Output: U and V with learned entities (factors)
For n = 1 : numIter

For each rating ri,j in R, in random order
For each factor ui,k, vj,k ∈ [1, numFactors]
ui,k = ui,k + η ∂E

ui,k
, vj,k = vj,k + η ∂E

vj,k

3.2.1. Overfitting: Since in the learning procedure the
update of each user factor is only affected by item
factor, and the item factor is changed only according
to user factor, there exists a possibility that the learned
factors are overfitting the training dataset, as illustrated
in Figure 1. So a regularization process is introduced,
which substitutes the user factors into the update of user
factors, and the action for item factors is the same, as
shown in euqation (7). λ is the regularization coefficient
and there is no need to find a precise value of it because
it is only used to prevent ui,k from “over oscillating”.

Figure 1: ui,k goes away from the stationary point from
step 2 to step 3

ui,k = ui,k + η(
∂E

∂ui,k
− λ · ui,k) (7)

4. Proposed Approaches

In this section, the proposed approaches will be
discussed in detail.

4.1. MFA: Inserting movie attributes into
dataset

Suppose that each movie has h manually defined
attributes, so these attributes could be utilized to revise
item factors. Firstly h virtual users will be created, and
for each of virtual users, a spurious rating of each
movie, the value of which would whether be min
and max, will be assigned according to whether this
specific movie has this specific attribute or not, where
min and max are the minimum and maximum rating
values defined in the dataset. For example, if the 10th
movie has the 5th attribute, max will be assigned to
the virtual rating given by the (numUsers + 5)th to
the 10th movie, and if the 11th movie does not have
the 5th attribute, min will be assigned to the virtual
rating given by the (numUsers + 5)th to the 10th
movie, where numUsers is the total number of users
existing in the dataset. In this case, when SGD operates
on the newly inserted virtual ratings, item factors of
corresponding movies in V will be modified and the
predicted rating ˆri,j will then be affected. The theory
behind is that if two movies A and B have similar
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attributes (e.g. both of them are romantic movies),
during SGD item factors of A and B will similarly
be increased or decreased, and this leads to the fact
that item factors would be altered not only according
to interactions between users and movies, but also in
accordance with relationship between movies. In this
stage, the proposed approach is named MFA.

4.2. MFA KNN: Combine MF with K nearest
neighbour

The k-nearest-neighbour method concentrates on the
relationship between pairs of items, and then give
recommendation based on the similarity between items.
For example, if a user gives full mark to movie A, and
movie B has a high similarity with A, the recommender
system will generate a result that this user will enjoy
B. Also, similar users might give close ratings to a
specific movie. Different from the similarity estima-
tion described in Section 2.2, the relationship between
items can be evaluated by distance learning, as shown
in Equation (8). Disp(x,y) is called the MinKowski
distance, and x and y are the attribute vectors of
item x and item y respectively. The most commonly
used “distance” are Manhattan distance and Euclidean
distance, which set p to 1 and 2 respectively.

Disp(x,y) = (

d∑
j=1

|xj − yj |p)
1
p = ||x− y||p (8)

If two movies m1 and m2 both have h attributes,
then m1 and m2 can be respectively denoted by m1

and m2, each of which is a vector with h elements.
Applying the above theory will give Equation (9).

Disp(m1,m2) = (
h∑

j=1

|m1,j −m2,j |p)
1
p = ||m1 −m2||p

(9)
Theoretically, if some of the nearest neighbours of

an item v to be predicted for a user have already been
rated by him/her, the accuracy of prediction of v can
be improved by the difference between its neighbours’
ratings and the average rating. This will be proved in
the experiment. Also, it needs to be noticed that com-
bining KNN with MF will not influence item factors
so that it can be combined with other CF approaches.

4.3. Bias in prediction

Equation (1) simply takes the summation of product
of each user factor and each item factor. It focuses
on interactions between users and items but ignores
the effects caused by users themselves. For example,

some users with rigorous critical thinking prefer to give
lower ratings to each movie than the public, while some
lenient users always give inspiring ratings (e.g. over 4
out of 5) to all of the movies. A bias is introduced to
classify users of different tolerance.

ˆri,j = r̄i +

K∑
k=1

ˆui,k × ˆvj,k = r̄i + ui · vT
j (10)

ˆri,j = r̄ +

K∑
k=1

ˆui,k × ˆvj,k = r̄ + ui · vT
j (11)

Equation (10) introduces a bias r̄i into the original
evaluation of predicted ratings in Equation (1). In this
case, predictions of users who tend to give low/high
ratings will be lowered/increased by the factor r̄i, which
is the average rating of user i, regardless of user factors
and item factors obtained through SGD. Also, the
increment, ∂E

∂ui,k
, will not change due to the property

of partial derivatives. Similarly, Equation (11) uses the
global mean r̄ as the bias, which can possibly avoid the
problem caused by lack of ratings of some particular
users who have rated only digital number of movies.
The accuracy of these two biases needs to be tested.

4.4. MFAR: Setting threshold for cold-start
problem

As most other Collaborative Filtering approaches
[27], cold-start is a common problem for MF. It means
that if a user has rated only few movies, recommender
systems might not give predictions accurately due to
lack of information of this user. To deal with this
problem, a threshold th will be used to filter out most
misleading ratings, meaning that ratings whose pre-
diction error exceeds the threshold will be considered
to negatively affect the accuracy of prediction. If a
rating given by a cold-start user to movie is filtered
out, it means that this rating is considered to mislead
the user factors of this cold-start user, and if a rating
of a movie which is not given by a cold-start user is
filtered out, this rating is considered to mislead the item
factors of this movie. More specifically, during SGD,
after some number of iterations, if the absolute error
of the prediction of an instance (ratings or attributes)
in training dataset is still greater than th, this instance
will not be used in the prediction.

5. Experiment

5.1. Parameter setting for MF

In this experiment, a dataset provided by Movielens
is used. This dataset consists of 100,000 instances of
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form (i, j, ri,j), where i and j represent user ID and
item (movie) ID respectively, and each instance refers
to a rating ranging from 1 to 5 given by a specific user
out of 943 to a specific movie out of 1682, so that
the sparsity of this dataset is 1 − 100000

943×1682 = 93.7%.
The first part of the experiment will be testing how
the accuracy of MF will be affected by two dominant
parameters, number of iterations and number of factors.
The test will be implemented using all but n method,
in which n ratings of each user will be extracted as a
testing dataset, and the remaining data will be used as
the training set. The number of extracted ratings n is set
to 5, 10, 15, and 20 respectively. Additionally, running
time with respect to different parameter values will
be measured to obtain a trade-off between algorithms
complexity and accuracy. In order to show results, root
mean square error (RMSE) and mean absolute error
(MAE) will be used to illustrate how the predicted rat-
ings differ from the true value. During the experiments,
the parameter not to be tested will be fixed when the
measurement is to be taken for the other.

RMSE =

√∑
i,j( ˆri,j − ri,j)2

N

MAE =

∑
i,j | ˆri,j − ri,j |

N

5.2. MF with movie attributes

In order to improve the accuracy of the tradi-
tional MF approach, attributes of movies will be
inserted into the original dataset. 19 attributes of
movies are provided by MovieLens of the form
(movieID, a1, a2 · · · ai · · · a19), where ai = 0 if this
movie does not have the i-th attribute and ai = 1 other-
wise. The new MFA approach will treat each attribute
as a new user, as shown below. Theoretically, MFA
will learn factors more accurately due to similarity
and difference among 1682 movies, with the premise
that the number of newly inserted attributes are not
much larger than the number of ratings, otherwise the
overfitting problem might be caused.

Input: 19 attributes of 1682 movies, Database D
Output: New database D with movie attributes
For each movie m

For each attribute am,i of m
If am,i = 0, Insert(943 + am,i,m, 1) into D
If am,i = 1, Insert(943 + am,i,m, 5) into D

5.3. Bias

In previous sections, the global mean of the entire
training dataset is used as the bias in the SGD and
prediction generation process. In order to show the
influence of using each user’s average rating to learn
factors and give predictions, a test will be taken for
1000 times and t-test will be used to show whether the
accuracy of these two settings differ. In this section, 5
ratings of each user will be extracted out as the test
data, and the remaining will be the training data. The
reason is that some users in the Movielens dataset have
rated for only 20 movies, so that if too many ratings
of these users are extracted it will be harder to explain
the prediction evaluated based on their average ratings.

5.4. Combine MF with KNN

The KNN approach finds k neighbours of an object
by calculating the similarity between all of the other
objects with it. For example, the traditional KNN
approach takes an average of the values of an objects
k nearest neighbours to give a prediction. A more
accurate KNN approach has been shown by another
researcher in [28]. This part will modify each predicted
rating ri,j by k nearest movies of movie vj which have
been rated by user ui, as illustrated in Equation (12).

ˆri,j = ˆri,j+σ·
∑

(ri,n−r̄i) ∀n ∈ KNN(j) (12)

KNN of a movie will be determined by the distances
between it and other movies. The calculation of dis-
tance is shown in Equation (13), where ai and bi are
the attribute vectors of movie A and B respectively.

dist(A,B) =
∑
i

|ai − bi| (13)

The theory behind is that if the similarity between
movie A and B is relatively high, the prediction of B
given by a user should be affected by the true rating
of A if the same user has rated for it. The factor
(ri,n − r̄i), which represents the user preference of
movie n, is negative if the users rating for n is below
his/her average rating and is positive in another case.
Value of σ should be carefully chosen, otherwise the
modification would increase error of the prediction.

5.5. MFAR for cold-start problem

As most other Collaborative Filtering approaches
[27], cold-start is a difficult but common problem for
MF. It means that if a user has rated only few movies,
recommender systems might not give predictions ac-
curately due to lack of information of this user. To
deal with this problem, a threshold t will be used to
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filter out most useless data, meaning that data whose
prediction error exceeds the threshold will be consid-
ered to negatively affect the accuracy of prediction.
More specifically, during SGD, after some number of
iterations, if the absolute error of the prediction of an
instance (ratings or attributes) in training dataset is still
greater than t, this instance will not be used in the
prediction. In this part, 500 users will be randomly
chosen, and 300 of them will be placed in the training
set, and n ratings of each of the left 200 users will also
be inserted into the training set. The remaining ratings
of these 200 users will be used as the testing set. This
approach is named as Given n, where n is set to 5, 10,
15, and 20 respectively. This test method was also used
in other researches including [10] and [29]. In all of the
above experiments, tests will be operated 10 times in
each case to give an average to avoid ‘extreme’ values.

5.6. Testing platform and device

Different from Hadoop, one of the distributed frame-
works, which utilized HDFS to split large data file
into several blocks with some replications to store
them in different data-nodes (storage part) and uses
MapReduce to process the data in parallel, this paper
only focuses on single machine. During the experiment,
the program is run on OS X EI Capitan. The machine
used is Macbook with a 2.0 GHz quad-core Intel Core
i7 processor (Turbo Boost up to 3.2 GHz) with 6
MB shared L3 cache. Memory is 8 GB of 1600 MHz
DDR3L, and the machine has 256 GB flash storage.

6. Results and discussion

6.1. Number of iterations

Figure 2: Matrix Factorization performance with respect to
number of iterations

The number of iterations is the first parameter tested
to show the relationship with the recommendation
quality. It is assigned from 10 to 100 with an increment
of 10, and the test is based on the traditional MF
approach. Figure 2 indicates that for all the number of
ratings to be predicted (e.g. 5 to 20 with an increment

of 5), prediction error of MF keeps decreasing while
number of iterations increases and it converges to a
stationary point when number of iterations reaches 50.
The operation time of MF has a steady growth rate
during the rise of this parameter. Therefore, numIter
is set to 50 for the following experiments.

Figure 3: Matrix Factorization performance with respect to
number of factors

Similarly, as illustrated in Figure 3, the accuracy
of MF rises with the increase of number of factors,
and running time is approximately proportional to it.
According to this result, numFactors is set to 5 for the
following improved MF approaches. The above results
show that the running time for different n values with
the same parameter settings does not vary too much. It
is because that the data in training set dominates the
complexity of MF. If only 20×943

100000 = 18.86% ratings
are used as testing data, and the remaining data are
used to learn factors iteratively (e.g. 50 times), there
is no doubt that n value will only have insignificant
influence on the operation time.

6.2. MF with movie attributes MFA & use of
KNN

Figure 4: Mean absolute error of improved Matrix
Factorization approaches

After inserting attributes of movies into the training
set, the prediction is supposed to be more accurate,
and Figure 4 and Figure 5 display the prediction error
before and after using attributes, where MF is the
traditional Matrix Factorization method and MFA is the
method using attributes. In all of the 4 cases where the
number of data extracted for each user varies from 5
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Figure 5: Root mean square error of improved Matrix
Factorization approaches

Table I: t-test for KNN
t-Test: Two-Sample Assuming Unequal Variances

MF MF with KNN
Mean 0.762332362 0.760927889
Variance 0.000135418 0.000139141
Observations 1000 1000
Hypothesized Mean
Difference

0 (test whether two samples are equal)

t Stat 2.680376141
t Critical two-tail 1.961152015

to 20, MFA always gives better prediction than MF. In
addition, K = 10 and = 0.06 are the configurations for
combining MF and MFA with KNN method, which use
a specific movies most similar movies to modify pre-
dicted ratings. The figures indicate that the prediction
error decrease by a small number when KNN is used
for further modification. Table I shows the results of
t-test which takes 1000 samples of MF and MF with
KNN respectively. With a confidence level of 95%, t
value (2.680376141) is greater than the critical t value
(1.961152015), which means that the prediction error
of MF ‘really’ exceeds the error of MF with KNN. It
provides an evidence that the similarity of items will
similarly attract a user to some extent.

6.3. Bias

In order to show whether biases in Equation (10)
and (11) have different impacts on the accuracy, 1000
samples were used to perform t-test. With a confidence
level of 95%, as shown in TABLE II, t value of
the difference in two mean values is less than the
negative critical t value (-1.9612), which means that

Table II: t-test for bias
t-Test: Two-Sample Assuming Unequal Variances

MF user mean in
SGD

MF global mean
in SGD

Mean 0.755682927 0.762332362
Variance 0.000134362 0.000135418
Observations 1000 1000
Hypothesized Mean
Difference

0 (test whether two samples are equal)

t Stat -12.80206157
t Critical two-tail 1.961152015

using each user’ mean rating in SGD and prediction
generation can “really” improve the accuracy. However,
one shortcoming of using each user mean is that when
the test was performed for all but 20 and all but 15, the
result was not as satisfactory as using global mean. So,
due to the poor stability, whether user mean or global
mean should be used needs to be carefully decided.

6.4. MFAR for cold-start problem

Figure 6: Impact of different values of threshold

Figure 7: Matrix Factorization approaches dealing with
cold-start problem, shown in MAE

Figure 8: Matrix Factorization approaches dealing with
cold-start problem, shown in RMSE

Firstly, in order to learn the influence of different
threshold on prediction accuracy, the number of given
ratings of each user is set to 5. During the test, threshold
varies from 0.1 to 2.9 with an increment of 0.1, and the
experiment is averaged over 10 iterations. As shown in
Figure 6, MAE drops dramatically at the beginning and
reaches the minimum value when threshold is between
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Table III: Comparison with others’ approaches
Approach all but 10 training 80%
MFA with KNN 0.7560981 0.748411
PCA-GAKM [10] 0.7821 –
Pearson Correlation Similarity [18] – 0.828
Euclidean Distance Similarity [18] – 0.818
Log Likelihood [18] – 0.817
Tanimoto Similarity [18] – 0.794

Table IV: Comparison with others’ approaches for cold-start
problem

Given 5 Given 10 Given 15 Given 20
MFAR 0.8485 0.7961 0.7743 0.7663
[10] approx. 0.90 0.82 0.79 0.77

1.5 and 2.0. The reason is that when threshold has
small value (e.g. 0.1 to 1.0), most of the ratings in
training dataset will be considered as misleading, and
consequently there will not be enough training data to
accurately learn the compulsory factors. Additionally,
when threshold reaches large value (e.g. larger than
2.5), more misleading ratings will not be filtered out
because the prediction error of these ratings will not ex-
ceed the threshold. Therefore, compared to the number
of ratings of each user provided (i.e. 5), large amount
of movie attributes will mislead the factors learned by
SGD. According to the result shown in Figure 6, the
threshold is set to 1.7 in the following experiments.

When MF is used to deal with cold-start problems,
the number of given ratings of each user is set to 5,
10, 15, and 20 respectively. As shown by Figure 7 and
Figure 8, combination of MF and KNN fails to make
contributions to the accuracy of prediction, which might
be because that the extreme small number of given
ratings in training set fail to provide nearest neighbours
of predicted movies. For Given 20, Given 15, and
Given 10, MAE of MF, MFA and MFAR decrease
progressively, but for Given 5, MAE of MF and MFA
is almost the same. RMSE has a similar trend, with
MFAR providing the most accurate prediction.

6.5. Comparison with others’ algorithm

It is convenient to compare the proposed MF algo-
rithm with other researchers’ approaches such as [10]
and [18], as they also used the the Movielens 100K
dataset and showed their results in RMSE and MAE.

As shown in Table III, authors of [10] provided the
precise value of their PCA-GAKM method for all but
10 test, and in comparison, the proposed MFA-KNN
method has better performance. Dheeraj, Sheetal and
Debajuoti measured their algorithms under the condi-
tion that the ratio of training set and testing set was
80%:20% [18], and MFA-KNN also has more qualified
prediction quality. Table IV compares the accuracy of
MFAR with PCA-GAKM. MFAR always has more

accurate prediction than PCA-GAKM regardless of the
number of ratings provided by each user.

7. Conclusion

In this paper improved Matrix Factorization methods
are developed to give more accurate predictions. The
traditional MF approach is firstly studied to show
its performance with respect to number of iterations
and number of factors. Attributes of movies are then
inserted into the training set in order to help the
algorithm in learning factors, and the results show that
the insertion can obviously increase accuracy of rating
prediction. Also, since similar movies might have close
attractiveness to users, k-nearest-neighbour approach is
implemented to further improve the prediction, and the
experiment supports this hypothesis. Finally, to deal
with cold-start problem, which is one of the most com-
mon problems for Collaborative Filtering, a reduction
approach is used to filter out the most useless in the
training set. The carefully selected threshold t proved
to effectively reduce the prediction error for those who
have insufficient ratings (5-20 during the experiment).

Our ongoing work includes adjustments (or exten-
sions, if needed) to our proposed method to make it
generic for a variety of prediction applications. We are
also interested in combining our method with other
work on non-negative Matrix Factorization to achieve
more accurate predictions.
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