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Abstract 

 
Wearable devices have become more common for 

the average consumer. As devices need to operate 

with low power, many devices use simplified security 

measures to secure the data during transmission. 

While Bluetooth, the primary method of 

communication, includes certain security measures 

as part of the format, they are insufficient to fully 

secure the connection and the data transmitted. 

Users must be made aware of the potential security 

threats to the information communicated by the 

wearable, as well as be empowered and engaged to 

protect it. In this paper, we propose a method of 

identifying insecure environments through 

crowdsourced data, allowing wearable consumers to 

deploy an application on their base system (e.g., a 

smart phone) that alerts when in the presence of a 

security threat. We examine two different machine 

learning methods for classifying the environment and 

interacting with the users, as well as evaluating the 

potential uses for both algorithms.  

 

 

1. Introduction 

 
There has been a marked increase in the demand 

for wearable devices by the average consumer, from 

fitness bands and blood pressure monitors to sweat 

sensors and headphones. These devices communicate 

through Bluetooth to a base station, often a phone, to 

transmit data. Their proliferation by a multitude of 

companies and the speed at which they are entering 

the market means that security mechanisms may be 

deferred to later product releases. The lack of security 

consideration means these devices and/or their 

connections are more likely to be attacked or have 

data stolen.  

The security of Bluetooth devices primarily relies 

on attackers being unable to follow the 

communication pattern. However, if an attacker can 

capture the initial pairing messages between a 

wearable and its base station, they may be able to 

follow the full hop pattern. The pairing packets also 

include the keys used to decrypt additional data 

packets, if the devices use encryption. Acquiring the 

keys allows hackers to intercept all data 

communication, assuming they can get the hop 

pattern. Ryan [12] was able to overcome this 

constraint, showing that the encryption that Bluetooth 

uses can be bypassed nearly instantly and that the hop 

pattern could be calculated with only minimal 

packets intercepted by chance.  

Consumers are largely unaware of security risks, 

widely adopting a somewhat childish “If I can’t see 

you, you can’t see me” approach to securing their 

information [6]. This inattention becomes a much 

larger problem when data is being transmitted via 

Bluetooth. Most Bluetooth devices use only the 

security measures already in the specification itself, 

such as the default encryption and the rapid change of 

communication frequency. However, there are 

mechanisms that can sniff Bluetooth packets and 

provide a method for man-in-the-middle and denial 

of service attacks. [12].  

Because wearables collect significant amounts of 

data, from accelerometer data to medical information 

such as heartrate, they can provide an attacker with 

very detailed information about the wearer. For 

instance, it has been shown that accelerometer data 

generated by hand movements as captured by a 

wearable (e.g., a smart bracelet or watch), could be 

intercepted by an attacker and potentially calculate a 

user’s PIN [16]. Because of the possibility of 

intercepting Bluetooth communication, it is 

increasingly important to have a method to prevent 

data leakage. Ideally, new security mechanisms 

should be compatible with existing Bluetooth 

devices, as well as become deployable on future 

devices. 

As there are large numbers of Bluetooth devices 

currently in the hands of consumers, with 3 billion 

being sold in 2014 [1], there exists the potential to 

use crowdsourcing techniques to collect obfuscated 

user data. This data can provide researchers with the 

ability to discover patterns based on wearable usage 

given the basic information that the devices already 

collect. When dealing with large datasets, machine 

learning is often used to discover patterns quickly 
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and effectively.  Utilizing such techniques could lead 

to a greater understanding of user environments and 

the ability to adapt to unexpected security concerns 

of new environments.  

We previously investigated methodologies to 

secure wearable connections by preventing data from 

being sent between devices when the devices are in 

an insecure location [15]. This research involved 

examining passive and active wearables and the 

different ways in which they submit data to the 

associated base station. Given the differences, we 

determined that the best overall method was to force 

the wearable to send empty packets. To illustrate the 

methodology, we deployed an iPhone app with 

embedded rules for pre-defined insecure 

environments, such as using the GPS coordinates of a 

university office. This allowed us to ensure that, in a 

potentially insecure environment, the app could 

automatically cause the wearable to send empty 

packets and not disconnect. The app deployed only 

static rules, whose modification had to be performed 

programmatically. While the manual construction 

and deployment of such rules was not meant for a 

wearable consumer, it did provide us with a means to 

communicate with the wearable using this form of 

technology. 

In this paper, we expand on the original concept 

of using an adaptive base station app, by exploring 

the use of a cloud service and two machine learning 

algorithms using data that is simulated as if 

crowdsourced from users. One algorithm generates a 

series of rules, allowing users to receive updated 

rules automatically to adapt the app, and 

consequently, their wearables, to recognize new, 

potentially insecure situations as they are identified. 

The second algorithm classifies ranges of sensors and 

their combinations as potentially insecure in real-time 

and can respond to an application’s query as to the 

probability of the wearable information being 

insecure. We detail the algorithms and their 

integration with an extended app. We then evaluate 

the benefits and disadvantages of each machine 

learning algorithm, including how often they are 

correct when given additional testing data. 

 

2. Background  

 
Existing Bluetooth security has been shown to be 

lacking in many key areas. Ryan [12] created a 

method to brute-force the key exchange protocol after 

intercepting the pairing packets. This allowed him to 

decrypt all additional communication sent between 

the devices, illustrating a need for additional security 

which relies on something beyond standard 

encryption. 

Diallo, et al. [4] attempted to secure the pairing 

process by creating a table of trusted MAC addresses 

for known devices which included a temporary 

private key to encrypt only the pairing process. 

Because this method requires both devices to keep 

their own table, device manufacturers would have to 

incorporate it into their design process. This method 

is effective at securing all communication, though it 

is unreasonable to expect manufacturers of Bluetooth 

devices to universally adopt this strategy. 

Two examples illustrate the need for wearable 

security awareness. Pan, et al. [11] were able to 

intercept and use data from a Bluetooth mouse to 

recreate passwords input through an onscreen 

keyboard. Wang, et al. [16] used the internal 

accelerometer on a smart bracelet to recreate PINs 

input at an ATM. Using Bluetooth keylogging and 

password recreation in this way makes it impossible 

to check if your information is being intercepted, 

implying the need for embedding technology that can 

stop wearable communications from being 

intercepted.  

Our previous work [15] investigated how this 

security might be added by forcing Bluetooth devices 

to send empty packets when in a pre-defined (static) 

environment known by the base station to possibly be 

insecure. This method relied on embedding static 

rules which could not be modified by the user. This 

investigation led us to the current research presented 

in this paper in which we design a more robust 

system by incorporating machine learning techniques 

and by crowdsourcing data collection.  

Machine learning algorithms have been shown to 

achieve accuracy with relatively small datasets. 

Moreno, et al. [10] were able to combine labels from 

crowdsourced data with an accuracy of 89% or above 

with datasets of only 500 labels and 200 users. This 

method would allow us to discover new clusters as 

they appear with relatively few reports of issues, 

which is important for any security application.  

Machine learning algorithms have been deployed 

directly on wearables and smartphones. Lane, et al. 

[8] examined four algorithms which used minimal 

processing power to not adversely affect battery life. 

They found that these algorithms were able to get 

good results, but not as good as more processing 

intensive algorithms which can be used when a 

device is connected to the internet.  

Parallelizing machine learning algorithms allows 

for more powerful algorithms to be used. Chen, et al. 

[3] showed that, when using a custom-designed 

architecture for running neural networks on parallel 

processors, they could achieve significant 
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improvements in energy requirements and speed. 

This method is ideal for a cloud-based service which 

can be run on multiple servers or across multiple 

processors more easily.  

Crowdsourcing and machine learning go hand in 

hand for many use cases. Because crowdsourcing can 

deliver large quantities of data quickly and machine 

learning can identify often unseen groupings in the 

data, it is natural to combine the two. For example, 

Minoda, et al. [9] used Amazon mTurk to collect 

preferred lighting levels of images within a room 

from a wide range of users of different ethnic 

backgrounds. Their study was able to determine 

estimated age and ethnicity of users based on their 

responses. As another example, Saxe, et al. [13] used 

code help forums, such as StackOverflow, to map 

terms found in malware to train a machine learning 

algorithm to detect the capabilities of specific 

malware program. They were able to determine if a 

specific piece of malware contained a given 

capability, with approximately a 20% false positive 

or false negative rate. 

Crowdsourcing can also be used to improve 

existing machine learning algorithms by identifying 

where errors were made. Georgescu, et al. [5] used an 

algorithm designed to identify important information 

from academic papers, such as the author, title, and 

abstract. They found that, despite the added process 

of humans checking their work, they were unable to 

get above 90% accuracy. This shows the need, when 

crowdsourcing data, to understand that humans can 

be flawed, which can lead to imperfections in the 

data over which the machine learning algorithms are 

applied.  

Two independent researcher groups investigated 

crowdsourcing users’ smart home preferences in an 

attempt to improve the experience for all users. 

Shahriar and Rahman [14] and Bourelos, et al. [2] 

looked at energy management by crowdsourcing heat 

sensors and environmental data to optimize heating 

and cooling and minimize electricity used in homes. 

Shahriar and Rahman used machine learning to 

discover optimal clusters. Bourelos, et al. used an 

algorithm that attempted to minimize each home’s 

electrical requirements without compromising the 

comfort of the users in the house. 

 

3. Adapting Communication with the 

Wearables  

 
Bluetooth devices communicate using the 

Adaptive Frequency Hopping Spread Spectrum. This 

method makes it difficult to intercept messages from 

the devices, as the channel they are communicating 

on changes after every packet. Hence, many 

Bluetooth devices do not incorporate additional 

forms of security. However, if an attacker is able to 

follow the hop pattern, they can intercept all data sent 

between the two devices.  

When wearables pair with a base station, the 

initial pairing packets are unencrypted, as they must 

communicate with a device that has not received a 

public key. This allows an attacker to gain 

information stored in the pairing packets, such as the 

hop pattern. Since the main packets are encrypted, it 

is possible to obtain the key used to encrypt the keys 

of both devices.  Thus, an attacker can eavesdrop and 

insert packets into the connection.  

The issue is typically combatted by the devices 

remaining paired so they do not send out additional 

pairing packets. However, remaining paired does not 

completely inhibit an attacker who has already 

intercepted the initial pairing packets from 

eavesdropping or inserting malicious packets. Our 

experimental application forced a small set of 

wearables to send empty data packets to an iPhone 

when in environments that were pre-specified as 

being insecure [15]. By sending empty data packets, 

and subsequently halting all data requests made by 

the phone, the devices maintained the connection, 

disallowing an adversary to capture the pairing 

information or obtain any information from 

eavesdropping.  

The original adaptive behavior was triggered only 

when the device was in an environment that was 

identified as insecure. The conditions defining an 

insecure environment were predefined and statically 

placed within the app to demonstrate its viability in 

preventing an attacker from connecting to the device 

themselves or eavesdropping on the packet 

transmissions. The experimental application 

successfully prevented data from being sent between 

the iPhone and selected devices, which included a 

Metawear R, a Fitbit Charge HR, a Pebble Time 

Round, and a pair of LG Tone Ultra Bluetooth 

headphones. However, the application it was unable 

to adapt to new potential threats or insecure 

environments. These threats and environments had to 

be manually inserted, which is impractical for 

wearable consumers.  

Validating the concept led to investigating a 

system that would allow for adaptation “in-the-wild.” 

There are multiple methods by which this adaption 

could be accomplished. The simplest method is to 

allow users to define rules from within the 

application. This method relies on users being aware 

of the security issues in their everyday lives and, 

therefore, is likely not to be adopted. A more feasible 

approach is to automatically adapt to the potentially 
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changing environments that consumers may find 

themselves in. In this paper, we apply machine 

learning algorithms to snapshots that are 

crowdsourced from security conscious users in order 

to classify environments as being secure or insecure.  

 

4. Insecure Environment Snapshot 

Generation  

 
To improve on our experimental application, we 

focus on creating a system that can connect multiple 

user experiences and learn what made specific 

situations insecure. We incorporate a cloud service to 

aggregate user input and machine learning algorithms 

to predict if a situation is insecure or not.  

To simulate crowdsourcing and evaluate our 

learning algorithms, we create a service that 

generates snapshots of sensor values representing an 

insecure environment. The snapshots are passed to 

the learning algorithms to represent users telling 

other users that they believe the environment as 

described by their sensor values to be insecure. The 

concept is similar to WAZE, a community-based app 

for traffic and navigation, where users communicate 

to a cloud service regarding traffic delays and the 

alternative routes they are taking. Similarly, the 

snapshot generation allows the algorithms to learn 

sensor ranges and combinations potentially related to 

insecure situations that can then be communicated to 

other users. 

 
4.1. User defined snapshots 

 
The application normally generates snapshots in 5 

minute increments. The only exception to this timing 

is if a user explicitly tells the app that they feel their 

data may be insecure. At the time this action is taken, 

the app will generate a snapshot explaining that it is 

in an insecure environment, and will remain in this 

state until the user tells the app they are again in a 

secure environment.  

Each snapshot is labeled as pertaining to a secure 

or insecure environment at the time of generation. 

This information can be used to both train the model 

to improve its accuracy and evaluate the current 

model’s effectiveness. The snapshots are stored 

locally until the user is in a position where they can 

upload the snapshots to the cloud service. Users may 

choose to not send data when in an insecure 

environment, as well as to only send data when their 

device is connected to Wi-Fi to avoid using cellular 

data. The cloud service stores snapshots from all 

users who use the application. By crowdsourcing 

their data, we aim to acquire a large number of data 

points for each potentially insecure environment. 

Users are not burdened with defining rules to secure 

their devices. Additionally, users allow other security 

conscious users to help define insecure conditions 

and situations with just the press of a button.  

Figure 1: Sample Snapshot 
 

An example snapshot is depicted in Figure 1. 

Note the value for temperature, which is used when a 

Bluetooth device which provides that data is 

unavailable. We have limited our snapshots to only 

include data that can be taken from devices we have 

access to. However, it is simple to add additional 

variables to these parameters when new information 

becomes available. In the case of the above snapshot, 

the user has said that they are insecure in their current 

situation, so the application is sending all available 

data to attempt to learn the reason. 

This approach relies heavily on a user with an 

understanding of their Bluetooth device 

communication safety, which may not always be 

possible. We expect that a user of our application 

initially will be security conscious enough to be fairly 

accurate with their choice of secure/insecure 

environments. As more users are added, the existing 

rule base should help give those users an 

understanding of secure and insecure environments, 

allowing them to become more aware of their 

wearable data security in their everyday lives.   

By crowdsourcing, we are able to generate an 

extensive list of potentially insecure environments.  

To beat this system, an attacker could change 

locations in order to set up in an environment that 

may currently be considered secure. However, there 

are other conditions that an attacker relies on that can 

identify potential insecure environments, such as the 

presence of public WiFi. Thus, if an attacker was to 

relocate, application users eventually would begin 

reporting this new environment as insecure, making 

the move only a temporary solution for the attacker.  

 

4.2. Automatic generation 
 

To test our approach and to obtain sufficient 

initial data for the machine learning algorithms, we 

{ 

 "Devices": "Pebble", 

 "Heart Rate": "136.0", 

 "Time": "1377.0", 

 "Speed": "20.724903281615532", 

 "Latitude": "35.72388775811967", 

 "Longitude": "-95.94220940565249", 

 "Temperature": "4.9E-324", 

 "Insecure": "true" 

} 
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needed to create a snapshot generator that takes a set 

of basic insecure environments and generates a 

significant number of snapshots, both secure and 

insecure, with loosely clustered data points 

representing insecure environments.  

We defined insecure ranges for each variable. For 

the purposes of this test, these variables had 

consistent but somewhat arbitrary values. In a real 

world situation, these values would be very carefully 

controlled such that they mimic an actual known 

insecure environment. The algorithm generates a 

value for that variable. As some of the variables will 

not always be available to the device, such as 

temperature and heart rate, we only generate those 

values in approximately 30% of the snapshots.   

Next the algorithm checks if that value is within 

the insecure range we had previously defined. If so, 

the chance that the snapshot will be defined as 

insecure increases. To better simulate human 

interaction with the system, we include a base chance 

that each snapshot that is generated is insecure. This 

is a low value to allow for snapshots which have 

values within the predefined secure ranges to be more 

commonly defined as secure. The chance that a 

snapshot is insecure can be modified prior to 

generation as needed to better simulate real 

environments or to force much clearer clustering. 

For initial testing, automatic snapshot generation 

was necessary to ensure there were enough data 

points for evaluation in Section 6. Each algorithm 

was trained on identical datasets generated in this 

manner. However, automatic snapshot generation 

also presents the possibility of introducing known 

insecure situations by generating multiple copies of 

the same insecure environment. This possibility can 

lead to the rapid response of the system in the event 

of a sudden and clear insecure environment.  

As in the user generation of snapshots, each 

snapshot includes a value if the snapshot is within a 

secure environment.  

 

5. Machine Learning  

 
We investigated two different machine learning 

algorithms to provide situational awareness with 

respect to wearable data security. The first algorithm, 

a rule-based approach, generates a tree from which 

rules can be derived that dictate when the wearable 

should send only empty packets. These rules can be 

pushed to our application as periodic updates. This 

method allows users to decide when their 

applications are updated, an important consideration 

for a phone application with limited data or service. 

The second algorithm, a cloud-based approach, 

performs machine learning using the Microsoft Azure 

Machine Learning Studio. This method requires the 

application to be in constant communication with the 

server, since the application needs to send each 

snapshot to the service to determine if it is in a safe 

environment. We discuss in more detail the training 

and results of these two methods in Section 6. 

 

5.1. Rule-based Approach 

 
For the rule-based approach, we created a web 

service to collect data from multiple users into a 

single repository comprised of snapshots of the 

wearable sensors. These snapshots are used to train 

the machine learning algorithm towards identifying 

insecure environments. The web service also stores 

the resulting rules, which are sent to devices to adapt 

them to notify wearables when in an insecure setting. 

The architecture of this method is shown in Figure 2. 

We provide more of the programmatic details below. 

 

 
Figure 2: Rule-Based Architecture 

 

The web service was entirely written in-house in 

Python, relying on a single R script to perform 

statistical calculations on the data that has been saved 

to disk. Our mobile app generates snapshots via user 

input from presumably insecure environments, as 

well as in known secure environments, which are sent 

to the web service. The web service parses the 

request and converts the resulting data into a single 

CSV file to be used by the learning algorithm. This 

method potentially limits the number of simultaneous 

requests the service can currently accept, but the 

bottleneck can be reduced by incorporating a 

database which is periodically exported to a CSV file. 

Using a single CSV file reduces the application 

complexity as the file can be directly accessed by the 

machine learning algorithm.  

Once sufficient data has been collected, we train 

the model using the full CSV file.  After initial 

training, if there are minimal requests by users for 

updated rules or if there are not enough new 

snapshots being generated, the learning algorithm 

will suspend processing until a predefined threshold 

is reached so that it can properly retrain and not 
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introduce rules which may be temporary or may 

lower the effectiveness of important rules.   

When training the model, our web service calls an 

R script to execute the Random Forest learning 

algorithm given either the created CSV file or a CSV 

file with training snapshots as input. The program 

learns which label and range is able to predict an 

insecure environment within the snapshots and uses 

that to generate a conditional inference tree, or ctree 

[7], as output. A ctree is a two-class decision tree 

which partitions the data such that the leaf nodes of 

the tree are the probability that the branch is insecure 

and that each internal node describes the features of 

the snapshot. The tree is created using a genetic 

algorithm, set to terminate when the data can no 

longer be subdivided. This allows us to generate rules 

by simply reading the branches of the tree. For 

numeric values choosing the left branch will result in 

a rule which is less than or equal to that value, while 

taking the right branch results in a rule which is 

greater than the value. An example tree can be seen 

in Figure 3. Note in this tree, the node labeled by [2] 

is connected to a leaf node of probability .226. The 

rule generated by this can be seen in Figure 4. Figure 

5 shows the branch [3][4][6] converted to rules.  

The resulting ctree can be used to give a 

prediction of whether or not a given snapshot is 

insecure by following the tree nodes until a leaf node 

is encountered and then comparing the confidence 

values against a pre-specified threshold. If the values 

are greater than the threshold, the snapshot being 

checked is most likely insecure.  Otherwise the 

snapshot is considered secure. We test a variety of 

thresholds in Section 6. 

We chose to use a ctree because we wanted to 

create a set of rules to determine whether or not a 

user is insecure rather than to have a predictive model 

which would require input data to make an evaluation 

of whether or not the user is actually in an insecure 

situation. This approach was chosen to prevent users 

from needing to constantly poll a trained model to 

determine if their data is insecure. Ctrees are also 

more resistant to noise. Any data points that fall 

outside of the insecure clusters cannot affect the 

cluster so the rules do not change. The only way to 

break up a cluster is to have a significant number of 

safe points to be plotted inside of the cluster, which 

would cause the integrity of the cluster to come into 

question anyway. 

 

 

 
Figure 3: Ctree format 

 
 
 

 
Figure 4: Sample XML Rule 

 

 

Figure 5: Combined Rules from Ctree 
 

A ctree is a not a traditional decision tree. It has 

all of the advantages and disadvantages of a 

traditional decision tree, but the features are selected 

using statistical inferences at each step to make a 

reasonable educated guess for the features it chooses, 

as opposed to the traditional algorithm which guesses 

which dimension to divide on at each level, then 

checks its accuracy and retries as needed. This speeds 

<Policy> 

    <Device id="All"> 

        <Rule> 

            <Type>Speed</Type> 

            <Op>GT</Op> 

            <Cond>and</Cond> 

            <value>10.3458</value> 

            <priority></priority> 

        </Rule> 

        <Rule> 

            <Type>Temperature</Type> 

            <Op>LE</Op> 

            <Cond>and</Cond> 

            <value>50</value> 

        </Rule> 

        <Rule> 

            <Type>HeartRate</Type> 

            <Op>GT</Op> 

            <value>140</value> 

            <priority>.234</priority> 

        </Rule> 

    </Device> 

</Policy> 

<Policy> 

    <Device id="All"> 

        <Rule> 

            <Type>Speed</Type> 

            <Op>LE</Op> 

            <value>10.3458</value> 

            <priority>.226</priority> 

        </Rule> 

    </Device> 

</Policy> 

[1] root 

|   [2] Speed <= 10.3458: 0.226 

|   [3] Speed > 10.3458 

|   |   [4] Temperature <= 50 

|   |   |   [5] Heart.Rate <= 140: 0.119 

|   |   |   [6] Heart.Rate > 140: 0.234 

|   |   [7] Temperature > 50: 0.191  
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up the training time, while retaining the same level of 

accuracy. 

Once the model has been trained and the tree has 

been created, the tree is iterated over using a 

traditional depth-first search algorithm. At each leaf 

node, we get a certainty from 0-1 for the decision 

present in that branch. If the certainty is high enough 

and the decision is 1, the path is translated to an 

intermediate language that we have designed for the 

purpose of representing a set of conditions which 

must all be true for a decision to be made. The lower 

bound of certainty is determined beforehand based on 

the risk we are willing to allow our users to take. This 

value can be adjusted by the user from within the app 

as needed. We look at optimal values from our initial 

tests in Section 6. 

The resulting language is then parsed according to 

the original XML rule schema specified in [15] that 

works within the existing app. An example of the 

algorithm output can be seen in Figure 3. Each line is 

parsed by the algorithm individually, then turned into 

a rule. In the case of the tree in Figure 3, this means 

creating a rule based around Speed first, then taking 

both branches. The left branch is a leaf node, which 

gives us the rule seen in Figure 4. The right branch 

leads to two temperature options, one of which has 

additional children. An example of one of these 

completed branches can be seen in Figure 5. 

After parsing, the rules are stored in a database on 

the web server. When a request is made to the 

service, the list of rules is returned to the requester. 

This allows users to get updated rules at their 

convenience. As previously stated, the tree and, thus, 

the rules are resistant to noise, so the integrity of the 

rules is preserved regardless of how long the user 

reports snapshots without receiving the latest update.  

 

5.2. Cloud-based Approach 
 

The previous approach required the app to be 

periodically updated to reflect potential insecure 

environments by pushing the rules to the app. An 

alternative approach is to poll a web service to 

determine if the current state is insecure. In this 

method, snapshots are sent to the Microsoft Azure 

cloud where the Machine Learning studio is used to 

deploy an algorithm to determine whether or not an 

environment is insecure. Because of the cloud nature 

of the algorithm, it can use snapshots that it receives 

to continue to learn new, potentially insecure 

environments constantly, adding and retraining on 

each new snapshot that it receives.  

The more simplistic architecture of this approach 

can be seen in Figure 6.  

 

Figure 6: Cloud-based Architecture 
 

Using Azure ML studio, we trained a Decision 

Forest Regression model to evaluate a set of 

snapshots to determine how likely each snapshot is to 

be from an insecure environment.  The Decision 

Forest Regression algorithm was chosen because it is 

similar in function to the methods used in the rule-

based approach, is considered to have good accuracy, 

and is fairly fast to train. This is because the 

regression algorithm uses multiple decision trees, all 

trained concurrently, which results in a model that 

aggregates over all the trees to find a Gaussian 

distribution close to the distribution of all the trees 

taken individually. Ideally, these results could be 

taken from Azure ML Studio and converted into rules 

in much the same way as the rule-based approach.  

However, Azure ML Studio does not support the 

retrieval of the tree, preventing us from taking the 

results and converting them to a series of rules. Azure 

ML Studio makes it very simple to create a web 

service to handle individual requests for data to be 

scored, allowing us to use the system to evaluate 

snapshots as they are generated by a user. 

Azure ML Studio requires a CSV file for input, 

which allowed us to use the same file to train this 

model as was used in the rule-based approach. Unlike 

the rule-based approach, Azure ML Studio requires 

data to use for testing the model and requires the 

output of the algorithm to be in CSV format.  

The web service takes in a snapshot and reports 

whether or not the snapshot is insecure, with a 

certainty ranging from 0 to 1 which represents how 

likely the algorithm thinks the snapshot is insecure.  

To train the web service, we uploaded a training CSV 

file. This file is automatically parsed by Azure ML 

Studio into an internal format that Azure ML Studio 

uses. This data is then fed into a tuning module which 

takes the machine learning algorithm and trains a 

model. The resulting model is then deployed via 

another web service, as seen in Figure 7. This service 

takes the model and compares it with the input from 

the web, outputting the result to the requester. Azure 

ML Studio requires that a sample set of snapshots is 

included so that it knows the format the model is 

trained on, and this is included with snapshots2.csv.  
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Figure 7: Employing Web Services 
 

Similar to the rule-based approach, this model 

predicts if a snapshot given to it is insecure by 

checking if its confidence in that choice is above a 

specified threshold. We test a variety of thresholds in 

Section 6. 

 

6. Evaluation 

 
To evaluate our solution, we trained both machine 

learning approaches on the same set of one hundred 

thousand generated snapshots. The trained models 

were then tested against an additional one hundred 

thousand generated snapshots, and scored at different 

levels of confidence. To start, we trained each model 

on a base set of snapshots which had predefined 

clusters. These clusters were arbitrarily chosen, but 

would appear in a real life setting. The generated 

training set had a 10% chance that every snapshot 

would be insecure. For each snapshot that was within 

a cluster range, the chance was raised to at most 55%. 

We feel that this approximates the type of data we 

would get from an initial set of security conscious 

users.  

The results from this initial training set can be 

seen in Table 1a. Our test set, which consisted of an 

additional one hundred thousand snapshots, was then 

scored by both learning algorithms. In the rule-based 

approach, we checked how often the rules would 

trigger based on the confidence values we set as a 

threshold. We are able to achieve fairly stable results 

with confidences between 25% and 50% on both 

algorithms, though the rule-based approach provides 

slightly lower values for all confidences. This implies 

both learning algorithms are accurate. Note that, at 

0%, when all locations are considered insecure, the 

learning algorithm is still correct 38.8% of the time 

on both algorithms. This is because the scored data 

set had around 38.8% of the snapshots generated as 

being insecure.  

After the initial training set, we generated a new 

set of training and test data, each with one hundred 

thousand (100,000) snapshots, which introduced two 

new clusters into the data. The first based on location 

and the second based on temperature. The addition of 

these two new clusters raised the total percentage of 

the insecure environments to 48.9%. This simulated 

additional attackers appearing after the initial 

training, showing resilience in the training model and 

the ability of the system to learn new clusters as they 

arise.  

The results of this dataset can be seen in Table 1b. 

Again, we see the best results from confidences 

between 25% and 50%, and a lower accuracy from 

the rule-based approach. While both performed well 

at 50% confidence, the cloud-based service 

outperformed by 1.6-12.9%. This is most likely 

because of the choice of the decision forest 

regression as the training model, as this model is 

fairly accurate.  

Table 1. (a) Initial Training Set Results  
    (b) New Cluster Results 
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7. Conclusion and Future Work  

 
In this paper, we extended the functionality of 

previous research on our existing mobile application 

which prevents Bluetooth communication between a 

base station and a device in an insecure environment. 

We introduce a system that promotes the use of two 

machine learning algorithms, trained on simulated 

crowdsourced data, to predict if a user is in an 

insecure environment. We found that both machine 

learning algorithms were accurate, with the rule-

based method being accurate up to 80% and the 

cloud-based method being accurate up to 81.6%. 

Both options allow for increased security in 

potentially insecure environments.  

This method could be implemented by device 

manufacturers and application creators using 

preexisting machine learning packages and cloud 

services. Similar to WAVE’s need for modified street 
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maps, it would require modification only as new 

sensors were configured on wearables and how the 

data was formatted. The app creators could determine 

how often to retrain the models based on their 

security needs, which might provide a competitive 

advantage. The main limitation for a third-party app 

is whether device manufacturers are willing to allow 

developers access to what the wearable 

communicates, which could restrict how the device 

can be adapted.  

Future work will focus on both improving the 

machine learning algorithms and increasing the 

features which can be learned on. Additionally, we 

would like to begin testing our app with a small user 

base to see if our generated dataset is similar to the 

real world data that users would generate. Since our 

app relies on users to be aware of the locations and 

situations where they are actually insecure, we plan 

to analyze how often these users are correct. An 

important consideration may be to identify if there 

are other factors that can be assessed to automatically 

detect insecure environments that users are in and 

provide information on a more public scale. 
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