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Abstract 
Developing sophisticated car sharing simulations 

is a major task to improve car sharing as a 

sustainable means of transportation, because new 

algorithms for enhancing car sharing efficiency are 

formulated using them. 

Simulations rely on input data, which is often 

gathered in car sharing systems or artificially 

generated. Real-world data is often incomplete and 

biased while artificial data is mostly generated based 

on initial assumptions. Therefore, developing new 

ways for generating testing data is an important task 

for future research. 

In this paper, we propose a new approach for 

generating car sharing data for relocation 

simulations by utilizing machine learning. Based on 

real-world data, we could show that a combined 

methods approach consisting of a Gaussian Mixture 

Model and two classification trees can generate 

appropriate artificial testing data. 

 

 

1. Introduction  
 

The demand for new forms of mobility is 

increasing, driven by the trend of more people living 

in urban areas. The UN predicts that by 2030, around 

60% of the total world population will reside in urban 

areas [1], suggesting that the demand for urban 

mobility will rise immensely, along with the growing 

need for additional roads and parking space [2]. 

Hence, the available space will decrease. Therefore, 

future (passenger) transportation systems have to 

develop alternatives to privately owned cars in form 

of flexible, dynamic and sustainable mobility services 

[3]. Under this conditions, understanding mobility as 

a service presents a welcome development [4]. 

Particularly young people begin to use a mixture of 

various mobility services, instead of a privately 

owned car [5]. In this context, the (sustainable) 

potential of new services like car sharing have been 

the object of interest and focus of past research [6]. 

Notably, car sharing has been reported as a 

flexible and sustainable mobility service. It provides 

several vantages for its users and the environment. 

Most notable is, that it is convenient and cost 

effective for users [7], [8], and additionally, by being 

a flexible (short-term) transportation service, it can 

complement classical means of transportation by 

intertwining individual mobility with existing public 

transportation options [9], [10]. Furthermore, earlier 

studies have exhibited that compared to trips with a 

privately owned car, car sharing has the capability to 

decrease the individual car-bound mobility by up to 

30% [2], [11]. Beyond the reduced car-bound 

mobility and the derived lower emissions, using car 

sharing results in a reduced parking demand and less 

noise, which makes it an environmentally sustainable 

form of transportation, for urban areas [2], [11]. 

Therefore, car sharing can be viewed as a mean to 

increase sustainability and counter urban 

transportation problems, e.g., the lack of space and 

harmful emissions [11], [12]. Hence, it is favorable 

that car sharing continues to grow [13] to live up to 

its expectations. 

However, to lower operating costs and to increase 

flexibility remains a key factor for the success of car 

sharing services [14]. One of the major cost factors is 

balancing vehicle supply and demand [14]. Since the 

available amount of vehicles can vary throughout the 

day, there may be a situation where the supplies 

cannot meet the demand in some operation areas 

[14]–[16]. Many existing car sharing provider 

practice operator-based relocation, which is often 

more costly than user-based relocation [17], [18]. 

Considering the financial cost difference, it would be 

more sustainable and cost-efficient if car sharing 

provider could substitute operator-based relocation 

with user-based relocation [18], [19]. 

1554

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41341
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND



2 

For car sharing are information systems (IS) a key 

factor [9], [20], especially to apply specific relocation 

methods (e.g. user-based relocation) [14], [21]. The 

development of new and efficient relocation 

algorithms is a major task of current research [9], 

[14], [22]. By using advanced simulations, relocation 

algorithms can be tested in an artificial car sharing 

environment and compared with other algorithms [1], 

[7], [14], [17], [23]–[25]. One major problem besides 

the development of improved algorithms remains: 

gathering enough representative rental data. Using 

real-world rental data [21], [26] or artificially 

generated data [24], [25] are often the only, 

suboptimal options. Using real-world data leads to 

biased results, caused by real-world data being 

biased. Brendel et al. [27] used the terms “incomplete 

data” and “relocation bias” to describe the problem of 

real-world data. Hence, we will elaborate on these 

terms in the following to get a better understanding of 

the problem. We argue that both issues are not 

independent and therefore will describe them 

interrelated in the following. 

Incomplete data is caused by having no record of 

aborted booking processes and denied requests, 

caused by a lack of vehicle supply. This is partly due 

to the implemented relocation method incapability to 

supply vehicles for every rental request (called 

relocation bias). Furthermore, the relocation bias is 

inherent in real-world datasets by having the real-

world relocation method as there optimal solution. 

Hence, each simulated relocation method can only be 

as good as the real-world approach by default. 

Therefore, it is necessary to generate reliable and 

unbiased data [27] to compare relocation methods 

objectively via simulation. Artificially generated data 

used in current research is often unreliable, 

hypothetical and based on predefined rules, 

assumptions and/or demand estimations [24], [25], 

[28]. Hence, it is important to find a way to generate 

reliable data based on real-world data [27]. 

Accordingly, this paper aims to answer the 

following research question:  

How can car sharing rental data for relocation 

simulations be generated? 

To answer this question, we used a combination 

of two machine learning algorithms: Gaussian 

Mixture Model (GMM) and Classification Tree. 

Based on gathered real-world rental data, this 

combined methods approach can identify patterns 

and generate data correspondingly. Data generated 

this way is scalable and is not based on assumptions. 

This way, data can be generated, which is without 

relocation bias and can additionally be completed to 

mimic hidden demands. 

 

2. Related Work 
 

The following will describe the status-quo of car 

sharing research, especially regarding vehicle 

relocation and data for car sharing simulations. 

 

2.1 Relocation Research 
 

Relocation is the measure of re-distribution a 

vehicle with the intention to solve the issue of 

demand and supply imbalances within a car sharing 

system [19], [26], [29], [30].  

Current research distinguishes car sharing 

systems into three types [14]: station-based two-way 

car sharing, station-based one-way car sharing, and 

free-floating car sharing. The conditions of station-

based two-way car sharing let customers rent a 

vehicle from a station, but customer have to return 

the vehicle to the same station at the rentals end, thus 

preventing the need for vehicle relocation between 

stations [15], [19]. Station-based one-way car sharing 

enhances station-based two-way car sharing by 

giving its customers the advantage to return their 

vehicle to any available station [15], [16]. An akin 

form of car sharing is free-floating car sharing. This 

version has no static stations, and customers can 

(ideally) pick up and return rental vehicles wherever 

they want within the operation area of the car sharing 

provider [7], [15], [18], [21]. 

Station-based one-way and free-floating car 

sharing have a similar relocation problem. Free-

floating car sharing can be understood as a station-

based one-way car sharing system with an infinite 

number of stations. Even though their relocation 

methods cannot simply be applied to both of them, 

they can be compared [27], [21]. In the following 

sections, we will present an examination of the 

current relocation research regarding both car sharing 

versions. 

In car sharing, the staff member of car sharing 

provider are commonly the ones who rearrange the 

vehicles by driving, towing or ride-sharing them to 

the desired station [30], [18]. This practice is termed 

"operator-based relocation".  

Jorge et al. [31] were able to show, that operator-

based relocations can lead to a more balanced station-

based one-way car sharing system. Extending this 

concept, Kek et al. [30] used an optimization-trend 

simulation to substantially decrease the number of 

relocations, and therefore, reducing the total costs of 

operator-based relocation. Even though, the costs of 

operator-based relocation can still be considered a 

major issue. User-based relocation bases on the idea 

to motivate car sharing users to return their vehicle at 

stations in demand for vehicles, instead of stations 
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with a high supply of vehicles [21], [32]. Hence, 

Clemente et al. [17] have pointed out that operator-

based relocation is more expensive and inadequate 

when related to user-based relocation. As an 

implication, user-based relocation should be favored. 

Weikl and Bogenberger [18] researched operator-

based and user-based relocation as an opportunity to 

solve the imbalance in free-floating car sharing. They 

concentrated on demand prediction methods and 

algorithms for computing the optimal vehicle 

distribution within the operation area of the car 

sharing provider. Nonetheless, they did not evaluate 

their concept empirically or in a case-study. Recently, 

Wagner et al. [21] developed a relocation framework 

for user-based relocation support systems in a free-

floating car sharing context. Their goal was to 

minimize the idle time of the vehicles and in doing so 

they demonstrated that applying their approach of 

relocation would decrease the idle time and increase 

the rentals per car. 

 

2.2 Test Data for Car Sharing Simulations 
 

To evaluate the status quo of research regarding 

car sharing simulation and test data usage, we 

conducted a literature review. Expanding on the 

literature review of Jorge and Correia. [14], we 

identified 13 publications regarding car sharing 

relocation simulations from the past 15 years (see 

Table 1). We analyzed the used data (artificial data 

and real-world data), as well as if it addressed the 

problems regarding artificial or real-world data. 

Research regarding the simulation of car sharing 

systems to develop and evaluate new relocation 

algorithms has gained more attention in the recent 

years, but is still an underresearched field. 

Some publications used surveys regarding the 

mobility demand or historical data to generate 

artificial data (e.g.; [31]). The assumption is often, 

that car sharing can substitute the conducted demand 

completely. 

Carlier et al [24] are using a self-developed data 

generator instead of real-world data, because they 

could not gather enough real-world data. The data 

generator generates data based on random demand 

variations over the course of a day.  

Kek et al. [35] used real-world data to evaluate 

their relocation approach. They could replicate the 

performance observed in the original system, and 

also reduce the number of car parking lots and 

relocation employees needed. 

Jorge et al. [31] used fragmented real-world data 

to accumulate patterns for their simulation. This way 

they could simulate their car sharing system using 

partly real world-data and partly artificial data. While 

doing so, they identified the problems of their 

approach and explain in which way it affects their 

results. 

Wagner et al. [37] gathered rental data of 250,000 

rentals to verify their user-based relocation approach. 

They addressed the problem of incomplete data 

briefly by stating that insufficient historical real-

world car sharing data could lead to undetected 

hidden demands in some areas. 

Brendel et al. [27] used real-world data from a 

different form of car sharing for their simulation. 

They altered the data to fit the context and pointed 

out the discovered problems regarding the usage of 

real-world data within the context of car sharing 

simulations. The two major problems are: incomplete 

data and relocation bias. 

Despite the potential of machine learning, none of 

Article 
Using artificial 

data 

Using real-world 

data 

Addressing the 

problems of 

artificial data 

Addressing the 

problems of real-

world data 

Alfian et al. [33]  x   

Barth et al. [34] x x   

Brendel et al. [27]. (x) (x)  x 

Carlier et al. [25] x   (x) 

Carlier, Aur´elien [24] x    

Clemente et al. [17] x    

Cucu et al. [23] x x   

Jorge et al. [31] x (x) (x)  

Kek et al [35]  x   

Lopes et al. [28] x    

Repoux et al. [26]  x   

Wagner et al. [21]  x   

Wang et al. [36] x x  (x) 

Table 1: Literature overview - car sharing relocation simulations and test data 
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the gathered research publications used it to generate 

proper rental data. Instead, they use real-world data 

or data generators based on demand estimations or 

assumptions. Often the problems of using artificial 

data and/or real-world data were not addressed. 

 

3. Data Set 
 

A rental data record includes many variables, i.e. 

customer ID, start time, end time, origin station, 

destination station, etc. (e.g., [21], [27].). In the 

context of the relocation simulations, a rental 𝑟 is 

defined as the following tuple: 

𝑟 = (𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, τ𝑠, τ𝑡  ) 

Where 𝑜𝑟𝑖𝑔𝑖𝑛 stands for the station the rental 

starts from; 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is the station the rental ends 

at; τ𝑠 start time describes the time-point the rental 

starts; and τ𝑡 is the travel time of the rental. 

We collected rental data from a station-based one-

way car sharing system of a city in Germany (around 

100,000 inhabitants) over the course of 107 days 

(November to March). In total we gathered 2062 

rentals. 

For data preparation we transformed τ𝑠 into 

values ranging from 0 (representing 00:00:00 on 

Monday) up to 604799 (representing 23:59:59 on 

Sunday) for every second of the week. 

 

4. Method  
 

In the following, we will present the process for 

generating the data with the machine learning 

algorithms used and how we evaluate the generated 

data.  

For the implementation of the described method 

we used scikit-learn and GridSearch to obtain the 

configurations of the used models [38]. 

 

4.1 Data Generation Method 
 

To generate appropriate rental data, the initial 

input data has to be multiplied without duplicating it.  

We used the following generative process for 

each week with N data points: (1) Choose N tuple 

(τ𝑠, τ𝑡). (2) For each of N tuple do. (2a) Choose an 

𝑜𝑟𝑖𝑔𝑖𝑛. (2b) Choose a 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛. 

This procedure is based on the following 

equation: 

𝑃(τ𝑠 ∩ τ𝑡 ∩ 𝑜𝑟𝑖𝑔𝑖𝑛 ∩ 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) = 

𝑃(τ𝑠 ∩ τ𝑡) ∙ 𝑃(𝑜𝑟𝑖𝑔𝑖𝑛 | τ𝑠 ∩ τ𝑡) 

∙ 𝑃(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 |τ𝑠 ∩ τ𝑡 ∩ 𝑜𝑟𝑖𝑔𝑖𝑛)  
In the first step we are using a trained GMM to 

choose the tuple (τ𝑠, τ𝑡). The GMM was used 

because it can predict values not inherent in the 

training dataset and also generates multiple different 

tuples, both are abilities needed in this case. We will 

describe the GMM briefly in the following. 

A GMM is the weighted sum of M component 

densities given by [39], [40]: 

𝑝(𝑥|𝜆𝑛) = ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖, ∑𝑖)

𝑀

𝑖=1

 

Where M is the number of mixtures of Gaussian 

components; x is the D-dimensional data vector; 𝑤𝑖 , 

𝑖 = 1, … , 𝑀 are the mixture weight; 𝑤𝑖𝑔(𝑥|𝜇𝑖 , ∑𝑖), 

𝑖 = 1, … , 𝑀 are the component Gaussian densities. 

The density of each component is a 𝐷-variate 

Gaussian function of the form: 

𝑔(𝑥|𝜇𝑖 , ∑𝑖) =
1

(2𝜋)𝐷 2⁄ |∑𝑖|
1 2⁄

exp {−
1

2
(𝑥

− 𝜇𝑖)′(𝑐𝑖
𝑚)−1(𝑥 − 𝜇𝑖)} 

𝜇𝑖 is the mean vector and ∑𝑖 the covariance 

matrix. The constraint ∑ 𝑤𝑖 = 1𝑀
𝑖=1  is satisfied by the 

mixture weights. The following notation can 

collectively represent the parameters: 

𝜆 = {𝑤𝑖 , 𝜇𝑖, ∑𝑖} 𝑖 = 1, … , 𝑀 

The goal for a GMM-based system is to train the 

parameters 𝜆, so that the Gaussian mixture density 

matches the distribution of the data vectors. 

After training the GMM, starting time and travel 

time tuples (τ𝑠, τ𝑡) can be generated. The generated 

tuples have to be checked for negative travel times or 

out of range starting times, since a GMM will also 

generate them. For each improper tuple a new one is 

generated until the desired amount of acceptable 

tuples are generated. Other filters may also be 

feasibly, like for to short rental durations (e.g. one 

minute to travel between two far apart stations). 

In the second step, the origin and the destination 

are generated for each of the N tuples. In steps 2a and 

2b the origin and destination is computed by using a 

classification tree for each of them. We used the 

classification tree because it delivers the possibility 

of generating multiple different classifications, and 

can therefore be used to generate data including 

values of low possibility. In the following we will 

briefly describe the classification tree. 

Our implementation uses the optimized version of 

the CART (Classification and Regression Tree) 

classification tree [38]. 

Based on the given training vector 𝑥𝑖 ∈ 𝑅𝑛 , 𝑖 =
1, … , 𝐼 𝑦 ∈ 𝑅𝑖  the decision tree recursively splits the 

space to group the samples with the same labels. The 

data node m is represented by Q. For each split 𝜃 =
(𝑗, 𝑡𝑚) consisting of a feature j and threshold 𝑡𝑚, the 

data is split into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) subsets: 

𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 <= 𝑡𝑚 
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𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄\𝑄𝑙𝑒𝑓𝑡(𝜃) 

The impurity of m is computed based on H( ): 

𝐻(𝑋𝑚) ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)
𝑘

 

Using H( ) the following function has to be 

minimized: 

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚

𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) 

+
𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚

𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) 

The parameters are selected to minimize the 

impurity: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄, 𝜃). 
This procedure is repeated until the maximum 

depth is reached, 𝑁𝑚 < 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠  or 𝑁𝑚 = 1. 

After training the first classification tree (2a), it 

was used to generate an origin for each given 

tuple (τ𝑠, τ𝑡). For this, the probabilities are cumulated 

and an origin is selected using a unified distribution 

from 0 to 1. The second classification tree (2b) is 

trained after 2a and the destination is generated using 

the same procedure for each tuple (τ𝑠, τ𝑡 , 𝑜𝑟𝑖𝑔𝑖𝑛). 

 

4.2 Evaluation 
 

For evaluating the quality of the generated data 

quantitatively we used the BIC (Bayes Information 

Criterion) and the AIC (Akaike Information 

Criterion) [41].  

The AIC is a measurement for the relative quality 

of a model for a given set of data and described as the 

following: 

𝐴𝐼𝐶 =  −2 log (ℒ(𝜃̂)) − 𝐾 

Where ℒ is the maximized value of the likelihood 

function of the model; 𝜃 stands for the parameters of 

the model; 𝐾 describes the number of free parameters 

to be estimated. 

The BIC is used for selecting a model. Models 

with a lower BIC have to be preferred. Therefore, a 

model with a lower BIC has a better fit on the given 

data and predicts it more precisely. The BIC is 

defined as: 

𝐵𝐼𝐶 =  −2 ln(ℒ) + 𝐾 log(𝑛) 

𝑛 is the number of data points in the observed 

data set. 

 

5. Results  
 

We generated 7200 rentals data points, divided 

into 600 data points per week for 12 weeks. By this 

process we more than tripled the original data.  

To evaluate the quality of the generated data we 

used two methods: Comparing the descriptive 

patterns and comparing the AIC and BIC. 

By comparing the patterns of each variable from 

the real-world data set and the generated data set it is 

possible to see the relation between the two data sets. 

The patterns are depicted in the Figures 1 through 4. 

The aim was to generate data that is similar to the 

original data, but not just a duplication of it. 

The start time distribution of both data sets (see 

Figure 1) can be described as similar, but not 

identical. The starting times in the original data are 

spiking around 12 o’clock (the marking for each 

weekday are at 12 o’clock) and nearly no rentals are 

starting in the nights between two weekdays. The 

same applies for the generated data. 

By comparing the travel time probability (see 

Figure 2) patterns of the original data and the 

generated data, it is visible that both patterns spike 

around 20 minutes and are very similar with only 

some differences. 

The distribution of the origin station (see Figure 

3) has its highest value at station 8 and very low 

percentages at station 1 and 9, both in the original 

and in the generated data.  

Furthermore, in the destination distribution (see 

Figure 4), the station distribution is also quite similar.  

To compare the data, we trained a GMM on the 

real-world data set and computed the AIC and BIC. 

To be able to compare the data quantitatively, we 

used the trained GMM to compute the AIC and BIC 

for the generated data set. This way we could 

compare how similar the data sets are e.g., how well 

they can be predicted by the same model. 

 AIC BIC 

Original 0.1035 113630 

Generated 1.4236 436102 

Table 3: Fit comparison of input data and 

generated data  

According to the AIC and BIC, the GMM can 

predict the original data better than the generated 

data. It has to be noted, that the high values for both 

of the BICs are interfering with this conclusion. 

Meaning, the model is not able to predict both data 

sets sufficiently. Nonetheless, it is an indicator for the 

difference of the data sets. Hence, the generated data 

is not similar enough to the original data to have a 

similar predictability by the same model. 

Combining the pattern analysis and the fit 

comparison, we can derivate the result that the 

generated data is similar to the original data 

regarding the start time, travel time, origin and 

destinations, but is not a simple duplication. 
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Figure 1: Start time distribution (7200 generated data points) 

 

 
Figure 2: Travel time probabilities (7200 generated  data points ) 
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Figure 3: Origin distribution (7200 generated  data points ) 

 

 
Figure 4: Destination distribution (7200 generated  data points ) 
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6. Discussion 
 

The results demonstrate that appropriate data can 

be generated with the presented approach. Models 

have to be trained for each car sharing system, but the 

configuration and the results presented in this paper 

show, that the approach is feasible. 

In contrast to currently used methods for data 

generation (e.g., [24]), the proposed methods is only 

based on the original input data and is not involving 

initial assumptions on patterns or anything similar. 

This can be beneficial in particular for testing new 

relocation algorithms via simulations when more data 

is needed. 

To simulate existing car sharing environments, 

generating more data can help to get an established 

system to its limits. For example, scenarios involving 

the same number of cars and stations, but many more 

rental requests, are possible to test. This can give 

indications for the need of more cars and/or stations 

in a system. 

Like mentioned before, the relocation bias is 

inherent in the real-world dataset by having the real-

world implemented relocation method as its optimal 

solution. Each simulated relocation method can only 

be as good as the real-world approach. By generating 

a data set with the presented method, there is no 

optimal solution which could limit the results of the 

relocation method. Relocations methods can be 

compared objectively via simulations with the same 

data set. 

Furthermore, generating data for suspected hidden 

demands is possible by generating one data set and 

additionally generating a data set filtered for hidden 

demands (e.g. for one specific station as the origin). 

By combining both data sets a data set can be 

constructed, which includes additional data to mimic 

hidden demands. Thus, our approach counters 

incomplete data by offering the option to add filtered 

data to complete a data set. 

The findings of this study have to be interpreted 

with caution due to the following limitations. 

Firstly, the proposed method was only applied on 

one data set from a single car sharing system. Hence, 

the results have to be applied and verified for other 

systems and cases e.g., free-floating car sharing and 

e-car sharing. For free-floating car sharing often 

areas are used to describe and simplify the relocation 

problem [37], [42], thus this method can be applied 

by swapping stations for areas. 

Secondly, the two used methods deliver satisfying 

results, but for other car sharing systems and other 

circumstances different methods could deliver better 

results. Therefore, future research should explore 

which machine learning algorithm should be used for 

which car sharing context. 

Thirdly, other methods for comparing the original 

and the generated data set could conclude differently. 

Hence, more studies on how to compare original and 

generated car sharing rental data sets is needed. 

Fourthly, the optimal configurations were 

obtained by using GridSearch [38]. It could be 

beneficial to set some parameters manually to reach 

other desired outcomes (e.g. even lower similarity to 

the original data). 

 

7. Conclusion 
 

In this paper we addressed the problem of 

generating rental data for car sharing simulations. We 

developed a data generation method to deal with the 

problems of incomplete data and relocation bias. 

This study contributes to the field of IS research 

as follows. Following Watson et al.’s ([43]) call for 

more IS research on environmental sustainability, we 

proposed a data generation method for car sharing 

simulations that can help to improve station-based 

one-way car sharing. Furthermore, by processing 

real-world data, we were able to assess the 

capabilities of this method. In conclusion, this study 

is a step further to improve the sustainability of car 

sharing as an environmental friendly transportation 

service, thus contributing to sustainability within our 

society. 

Moreover, our study provides a valuable method 

for practitioners. They can generate more data to 

“stress-test” their system via simulation. This could 

be helpful to prepare for events (e.g., trade fairs), 

where a higher vehicle demand  is anticipated. 

 

8. References  
 

[1] UN, “World Urbanization Prospects The 

2007 Revision Highlights,” New York, vol. 

ESA/P/WP/2, no. 4, p. 883, 2007. 

[2] H. Nijland, J. Van Meerkerk, and A. Hoen, 

“Impact of car sharing on mobility abd co2 

emissions,” PBL Note - PBL Publ. number 

1842, no. July, 2015. 

[3] B. Nykvist and L. Whitmarsh, “A multi-level 

analysis of sustainable mobility transitions: 

Niche development in the UK and Sweden,” 

Technol. Forecast. Soc. Change, vol. 75, no. 

9, pp. 1373–1387, 2008. 

[4] KPMG, “Which companies will survive the 

digital revolution?,” 2014. [Online]. 

Available: 

http://www.kpmg.com/BR/en/Estudos_Anali

ses/artigosepublicacoes/Documents/Wich-

1561



9 

Companies-Will-Survive-The-Digital-

Revolution.pdf. 

[5] A. Millard-Ball and L. Schipper, “Are we 

Reaching Peak Travel? Trend in Passenger 

Transport in eight Industrialized Countries,” 

Transp. Rev., vol. 31, no. 3, pp. 1–26, 2011. 

[6] A. B. Brendel and M. Mandrella, 

“Information Systems in the Context of 

Sustainable Mobility Services : A Literature 

Review and Directions for Future Research,” 

in AMCIS, 2016, pp. 1–10. 

[7] S. Wagner, T. Brandt, M. Kleinknecht, and 

D. Neumann, “In Free-Float: How Decision 

Analytics Paves the Way for the Carsharing 

Revolution,” ICIS 2014 Proc., pp. 1–17, 

2014. 

[8] C. Wagner and S. Shaheen, “Car Sharing and 

Mobility Management: Facing New 

Challenges with Technology and Innovative 

Business Planning,” J. World Transp. Policy 

Pract., vol. 4, no. 2, pp. 39–43, 1998. 

[9] B. Hildebrandt, A. Hanelt, T. Nierobisch, E. 

Piccinini, L. Kolbe, and T. Nierobisch, “The 

Value of IS in Business Model Innovation for 

Sustainable Mobility Services - The Case of 

Carsharing,” in WI 2015, 2015, pp. 1008–

1022. 

[10] C. Nawangpalupi and O. Demirbilek, 

“Investigation of the drivers and the barriers 

for travel behaviour changes and analysis of 

the impact: a case study of car sharing in 

Australia Catharina Nawangpalupi Oya 

Demirbilek,” Int. J. Environ. Cult. Econ. Soc. 

Sustain., vol. 4, no. 4, pp. 1–12, 2008. 

[11] E. Martin and S. Shaheen, “The Impact of 

Carsharing in Household Vehicle 

Ownership,” Access Mag., pp. 22–27, 2011. 

[12] J. Firnkorn and M. Müller, “What will be the 

environmental effects of new free-floating 

car-sharing systems? The case of car2go in 

Ulm,” Ecol. Econ., vol. 70, no. 8, pp. 1519–

1528, 2011. 

[13] S. Shaheen and A. Cohen, “Innovative 

Mobility Carsharing Outlook - Carsharing 

Market Overview, Analysis, and Trends 

Summer 2015,” Transp. Sustain. Res. Cent., 

pp. 1–4, 2015. 

[14] D. Jorge and G. Correia, “Carsharing systems 

demand estimation and defined operations: A 

literature review,” Eur. J. Transp. Infrastruct. 

Res., vol. 13, no. 3, pp. 201–220, 2013. 

[15] M. Balac and F. Ciari, “Modeling station-

based carsharing in Switzerland,” in 14th 

Swiss Transport Research Conference, 2014, 

no. May. 

[16] F. Ciari, C. Dobler, and K. W. Axhausen, 

“Modeling one-way shared vehicle systems: 

an agent-based approach,” 13th Int. Conf. 

Travel Behav. Res., no. July, pp. 1–14, 2012. 

[17] M. Clemente, M. P. Fanti, A. M. Mangini, 

and W. Ukovich, “The vehicle relocation 

problem in car sharing systems: Modeling 

and simulation in a Petri net framework,” in 

Application and Theory of Petri Nets and 

Concurrency, Berlin, Springer Berlin 

Heidelberg: D. Hutchison, T. Kanade, J. 

Kittler, J. M. Kleinberg, F. Mattern, J. C. 

Mitchell, M. Naor, O. Nierstrasz, C. Pandu 

Rangan, B. Steffen, M. Sudan, D. 

Terzopoulos, D. Tygar, M. Y. Vardi, G. 

Weikum, J.-M. Colom and J. Desel, 2013, pp. 

250–269. 

[18] S. Weikl and K. Bogenberger, “Relocation 

strategies and algorithms for free-floating car 

sharing systems,” IEEE Intell. Transp. Syst. 

Mag., vol. 5, no. 4, pp. 100–111, 2013. 

[19] A. Di Febbraro, N. Sacco, and M. Saeednia, 

“One-Way Carsharing,” Transp. Res. Rec. J. 

Transp. Res. Board, vol. 2319, pp. 113–120, 

2012. 

[20] K. Degirmenci and H. Breitner, “Carsharing: 

A Literature Review and a Perspective for 

Information Systems Research,” 

Tagungsband MKWI 2014, pp. 962–979, 

2014. 

[21] S. Wagner, T. Brandt, and D. Neumann, 

“Data analytics in free-floating carsharing: 

Evidence from the city of Berlin,” Proc. 

Annu. Hawaii Int. Conf. Syst. Sci., vol. 2015-

March, pp. 897–907, 2015. 

[22] A. Hanelt, I. Nastjuk, H. Krüp, M. Eisel, and 

C. Ebermann, “Disruption on the Way ? The 

Role of Mobile Applications for Electric 

Vehicle Diffusion,” in WI Proceedings, 2015, 

pp. 1023–1037. 

[23] T. Cucu, L. Ion, and S. M. Boussier, 

“Management of Public Transportation 

Service: Car Sharing Service,” 6th Int. Conf. 

theory Pract. Perform. Meas. Manag. 

Dunedin, New Zealand., pp. 1–15, 2009. 

[24] A. Carlier, A. Munier-Kordon, and W. 

Klaudel, “Optimization of a one-way 

carsharing system with relocation 

operations,” in Proceedings of 10th 

Internation Conference on Modeling, 

Optimization and Simulation, 2014. 

[25] A. Carlier, A. Munier-Kordon, and W. 

Klaudel, “Mathematical Model for the Study 

of Relocation Strategies in One-way 

Carsharing Systems,” Transp. Res. Procedia, 

1562



10 

vol. 10, no. July, pp. 374–383, 2015. 

[26] M. Repoux, B. Boyaci, and N. Geroliminis, 

“Simulation and optimization of one-way 

car-sharing systems with variant relocation 

policies,” in 94th Annual Meeting of the 

Transportation Research Board, 2014. 

[27] A. B. Brendel, B. Brauer, and B. Hildebrandt, 

“Toward User - Based Relocation 

Information Systems in Station-Based One-

Way Car Sharing,” in AMCIS, 2016, pp. 1–

10. 

[28] M. M. Lopes, L. M. Martinez, and G. H. de 

A. Correia, “Simulating Carsharing 

Operations through Agent-based Modelling: 

An Application to the City of Lisbon, 

Portugal,” Transp. Res. Procedia, vol. 3, no. 

July, pp. 828–837, 2014. 

[29] B. Boyaci, K. G. Zografos, and N. 

Geroliminis, “An optimization framework for 

the development of efficient one-way car-

sharing systems,” Eur. J. Oper. Res., vol. 

240, pp. 718–733, 2014. 

[30] A. G. H. Kek, R. L. Cheu, Q. Meng, and C. 

H. Fung, “A decision support system for 

vehicle relocation operations in carsharing 

systems,” Transp. Res. Part E Logist. Transp. 

Rev., vol. 45, no. 1, pp. 149–158, 2009. 

[31] D. Jorge, G. H. A. Correia, and C. Barnhart, 

“Comparing optimal relocation operations 

with simulated relocation policies in one-way 

carsharing systems,” IEEE Trans. Intell. 

Transp. Syst., vol. 15, no. 4, pp. 1667–1675, 

2014. 

[32] F. Schulte and S. Voß, “Decision Support for 

Environmental-friendly Vehicle Relocations 

in Free- Floating Car Sharing Systems: The 

Case of Car2go,” Procedia CIRP, vol. 30, pp. 

275–280, 2015. 

[33] G. Alfian, J. Rhee, Y. S. Kang, and B. Yoon, 

“Performance comparison of reservation 

based and instant access one-way car sharing 

service through discrete event simulation,” 

Sustain., vol. 7, no. 9, pp. 12465–12489, 

2015. 

[34] M. Barth, M. Todd, and L. Xue, “User-Based 

Vehicle Relocation Techniques for Multiple-

Station Shared-Use Vehicle Systems,” 

Transp. Res. Board 83th Annu. Meet., no. 04, 

2004. 

[35] A. Kek, R. Cheu, and M. Chor, “Relocation 

Simulation Model for Multiple-Station 

Shared-Use Vehicle Systems,” Transp. Res. 

Rec., vol. 1986, no. 1, pp. 81–88, 2006. 

[36] H. Wang, R. Cheu, and D. H. Lee, “Dynamic 

relocating vehicle resources using a 

microscopic traffic simulation model for 

carsharing services,” in 3rd International 

Joint Conference on Computational Sciences 

and Optimization, CSO 2010: Theoretical 

Development and Engineering Practice, 

2010, vol. 1, pp. 108–111. 

[37] S. Wagner, C. Willing, T. Brandt, and D. 

Neumann, “Data Analytics for Location-

Based Services: Enabling User-Based 

Relocation of Carsharing Vehicles,” ICIS, 

vol. 3, no. 5, pp. 279–287, 2015. 

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. 

Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss, V. Dubourg, J. 

Vanderplas, A. Passos, D. Cournapeau, M. 

Brucher, M. Perrot, and É. Duchesnay, 

“Scikit-learn: Machine Learning in Python,” 

J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 

2011. 

[39] D. Reynolds, “Gaussian mixture models,” 

Encycl. Biometrics, no. 2, pp. 659–663, 2009. 

[40] Y. Huang, K. B. Englehart, B. Hudgins, and 

A. D. C. Chan, “A Gaussian mixture model 

based classification scheme for myoelectric 

control of powered upper limb prostheses,” 

IEEE Trans. Biomed. Eng., vol. 52, no. 11, 

pp. 1801–1811, 2005. 

[41] K. P. Burnham and R. P. Anderson, 

“Multimodel Inference: Understanding AIC 

and BIC in Model Selection,” Sociol. 

Methods Res., vol. 33, no. 2, pp. 261–304, 

2004. 

[42] S. Weikl and K. Bogenberger, “A practice-

ready relocation model for free-floating 

carsharing systems with electric vehicles – 

Mesoscopic approach and field trial results,” 

Transp. Res. Part C Emerg. Technol., vol. 57, 

2015. 

[43] R. T. Watson, M.-C. Boudreau, and A. J. 

Chen, “Information systems and 

environmentally sustainable development: 

energy informatics and new directions for the 

is community,” MIS Q., vol. 34, no. 1, pp. 

23–38, 2010. 

 

1563


