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Abstract 

 
In capacity planning for a service operation, 

analytical models based on queueing theory allow the 

user to quickly estimate the capacity required and to 

easily experiment with different system designs or 

configurations, for a given set of input parameters.  An 

input parameter of the model could be inaccurate or 

may not be known beyond a good guess.  In order to 

determine if the analysis results (and hence the system 

design) are robust to parameter estimation errors, 

sensitivity analysis can be performed. We study an 

alternative approach that involves specifying a 

tolerance range of a system performance measure and 

calculating a feasible region of the uncertain 

parameters for which the performance measure will be 

within the tolerance range. We illustrate this approach 

using basic exponential queueing models as well as a 

model of an order fulfillment operation in a 

distribution center.  

 

1. Introduction  

 
In planning the capacity of a business operation, 

queueing models have long been recognized as a useful 

tool for decision support; see e.g., Buzacott and 

Shanthikumar 1993, Gans et al. 2003, Gupta 2013, 

Mahdavi Pajouh and Kamath 2010, and Suri et al. 

1995. These models can capture critical dynamic 

behavior of the system such as the number of parts or 

customers waiting in line for processing, and are 

practical in terms of data and computational 

requirements.  As operations are increasingly 

outsourced to third-party providers, such models are 

correspondingly more useful.  Operation-oriented 

performance measures estimated using these models, 

e.g., the average waiting/response time, will take an 

additional role as an external measure reported to and 

monitored by the outsourcing client.  In some cases, its 

attainment or failure has a direct impact on the 

financial rewards of a third-party provider.  For 

example, a third-party logistics provider may provide a 

final assembly and customer order fulfilment service to 

its client who requires an incoming order for its goods 

to be shipped within 24 hours of order receipt on the 

average.  At the end of each month, the logistics 

provider has to report statistics on the order fulfillment 

times for all orders received that month, and may have 

to pay a financial penalty to its client if the fulfillment 

requirement is not met.  The customer order fulfillment 

time is the system time in a queueing model, making 

such models indispensable in planning the operation 

when new outsourcing client contracts are signed.   

Similar situations arise in other businesses, such as 

customer service centers which can be walk-in 

facilities, or more commonly nowadays, telephone call 

centers.  There, a common operation-oriented 

performance measure is how long an incoming 

customer has to wait before he/she is served by an 

agent, whether in person or on the phone.  Typically, 

key performance measures of an operation and their 

target values (like those mentioned above) are 

specified in the service level agreement (SLA) of an 

outsourcing relationship.  Data centers, where arriving 

customers are machine requests, have similar SLA 

structures (e.g., Wustenhoff 2002). 

Given an estimated business volume provided by 

the client and the SLA specification, the operation 

provider can plan its capacity in terms of the number of 

people and/or machines needed, and in more detail, the 

work schedule of these people and machines.  One 

important aspect in planning the capacity of the 

operation provider is analyzing the conditions under 

which the planned capacity becomes inadequate to 

deliver the performance required by the SLA.  There 

are a number of sources of uncertainty that lead to 

inadequate capacity.  In this paper we focus on the 

following two issues in capacity estimation.  First, the 

projected business volume, i.e., the arrival rate to the 

service or manufacturing system, provided by the 

client is their best guess and may not be very accurate.  
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For example, in information technology (IT) 

outsourcing it is not uncommon to have a client being 

unaware of certain existing systems that need to be 

supported.  These systems will help generate a higher 

volume of support requests than the estimate.  In call 

centers, arrival rates are known to be uncertain and its 

impact on performance has been studied using a 

simulation model (Robbins et al. 2006).  Second, the 

estimated amount of work per customer arrival, 

represented by the service time in a queueing model, as 

provided by the client or estimated by the operation 

provider, may not be accurate. 

In this paper, we assume that a queuing model is 

used to plan the capacity of a service operation, and 

ask the following question: For a given set of system 

parameters which include the estimated business 

volume (estimated arrival rate), the planned capacity 

(planned service rate), and a specified SLA, how much 

more business volume or reduction in capacity can we 

tolerate before the SLA is breached?  Or, what is the 

feasible region of the customer arrival rate and service 

rate such that a selected system performance measure 

is within the SLA specification?  Although concepts 

discussed in this paper apply largely to both service 

and manufacturing operations, they are more important 

to service businesses since it is arguably more difficult 

to manage uncertainty in services for the lack of 

inventory as a buffering tool.  Our work has been 

motivated by the needs of a service business and we 

will present our case in this context throughout the rest 

of the paper. 

To illustrate our proposed approach and to gain 

some insights on its usefulness, we study the above 

question in the following manner.  First, in Section 3 

we select a basic situation where a single workstation 

modeled by the ubiquitous M/M/1 and M/M/c queues 

is analyzed.  These models serve as convenient 

illustrations of our proposed approach.  Then, in 

Section 4, we study a customer order fulfillment 

operation at a distribution center, where we show that 

our approach is feasible in a more complex example of 

a capacity planning model.  These clearly represent 

basic steps in a subject not thoroughly explored in the 

literature, which is reviewed in Section 2.  Ultimately 

we would like to see such analysis as a standard feature 

in queueing model based capacity planning tools.  

Additional concluding remarks are given in Section 5.  

 

2. Related Concepts in the Literature  

 
A closely related concept that can be used to 

partially answer our research question is sensitivity 

analysis of performance measures.  This typically gives 

the derivative or a derivative-like quantity of the 

performance with respect to a chosen system 

parameter.  Of course, due to the nonlinearity of 

practically all queueing systems, the feasible region 

cannot be directly deduced from the derivative 

information. Nevertheless the latter yields useful 

insights such as what parameter has the largest impact 

at the design point and hence, represents a high risk 

area.  Intuitively, sensitivity analysis is a forward 

calculation to obtain the difference in a performance 

measure given a change in a parameter, while the 

present study is a backward calculation of the 

allowable change in a parameter given a tolerance 

region of performance.  Fig. 1 contrasts the two 

approaches.  Each approach serves a slightly different 

purpose.  In the context of planning for capacity of a 

service operation, especially under an outsourcing 

SLA, the proposed concept of tolerance analysis has 

some advantages.  It is a direct reflection of typical 

terms in an SLA; it gives the entire feasible region in 

one step, providing a more comprehensive view; one 

can look up examples of extreme values in the feasible 

region to obtain more tangible insights; plots of 

feasible regions in the parameter space are friendly to, 

and therefore more likely to be considered by, a 

practitioner. 

Kleijnen (1997) reviews different types of 

sensitivity analyses and develops a general framework 

to study them systematically.  In that framework, our 

present study falls under uncertainty analysis to 

quantify the effect of uncertain model inputs.  Kleijnen 

commented that “uncertainty analysis has hardly been 

applied to stochastic models such as queueing 

models…”  This remains to be true even today.  

Several works in sensitivity analysis of queueing 

models appeared before Kleijnen’s paper, but few did 

after that. 

Gordon and Dowdy (1980) analyze the effect of 

errors in relative utilization on performance measures 

in a closed product-form queueing network such as 

throughput, absolute utilization and mean queue 

lengths.  Sensitivity of more general performance 

functions in the form of an arbitrary function of the 

state of a network (open or closed) are obtained in Liu 

and Nain (1991).  Similar to Gordon and Dowdy 

(1980), Tay and Suri (1985) contains a sensitivity 

analysis for closed queueing networks under the 

operational analysis framework rather than the 

classical stochastic product-form solution framework, 

obtaining bounds on performance measures given 

errors in input parameters.   

Opdahl (1995) analyzes the performance sensitivity 

of a combined software-hardware model of a computer 

system, modeled as a queueing network under the 

operational analysis framework.  In addition to 

improving system performance, the author proposes 
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that “sensitivity analysis is useful for pointing out 

where model refinement and parameter capture effort 

should be focused.” 

A more recent paper by Whitt (2006) studies the 

sensitivity of the performance of an M/M/c + M (multi

server exponential queue with abandonment) with 

respect to the arrival rate, service rate, and 

abandonment rate.  Motivated by call center 

operations, different heavy traffic approximations are 

utilized to calculate the sensitivity results.

More complex queueing models do not have 

analytical solutions and we have to resort to simulation 

to estimate the performance function.  Efficient 

algorithms have been developed to compute t

performance gradient alongside the performance 

 

Fig. 1.  Comparison of Sensitivity Analysis & Parameter Tolerance Analysis

 

 

3. Parameter Tolerance Analysis for a 

Single Workstation 

 
Similar to the practical situations discussed in 

Section 1, but at a simplified level, assume that we are 

planning the capacity of a service operation, consisting 

of a single workstation, to serve a client who is sending 

their transactions to our workstation over a period of 

time under contract.  The client informs us of their 

business volume in terms of a (long-

arrival rate and a target average system time 

transaction as part of the SLA.  We then ca

required transaction service rate in order to meet the 

target average system time.  (This is in fact the 

minimum required service rate.)  We call the system at 

this design point the nominal system.  We define the 

following notations: 

λ (µ)      transaction arrival (service) rate;

T average time a transaction spends in the 

system; 

λ0,µ0,Τ0  the above quantities in the nominal system;

x half-width of the tolerance range; (SLA 

specification is typically one-sided – 

below) 

that “sensitivity analysis is useful for pointing out 

where model refinement and parameter capture effort 

y Whitt (2006) studies the 

sensitivity of the performance of an M/M/c + M (multi-

server exponential queue with abandonment) with 

respect to the arrival rate, service rate, and 

abandonment rate.  Motivated by call center 

approximations are 

utilized to calculate the sensitivity results. 

More complex queueing models do not have 

analytical solutions and we have to resort to simulation 

to estimate the performance function.  Efficient 

algorithms have been developed to compute the 

performance gradient alongside the performance 

function itself.  A review of such techniques is 

contained in Fu (2006). 

We also note that there is a second type of 

sensitivity in queueing models – the sensitivity of the 

performance with respect to some 

assumptions (rather than parameter values).  For 

example, Suri (1983) studies this in a 

network using operational analysis.

analyze the sensitivity of the performance results when 

the actual service time distributio

queueing system is not what was assumed (typically 

exponential), e.g., Davis et al. (1995)

 

 

 

Fig. 1.  Comparison of Sensitivity Analysis & Parameter Tolerance Analysis

Analysis for a 

Similar to the practical situations discussed in 

Section 1, but at a simplified level, assume that we are 

planning the capacity of a service operation, consisting 

of a single workstation, to serve a client who is sending 

their transactions to our workstation over a period of 

time under contract.  The client informs us of their 

-run) transaction 

arrival rate and a target average system time for a 

transaction as part of the SLA.  We then calculate the 

required transaction service rate in order to meet the 

target average system time.  (This is in fact the 

minimum required service rate.)  We call the system at 

this design point the nominal system.  We define the 

transaction arrival (service) rate; 

ime a transaction spends in the 

the above quantities in the nominal system; 

width of the tolerance range; (SLA 

 see explanation 

��	����  � �/�
	(�/�
).         

3.1. The M/M/1 Case 

 
For a workstation with a single server modeled as 

an M/M/1 queue, our problem is that, given a nominal 

system specification, what the feasible region 

values of arrival rate λ and service rate 

resulting average time in system lies within (1±

We need to solve the following inequality system:

� � 
 	��1 � ���
 � 1/�� � �� � ��, � � 0
The first inequality is to ensure stability of the 

queueing system, the second the average system time

(of an M/M/1 queue, e.g. Buzacott & Shanthikumar 

1993) within the tolerance region.  We include a lower 

bound for the average system time for completeness 

and for its potential usefulness in analyzing a priority 

type arrangement.  It can be removed easily if one so 

desires.  To characterize the feasible region of 

in terms of percentages of λ0 and 

replace λ with pλ*λ0 and µ with 

inequality system. Note that  pλ 

scalars.  

function itself.  A review of such techniques is 

We also note that there is a second type of 

the sensitivity of the 

performance with respect to some of the structural 

assumptions (rather than parameter values).  For 

example, Suri (1983) studies this in a queueing 

using operational analysis.  Other papers 

analyze the sensitivity of the performance results when 

the actual service time distribution function of a 

s assumed (typically 

Davis et al. (1995). 

 

Fig. 1.  Comparison of Sensitivity Analysis & Parameter Tolerance Analysis 

For a workstation with a single server modeled as 

an M/M/1 queue, our problem is that, given a nominal 

system specification, what the feasible region is for the 

 and service rate µ, such that the 

me in system lies within (1±x)T0.  

We need to solve the following inequality system: 

�1 � ���
 �   (1) 

The first inequality is to ensure stability of the 

average system time 

(of an M/M/1 queue, e.g. Buzacott & Shanthikumar 

within the tolerance region.  We include a lower 

bound for the average system time for completeness 

and for its potential usefulness in analyzing a priority 

n be removed easily if one so 

desires.  To characterize the feasible region of λ and µ 

and µ0 respectively, we 

with pµ*µ0 in the above 

 and pµ are positive 
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Eq. (1) can then be solved analytically in terms of  

pλ and pµ, and the result for a specific numerical 

instance can be plotted using available commercial 

software.  In this paper, we used Mathematica® 

version 8.0 (Wolfram Research 2010) as a results 

visualization tool (by utilizing the built-in tools Plot 

and Plot3D for 2- and 3-dimensional graphs 

respectively). For instance, given the nominal system 

specification (λ0=1, µ0=1.25, Τ0=4), the feasible region 

of pλ and pµ is shown in Fig. 2. 

In Fig. 2, the shaded region between the two 

parallel lines shows the range of pλ and pµ for which 

the average system time is within the 10% tolerance 

zone of the nominal value of Τ0=4. This is a partial 

feasible region of arrival rate and service rate 

satisfying Eq. (1). The points b and d are respectively 

the lower and upper bounds of pλ, given that service 

rate µ is fixed at the nominal value µ0. Similarly, the 

points a and c are respectively the upper and lower 

bounds of pµ, given a fixed arrival rate λ = λ0.  As 

expected from the nonlinearity of queues, points a (b) 

and c (d) are not symmetrical with respect to the 

nominal point (1, 1).  Further, λ has a slightly larger 

tolerance range (in terms of percentages) than µ when 

the other parameter is held constant.  This is good news 

since transaction arrival rates are usually more difficult 

to estimate than service rates.  

 

 
Fig. 2.  The 10% tolerance region for the nominal 

average system time (T0) in the 

M(1)/M(1.25)/1 system 

 

In the following, we will show that the coordinates 

of points a, b, c and d are a function of nominal system 

utilization rate and half-width value of the tolerance 

zone. 

Coordinates of b and d can be obtained by solving �1 � ���
 � 1/(�
 − �) ≤ (1 + �)�
     (2) 

We can convert the inequality system into expressions 

of pλ, x, and ρ0 by plugging in the terms  pλ=λ/λ0 and 

ρ0=λ0/µ0. We obtain the coordinates as follows. 

��: ((�
 − �)/[(1 − �)�
], 1)�: ((�
 + �)/[(1 + �)�
], 1)�     (3) 

Similarly, to get the coordinates of a and c we solve (1 − �)�
 ≤ 1/(μ − �
) ≤ (1 + �)�
     (4) 

to obtain the coordinates as follows. � : (1, (1 − �
�)/(1 − �))!: (1, (1 + �
�)/(1 + �))�     (5) 

Numerical results for the ranges of pλ and pµ with 

different system utilizations are given in Table I. 

Finally, we solve Eq. (1) for a range of nominal 

average times in system and plot the 10% tolerance 

region in Fig. 3.  A slice of Fig. 3 at a fixed T will yield 

a figure similar to Fig. 2. An interesting observation is 

that as the nominal values of T become smaller, the 

10% tolerance region becomes wider because average 

service time dominates T, while for larger values of T, 

the average waiting time dominates T.  A smaller T 

implies a lower utilization which usually means a 

higher operating cost per transaction.  But in addition 

to greater customer satisfaction from less waiting, we 

also have a lower risk of not meeting SLA. 

 

Table I.  10% Tolerance Region for the Average 

System Time (T) in an M/M/1 queue "# $%:	(&, ') $(: (a, c) ) = #. + ) = #. + 
0.7 (0.9524, 1.0390) (0.9727, 1.0333) 

0.8 (0.9722, 1.0227) (0.9818, 1.0222) 

0.9 (0.9876, 1.0101) (0.9909, 1.0111) 

 

 

 
Fig. 3.  The 10% tolerance region for average time in 

system 

 

3.2. The M/M/c Case 

 
For a multi-server workstation modeled as an 

M/M/c queue, we use an approximate expression for 

the average waiting time in queue, rather than the exact 

solution since the approximation gives a much simpler 
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expression yet is adequate to serve our purpose.  The 

expression is based on a well-known approximation 

proposed for a GI/G/c queueing system by Sakasegawa 

(1977). Let ρ=λ/(cµ), where c is the number of parallel 

servers.  Then , = �-.(/01)/[λ(1 − �)]     (6) 

In a manner similar to the M/M/1 case, to get the 

feasible region of the arrival rate and the service rate 

given that average time in system varies within an 

interval of (1±x)T0, we need to solve the following 

inequality system: 

3 � < 	!�(1 − �)�
 ≤ 1/μ + �-.(/01)/[λ(1 − �)] ≤ (1 + �)�
�, � > 0 �     
 (7) 

The feasible region obtained is shown in Fig. 4 for 

two different utilization levels, 70% (left column) and 

90% (right column), and five different values of c: 1, 2, 

7, 17, and the special infinite-server case. 

As c increases, the feasible region changes from a 

narrow band between two steep parallel lines to a 

combination of an initial broader horizontal band 

trailed by a narrow band between two almost linear 

boundary lines.  Furthermore, the horizontal band 

becomes longer, while the narrow band tends less 

steep. In the limiting case of the infinite-server queue, 

the feasible region is a uniform, horizontal band.  As c 

increases, the growth in the initial broader horizontal 

band of the feasible region can be intuitively explained 

by the increasing dominance of the service time 

component of the time in system measure.  In the 

limiting case, the feasible region is simply an (1±x) 

interval around the nominal value of the mean service 

time. 

In all the plots, we have kept the nominal service 

rate constant (=1.0).  As c increases, the arrival rate 

will have to change to yield the desired utilization level 

(0.7 or 0.9).  As the service time component becomes 

more dominant, the feasible region becomes more 

horizontal and more centered around the nominal 

service rate.  This means that the system can tolerate 

larger deviations in the arrival rate and can still remain 

within the (1±x) interval around the nominal average 

time in system.  The feasible region becomes tighter as 

c decreases or utilization increases. 

Comparing the plots in the left and right columns 

shows the effect of utilization with the same c.  For a 

fixed c > 1, we see that our comments earlier on the 

single server case on higher utilization resulting in 

lower cost, but lower customer satisfaction and higher 

risk, and a larger tolerance in λ than that in µ apply.  In 

addition, as the business volume scales up and the 

service provider employs more people or machines to 

handle the volume, we see the following. 

1. The slope of the tolerance region is less steep and 

the horizontal section gets larger.  This means that 

when λ changes or we discover an error in λ, we 

may not have to change the service rate µ so much 

to compensate.  In particular, a horizontal band 

means a fixed percentage change in µ can handle a 

relatively large range of λ.  

2. The area of the tolerance region around the 

nominal design point increases as c increases.  

This means that the system can tolerate a wider 

range of situations. 

These are secondary, risk-oriented advantages of 

economy of scale.  (A primary advantage is that we 

need less than 10x the number of servers to handle 10x 

the arrival rate to maintain the same system time, for a 

fixed service rate.) 

The graphs shown in Figs. 2-4 are of course derived 

from known theoretical results in queueing theory.  

Our intention is to use them as feasibility tests to see if 

the proposed tolerance analysis can produce any useful 

insights for a practitioner who may not be well versed 

in queueing theory. 
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Fig. 4.  10% tolerance region for average time in system in an M/M/c queue
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4. Parameter Tolerance Analysis of a 

Distribution Center Operation 

 
In this section we study a more complex example 

motivated by the work of Le-Duc & de Koster (2002, 

2004), who modeled an order fulfillment operation in a 

distribution center (DC; see Fig. 5).  They assumed that 

customer orders arrived according to a Poisso

process, each order having one order line and that k 

orders are batched for picking.  The DC uses a random 

assignment policy for storing items in the storage racks 

and pickers are assumed to travel at a constant speed.  

Under these assumptions, Le-Duc an

(2004) showed how to calculate the first and second 

moments of the pick time for a storage layout 

configuration with a central aisle and that the order 

picking process can be modeled by an 

a queue with batch service.  To solve the latter, they 

used the approach suggested by Tijms (1994) using a 

convex combination of a batch-service queue with 

deterministic service times and one with exponential 

processing times.  We use an alternative approach to 

model the order picking process that is simpler, as 

shown conceptually in Fig. 6.  There are two main 

components of the average time to pick an order.  The 

first component involves a batching delay and the 

second is waiting for the order picker and the pick 

time.  This is shown in Eq. (8).   

 

 

Fig. 5. Customer Order Fulfillment at a Distribution 

Center 

 

 

 

Fig. 6.   Modeling the Order Picking Process

 

 � order arrival rate. !4.   squared coefficient of variation (SCV) of the 

arrival time of batches of orders. � order picker service rate (for a batch of !5. SCV of the order picking time. 

Storage Racks

Pack 
station

Parameter Tolerance Analysis of a 

 

In this section we study a more complex example 

Duc & de Koster (2002, 

2004), who modeled an order fulfillment operation in a 

distribution center (DC; see Fig. 5).  They assumed that 

customer orders arrived according to a Poisson 

process, each order having one order line and that k 

orders are batched for picking.  The DC uses a random 

assignment policy for storing items in the storage racks 

and pickers are assumed to travel at a constant speed.  

Duc and de Koster 

(2004) showed how to calculate the first and second 

moments of the pick time for a storage layout 

configuration with a central aisle and that the order 

 M/Gk/1 queue – 

a queue with batch service.  To solve the latter, they 

used the approach suggested by Tijms (1994) using a 

service queue with 

deterministic service times and one with exponential 

tive approach to 

model the order picking process that is simpler, as 

shown conceptually in Fig. 6.  There are two main 

components of the average time to pick an order.  The 

first component involves a batching delay and the 

icker and the pick 

 
Customer Order Fulfillment at a Distribution 

 

Order Picking Process 

quared coefficient of variation (SCV) of the inter-

order picker service rate (for a batch of k orders). 

6 order picking batch size. � average time an order spends in the system.�
, �
, 7
  respective quantities in the nominal system. � half-width of the tolerance region (obtained from 

SLA specifications). 

Then, the average time an order spends in the DC is:

 8[�] = ,9:;<= + (,>?(�/@)/>(�)/1
≅ (6 − 1)/(2�) + [(!4. + !5.)/2],
≅ @C1.� + DE/FG0/HG	I�J[.(@�C�)�]+ 1�     (10) 

To obtain Eq. (9), we calculate each of the expected 

waiting times as follows.  For the waiting time in the 

order picker queue, we use a 

approximation for GI/G/1 queues (Whitt 1993).  For 

the batching delay, we observe that the expected 

waiting time for an arriving  job to 

already in the batching queue is (

the batching queue as a continuous time 

we can obtain the probability of an arriving job seeing 

jobs to be 1/k.    Hence, the expected 1@∑ @CLC1�@C1LM
 = 6−12� . 

4.1. Feasible Region in (λ, µ

Picking Process 

 
To get the feasible region of the 

and order picker service rate such that average

time T is within (1±x)Τ0, where 

average system time, it suffices to solve the following 

inequality system: 

� �/6 
 	��1 � ���
 � � � �1 � ���
�, � � 0
�     

As the order arrival process is Poisson, the batch 

arrival process is Erlang-k, where 

Hence, the SCV of the inter-arrival time to the order 

picker queue !4. � 	1/6. Figs. 7 and 8 show the 

feasible region of ��, �� for the following two example 

configurations.  The nominal point is identified by the 

intersection of the dashed lines. 

Case 1 (70% utilization): 6 � 4, �
 � 0.4, �
 � 1/7, !4. � 0.0.7 & �
 � 14.425, � � 10%. 

Case 2 (90% utilization): 6 � 4, �
 � 0.4, �
 � 1/9, !4. � 0.0.9 & �
 � 30.975, � � 10%. 

 

 

Pack 
station

Ship 
station

average time an order spends in the system. 

respective quantities in the nominal system.  

width of the tolerance region (obtained from 

Then, the average time an order spends in the DC is:  

� T�     (8) 

,U/U/1 � 1/�      (9) 

 

each of the expected 

or the waiting time in the 

e use a well known 

approximation for GI/G/1 queues (Whitt 1993).  For 

the batching delay, we observe that the expected 

 a batch seeing j jobs 

is (k-j-1)/λ.  Modeling 

continuous time Markov chain, 

probability of an arriving job seeing j 

the expected batching delay is: 

µ) for the Order 

To get the feasible region of the order arrival rate 

and order picker service rate such that average system 

, where Τ0 is the nominal 

average system time, it suffices to solve the following 

�     (11) 

order arrival process is Poisson, the batch 

, where k is the batch size.  

arrival time to the order 

7 and 8 show the 

for the following two example 

configurations.  The nominal point is identified by the 

.25, !5. � 0.2, � �

.25, !5. � 0.2, � �
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Fig. 7. 10% tolerance region for (λ, µ) at 70% 

utilization 

 

 
Fig. 8.  10% tolerance region for (λ, µ) at 90% 

utilization 

 

 

When λ is small, the batching delay component 

dominates the average time in system, so µ has to be 

large to keep the waiting time and pick time small. 

When µ becomes very small, it is not possible to keep 

the system time within tolerance no matter how small λ 

is.  By comparing the plots in Figs. 7 and 8, one 

immediate observation is that the feasible region 

becomes tighter as the utilization increases, similar to 

the time in system case for the exponential queues in 

the previous section, resulting in a higher risk of not 

meeting the SLA.  In a small neighborhood of the 

nominal design point, the tolerance range is again not 

symmetrical in two ways: 

1. Not symmetrical in µ (or λ) – the range of µ (or λ) 

is different depending on whether λ (or µ) is 

smaller or larger than the nominal point.  In 

particular, the range of µ is smaller when λ is 

larger than the nominal point than that when λ is 

smaller than the nominal point.  This difference is 

rather small at low utilizations but increases when 

the utilization is higher.  Therefore, at higher 

utilizations (which will be the norm in practice) 

we have to be more careful in estimating the order 

arrival rate. 

2. Not symmetrical between µ and λ – the tolerance 

range for λ is larger for a given µ than that for µ 

for a given λ.  Again this is advantageous in 

practice since order arrival rates are usually harder 

to estimate than service rates. 

 

 
Fig. 9. 10% tolerance region for (µ, cs

2
) at 70% 

utilization 

 

 
Fig. 10. 10% tolerance region for (µ, cs

2
) at 90% 

utilization 

 
 

4.2. Feasible Region in ��, !5.� 
 

To get the feasible region of ��, !5.), we similarly 

solve Eq. (11). This allows us to develop some insight 

into the role played by the variability in the picking 

operation.  Figs. 9 and 10 show the feasible region of ��, !5.), for the two example configurations defined 

above. From Figs. 9 and 10, we see that the feasible 

region becomes much tighter as the utilization 

increases. As the picking rate increases, the tolerance 

region for !5. becomes wider as indicated by the length 

of the vertical line within the feasible region at a 

particular	�. In both plots, the batching delay 
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component remains fixed as � and k are held constant.  

The effect of the variability in the picking time is felt 

only through the waiting time for a batch of orders for 

the picker.  As a higher �	reduces both the waiting time 

and picking time, the system can tolerate higher levels 

of variability and still stay within the SLA. 

 

5. Concluding Remarks  

 
We introduced a form of sensitivity of the 

performance of a production or service operation, as 

modeled by a queue, by finding the feasible region of 

selected model parameters that would result in an 

acceptable range of a given performance measure. 

Such an analysis provides complementary information 

to traditional sensitivity analysis, which usually takes 

the form of gradient estimation.  We call the type of 

analysis performed tolerance analysis.  As we have 

seen in three examples of progressively higher 

complexity, the shape and size of the feasible regions 

are not always intuitive and the analysis adds value to 

the decision making process in system design. 

In practice, tolerance analysis is useful in analyzing 

the robustness of a system design, providing some 

concrete information for managing the risk of not 

conforming to performance targets.  For example, the 

shape of the feasible region computed in a tolerance 

analysis will give valuable insights on the relative risks 

caused by uncertainties in different parameters.  

Tolerance analysis can also be used as a way to 

measure the volume flexibility of an operation.  For 

example, the size of the feasible region of the most 

important parameters will give a sense of how likely 

the system will go out of performance specification.  

When comparing alternative system designs, the size 

of the feasible region can be used to rank the designs in 

terms of performance risk or volume flexibility.  A 

larger feasible region typically implies higher volume 

flexibility and lower performance risk. 

While we believe that tolerance analysis will give 

important information for operational risk 

management, many challenges remain to be studied.  

Many analytical models are approximate and hence the 

feasible region derived by the proposed approach is 

also approximate.  However, we believe that the shape 

and size of the feasible region derived from an 

approximate model will give valuable insights on the 

relative risks caused by uncertainties in different 

parameters, or relative risks in comparing different 

system designs.  For models that are not analytically 

solvable, finding a feasible region will take more 

effort.  Many queueing models do at least have a 

numerical solution.  For these models, a 

straightforward way to find the feasible region of a 

system parameter is to do a search using the model.  

Since queueing models are often monotonic in a 

number of parameters (Shanthikumar and Yao 1989), 

we can use an efficient search technique such as a 

binary search in these cases.  Known monotonicity 

properties of queueing models will be useful to identify 

whether a specific model has the appropriate property.  

For models that are not solvable even numerically, 

simulation is the only practical alternative.  We can 

still use a search procedure to find a feasible region, 

but the total computational effort required may become 

prohibitive.  Akin to the development of gradient 

estimation in simulations over two decades ago (e.g., 

Fu 2006), finding feasible regions in a simulation 

model may be a fruitful area for future research. 
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