

Toward Predicting Secure Environments for Wearable Devices

Charles Walter, Ian Riley, Xinchi He, Ethan Robards, Rose F. Gamble

Tandy School of Computer Science, The University of Tulsa, Tulsa, OK

{charlie-walter, ian-riley, xinchi-he, ethan-robards, gamble}@utulsa.edu

Abstract

Wearable devices have become more common for

the average consumer. As devices need to operate

with low power, many devices use simplified security

measures to secure the data during transmission.

While Bluetooth, the primary method of

communication, includes certain security measures

as part of the format, they are insufficient to fully

secure the connection and the data transmitted.

Users must be made aware of the potential security

threats to the information communicated by the

wearable, as well as be empowered and engaged to

protect it. In this paper, we propose a method of

identifying insecure environments through

crowdsourced data, allowing wearable consumers to

deploy an application on their base system (e.g., a

smart phone) that alerts when in the presence of a

security threat. We examine two different machine

learning methods for classifying the environment and

interacting with the users, as well as evaluating the

potential uses for both algorithms.

1. Introduction

There has been a marked increase in the demand

for wearable devices by the average consumer, from

fitness bands and blood pressure monitors to sweat

sensors and headphones. These devices communicate

through Bluetooth to a base station, often a phone, to

transmit data. Their proliferation by a multitude of

companies and the speed at which they are entering

the market means that security mechanisms may be

deferred to later product releases. The lack of security

consideration means these devices and/or their

connections are more likely to be attacked or have

data stolen.

The security of Bluetooth devices primarily relies

on attackers being unable to follow the

communication pattern. However, if an attacker can

capture the initial pairing messages between a

wearable and its base station, they may be able to

follow the full hop pattern. The pairing packets also

include the keys used to decrypt additional data

packets, if the devices use encryption. Acquiring the

keys allows hackers to intercept all data

communication, assuming they can get the hop

pattern. Ryan [12] was able to overcome this

constraint, showing that the encryption that Bluetooth

uses can be bypassed nearly instantly and that the hop

pattern could be calculated with only minimal

packets intercepted by chance.

Consumers are largely unaware of security risks,

widely adopting a somewhat childish “If I can’t see

you, you can’t see me” approach to securing their

information [6]. This inattention becomes a much

larger problem when data is being transmitted via

Bluetooth. Most Bluetooth devices use only the

security measures already in the specification itself,

such as the default encryption and the rapid change of

communication frequency. However, there are

mechanisms that can sniff Bluetooth packets and

provide a method for man-in-the-middle and denial

of service attacks. [12].

Because wearables collect significant amounts of

data, from accelerometer data to medical information

such as heartrate, they can provide an attacker with

very detailed information about the wearer. For

instance, it has been shown that accelerometer data

generated by hand movements as captured by a

wearable (e.g., a smart bracelet or watch), could be

intercepted by an attacker and potentially calculate a

user’s PIN [16]. Because of the possibility of

intercepting Bluetooth communication, it is

increasingly important to have a method to prevent

data leakage. Ideally, new security mechanisms

should be compatible with existing Bluetooth

devices, as well as become deployable on future

devices.

As there are large numbers of Bluetooth devices

currently in the hands of consumers, with 3 billion

being sold in 2014 [1], there exists the potential to

use crowdsourcing techniques to collect obfuscated

user data. This data can provide researchers with the

ability to discover patterns based on wearable usage

given the basic information that the devices already

collect. When dealing with large datasets, machine

learning is often used to discover patterns quickly

1402

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41321
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

and effectively. Utilizing such techniques could lead

to a greater understanding of user environments and

the ability to adapt to unexpected security concerns

of new environments.

We previously investigated methodologies to

secure wearable connections by preventing data from

being sent between devices when the devices are in

an insecure location [15]. This research involved

examining passive and active wearables and the

different ways in which they submit data to the

associated base station. Given the differences, we

determined that the best overall method was to force

the wearable to send empty packets. To illustrate the

methodology, we deployed an iPhone app with

embedded rules for pre-defined insecure

environments, such as using the GPS coordinates of a

university office. This allowed us to ensure that, in a

potentially insecure environment, the app could

automatically cause the wearable to send empty

packets and not disconnect. The app deployed only

static rules, whose modification had to be performed

programmatically. While the manual construction

and deployment of such rules was not meant for a

wearable consumer, it did provide us with a means to

communicate with the wearable using this form of

technology.

In this paper, we expand on the original concept

of using an adaptive base station app, by exploring

the use of a cloud service and two machine learning

algorithms using data that is simulated as if

crowdsourced from users. One algorithm generates a

series of rules, allowing users to receive updated

rules automatically to adapt the app, and

consequently, their wearables, to recognize new,

potentially insecure situations as they are identified.

The second algorithm classifies ranges of sensors and

their combinations as potentially insecure in real-time

and can respond to an application’s query as to the

probability of the wearable information being

insecure. We detail the algorithms and their

integration with an extended app. We then evaluate

the benefits and disadvantages of each machine

learning algorithm, including how often they are

correct when given additional testing data.

2. Background

Existing Bluetooth security has been shown to be

lacking in many key areas. Ryan [12] created a

method to brute-force the key exchange protocol after

intercepting the pairing packets. This allowed him to

decrypt all additional communication sent between

the devices, illustrating a need for additional security

which relies on something beyond standard

encryption.

Diallo, et al. [4] attempted to secure the pairing

process by creating a table of trusted MAC addresses

for known devices which included a temporary

private key to encrypt only the pairing process.

Because this method requires both devices to keep

their own table, device manufacturers would have to

incorporate it into their design process. This method

is effective at securing all communication, though it

is unreasonable to expect manufacturers of Bluetooth

devices to universally adopt this strategy.

Two examples illustrate the need for wearable

security awareness. Pan, et al. [11] were able to

intercept and use data from a Bluetooth mouse to

recreate passwords input through an onscreen

keyboard. Wang, et al. [16] used the internal

accelerometer on a smart bracelet to recreate PINs

input at an ATM. Using Bluetooth keylogging and

password recreation in this way makes it impossible

to check if your information is being intercepted,

implying the need for embedding technology that can

stop wearable communications from being

intercepted.

Our previous work [15] investigated how this

security might be added by forcing Bluetooth devices

to send empty packets when in a pre-defined (static)

environment known by the base station to possibly be

insecure. This method relied on embedding static

rules which could not be modified by the user. This

investigation led us to the current research presented

in this paper in which we design a more robust

system by incorporating machine learning techniques

and by crowdsourcing data collection.

Machine learning algorithms have been shown to

achieve accuracy with relatively small datasets.

Moreno, et al. [10] were able to combine labels from

crowdsourced data with an accuracy of 89% or above

with datasets of only 500 labels and 200 users. This

method would allow us to discover new clusters as

they appear with relatively few reports of issues,

which is important for any security application.

Machine learning algorithms have been deployed

directly on wearables and smartphones. Lane, et al.

[8] examined four algorithms which used minimal

processing power to not adversely affect battery life.

They found that these algorithms were able to get

good results, but not as good as more processing

intensive algorithms which can be used when a

device is connected to the internet.

Parallelizing machine learning algorithms allows

for more powerful algorithms to be used. Chen, et al.

[3] showed that, when using a custom-designed

architecture for running neural networks on parallel

processors, they could achieve significant

1403

improvements in energy requirements and speed.

This method is ideal for a cloud-based service which

can be run on multiple servers or across multiple

processors more easily.

Crowdsourcing and machine learning go hand in

hand for many use cases. Because crowdsourcing can

deliver large quantities of data quickly and machine

learning can identify often unseen groupings in the

data, it is natural to combine the two. For example,

Minoda, et al. [9] used Amazon mTurk to collect

preferred lighting levels of images within a room

from a wide range of users of different ethnic

backgrounds. Their study was able to determine

estimated age and ethnicity of users based on their

responses. As another example, Saxe, et al. [13] used

code help forums, such as StackOverflow, to map

terms found in malware to train a machine learning

algorithm to detect the capabilities of specific

malware program. They were able to determine if a

specific piece of malware contained a given

capability, with approximately a 20% false positive

or false negative rate.

Crowdsourcing can also be used to improve

existing machine learning algorithms by identifying

where errors were made. Georgescu, et al. [5] used an

algorithm designed to identify important information

from academic papers, such as the author, title, and

abstract. They found that, despite the added process

of humans checking their work, they were unable to

get above 90% accuracy. This shows the need, when

crowdsourcing data, to understand that humans can

be flawed, which can lead to imperfections in the

data over which the machine learning algorithms are

applied.

Two independent researcher groups investigated

crowdsourcing users’ smart home preferences in an

attempt to improve the experience for all users.

Shahriar and Rahman [14] and Bourelos, et al. [2]

looked at energy management by crowdsourcing heat

sensors and environmental data to optimize heating

and cooling and minimize electricity used in homes.

Shahriar and Rahman used machine learning to

discover optimal clusters. Bourelos, et al. used an

algorithm that attempted to minimize each home’s

electrical requirements without compromising the

comfort of the users in the house.

3. Adapting Communication with the

Wearables

Bluetooth devices communicate using the

Adaptive Frequency Hopping Spread Spectrum. This

method makes it difficult to intercept messages from

the devices, as the channel they are communicating

on changes after every packet. Hence, many

Bluetooth devices do not incorporate additional

forms of security. However, if an attacker is able to

follow the hop pattern, they can intercept all data sent

between the two devices.

When wearables pair with a base station, the

initial pairing packets are unencrypted, as they must

communicate with a device that has not received a

public key. This allows an attacker to gain

information stored in the pairing packets, such as the

hop pattern. Since the main packets are encrypted, it

is possible to obtain the key used to encrypt the keys

of both devices. Thus, an attacker can eavesdrop and

insert packets into the connection.

The issue is typically combatted by the devices

remaining paired so they do not send out additional

pairing packets. However, remaining paired does not

completely inhibit an attacker who has already

intercepted the initial pairing packets from

eavesdropping or inserting malicious packets. Our

experimental application forced a small set of

wearables to send empty data packets to an iPhone

when in environments that were pre-specified as

being insecure [15]. By sending empty data packets,

and subsequently halting all data requests made by

the phone, the devices maintained the connection,

disallowing an adversary to capture the pairing

information or obtain any information from

eavesdropping.

The original adaptive behavior was triggered only

when the device was in an environment that was

identified as insecure. The conditions defining an

insecure environment were predefined and statically

placed within the app to demonstrate its viability in

preventing an attacker from connecting to the device

themselves or eavesdropping on the packet

transmissions. The experimental application

successfully prevented data from being sent between

the iPhone and selected devices, which included a

Metawear R, a Fitbit Charge HR, a Pebble Time

Round, and a pair of LG Tone Ultra Bluetooth

headphones. However, the application it was unable

to adapt to new potential threats or insecure

environments. These threats and environments had to

be manually inserted, which is impractical for

wearable consumers.

Validating the concept led to investigating a

system that would allow for adaptation “in-the-wild.”

There are multiple methods by which this adaption

could be accomplished. The simplest method is to

allow users to define rules from within the

application. This method relies on users being aware

of the security issues in their everyday lives and,

therefore, is likely not to be adopted. A more feasible

approach is to automatically adapt to the potentially

1404

changing environments that consumers may find

themselves in. In this paper, we apply machine

learning algorithms to snapshots that are

crowdsourced from security conscious users in order

to classify environments as being secure or insecure.

4. Insecure Environment Snapshot

Generation

To improve on our experimental application, we

focus on creating a system that can connect multiple

user experiences and learn what made specific

situations insecure. We incorporate a cloud service to

aggregate user input and machine learning algorithms

to predict if a situation is insecure or not.

To simulate crowdsourcing and evaluate our

learning algorithms, we create a service that

generates snapshots of sensor values representing an

insecure environment. The snapshots are passed to

the learning algorithms to represent users telling

other users that they believe the environment as

described by their sensor values to be insecure. The

concept is similar to WAZE, a community-based app

for traffic and navigation, where users communicate

to a cloud service regarding traffic delays and the

alternative routes they are taking. Similarly, the

snapshot generation allows the algorithms to learn

sensor ranges and combinations potentially related to

insecure situations that can then be communicated to

other users.

4.1. User defined snapshots

The application normally generates snapshots in 5

minute increments. The only exception to this timing

is if a user explicitly tells the app that they feel their

data may be insecure. At the time this action is taken,

the app will generate a snapshot explaining that it is

in an insecure environment, and will remain in this

state until the user tells the app they are again in a

secure environment.

Each snapshot is labeled as pertaining to a secure

or insecure environment at the time of generation.

This information can be used to both train the model

to improve its accuracy and evaluate the current

model’s effectiveness. The snapshots are stored

locally until the user is in a position where they can

upload the snapshots to the cloud service. Users may

choose to not send data when in an insecure

environment, as well as to only send data when their

device is connected to Wi-Fi to avoid using cellular

data. The cloud service stores snapshots from all

users who use the application. By crowdsourcing

their data, we aim to acquire a large number of data

points for each potentially insecure environment.

Users are not burdened with defining rules to secure

their devices. Additionally, users allow other security

conscious users to help define insecure conditions

and situations with just the press of a button.

Figure 1: Sample Snapshot

An example snapshot is depicted in Figure 1.

Note the value for temperature, which is used when a

Bluetooth device which provides that data is

unavailable. We have limited our snapshots to only

include data that can be taken from devices we have

access to. However, it is simple to add additional

variables to these parameters when new information

becomes available. In the case of the above snapshot,

the user has said that they are insecure in their current

situation, so the application is sending all available

data to attempt to learn the reason.

This approach relies heavily on a user with an

understanding of their Bluetooth device

communication safety, which may not always be

possible. We expect that a user of our application

initially will be security conscious enough to be fairly

accurate with their choice of secure/insecure

environments. As more users are added, the existing

rule base should help give those users an

understanding of secure and insecure environments,

allowing them to become more aware of their

wearable data security in their everyday lives.

By crowdsourcing, we are able to generate an

extensive list of potentially insecure environments.

To beat this system, an attacker could change

locations in order to set up in an environment that

may currently be considered secure. However, there

are other conditions that an attacker relies on that can

identify potential insecure environments, such as the

presence of public WiFi. Thus, if an attacker was to

relocate, application users eventually would begin

reporting this new environment as insecure, making

the move only a temporary solution for the attacker.

4.2. Automatic generation

To test our approach and to obtain sufficient

initial data for the machine learning algorithms, we

{

 "Devices": "Pebble",

 "Heart Rate": "136.0",

 "Time": "1377.0",

 "Speed": "20.724903281615532",

 "Latitude": "35.72388775811967",

 "Longitude": "-95.94220940565249",

 "Temperature": "4.9E-324",

 "Insecure": "true"

}

1405

needed to create a snapshot generator that takes a set

of basic insecure environments and generates a

significant number of snapshots, both secure and

insecure, with loosely clustered data points

representing insecure environments.

We defined insecure ranges for each variable. For

the purposes of this test, these variables had

consistent but somewhat arbitrary values. In a real

world situation, these values would be very carefully

controlled such that they mimic an actual known

insecure environment. The algorithm generates a

value for that variable. As some of the variables will

not always be available to the device, such as

temperature and heart rate, we only generate those

values in approximately 30% of the snapshots.

Next the algorithm checks if that value is within

the insecure range we had previously defined. If so,

the chance that the snapshot will be defined as

insecure increases. To better simulate human

interaction with the system, we include a base chance

that each snapshot that is generated is insecure. This

is a low value to allow for snapshots which have

values within the predefined secure ranges to be more

commonly defined as secure. The chance that a

snapshot is insecure can be modified prior to

generation as needed to better simulate real

environments or to force much clearer clustering.

For initial testing, automatic snapshot generation

was necessary to ensure there were enough data

points for evaluation in Section 6. Each algorithm

was trained on identical datasets generated in this

manner. However, automatic snapshot generation

also presents the possibility of introducing known

insecure situations by generating multiple copies of

the same insecure environment. This possibility can

lead to the rapid response of the system in the event

of a sudden and clear insecure environment.

As in the user generation of snapshots, each

snapshot includes a value if the snapshot is within a

secure environment.

5. Machine Learning

We investigated two different machine learning

algorithms to provide situational awareness with

respect to wearable data security. The first algorithm,

a rule-based approach, generates a tree from which

rules can be derived that dictate when the wearable

should send only empty packets. These rules can be

pushed to our application as periodic updates. This

method allows users to decide when their

applications are updated, an important consideration

for a phone application with limited data or service.

The second algorithm, a cloud-based approach,

performs machine learning using the Microsoft Azure

Machine Learning Studio. This method requires the

application to be in constant communication with the

server, since the application needs to send each

snapshot to the service to determine if it is in a safe

environment. We discuss in more detail the training

and results of these two methods in Section 6.

5.1. Rule-based Approach

For the rule-based approach, we created a web

service to collect data from multiple users into a

single repository comprised of snapshots of the

wearable sensors. These snapshots are used to train

the machine learning algorithm towards identifying

insecure environments. The web service also stores

the resulting rules, which are sent to devices to adapt

them to notify wearables when in an insecure setting.

The architecture of this method is shown in Figure 2.

We provide more of the programmatic details below.

Figure 2: Rule-Based Architecture

The web service was entirely written in-house in

Python, relying on a single R script to perform

statistical calculations on the data that has been saved

to disk. Our mobile app generates snapshots via user

input from presumably insecure environments, as

well as in known secure environments, which are sent

to the web service. The web service parses the

request and converts the resulting data into a single

CSV file to be used by the learning algorithm. This

method potentially limits the number of simultaneous

requests the service can currently accept, but the

bottleneck can be reduced by incorporating a

database which is periodically exported to a CSV file.

Using a single CSV file reduces the application

complexity as the file can be directly accessed by the

machine learning algorithm.

Once sufficient data has been collected, we train

the model using the full CSV file. After initial

training, if there are minimal requests by users for

updated rules or if there are not enough new

snapshots being generated, the learning algorithm

will suspend processing until a predefined threshold

is reached so that it can properly retrain and not

1406

introduce rules which may be temporary or may

lower the effectiveness of important rules.

When training the model, our web service calls an

R script to execute the Random Forest learning

algorithm given either the created CSV file or a CSV

file with training snapshots as input. The program

learns which label and range is able to predict an

insecure environment within the snapshots and uses

that to generate a conditional inference tree, or ctree

[7], as output. A ctree is a two-class decision tree

which partitions the data such that the leaf nodes of

the tree are the probability that the branch is insecure

and that each internal node describes the features of

the snapshot. The tree is created using a genetic

algorithm, set to terminate when the data can no

longer be subdivided. This allows us to generate rules

by simply reading the branches of the tree. For

numeric values choosing the left branch will result in

a rule which is less than or equal to that value, while

taking the right branch results in a rule which is

greater than the value. An example tree can be seen

in Figure 3. Note in this tree, the node labeled by [2]

is connected to a leaf node of probability .226. The

rule generated by this can be seen in Figure 4. Figure

5 shows the branch [3][4][6] converted to rules.

The resulting ctree can be used to give a

prediction of whether or not a given snapshot is

insecure by following the tree nodes until a leaf node

is encountered and then comparing the confidence

values against a pre-specified threshold. If the values

are greater than the threshold, the snapshot being

checked is most likely insecure. Otherwise the

snapshot is considered secure. We test a variety of

thresholds in Section 6.

We chose to use a ctree because we wanted to

create a set of rules to determine whether or not a

user is insecure rather than to have a predictive model

which would require input data to make an evaluation

of whether or not the user is actually in an insecure

situation. This approach was chosen to prevent users

from needing to constantly poll a trained model to

determine if their data is insecure. Ctrees are also

more resistant to noise. Any data points that fall

outside of the insecure clusters cannot affect the

cluster so the rules do not change. The only way to

break up a cluster is to have a significant number of

safe points to be plotted inside of the cluster, which

would cause the integrity of the cluster to come into

question anyway.

Figure 3: Ctree format

Figure 4: Sample XML Rule

Figure 5: Combined Rules from Ctree

A ctree is a not a traditional decision tree. It has

all of the advantages and disadvantages of a

traditional decision tree, but the features are selected

using statistical inferences at each step to make a

reasonable educated guess for the features it chooses,

as opposed to the traditional algorithm which guesses

which dimension to divide on at each level, then

checks its accuracy and retries as needed. This speeds

<Policy>

 <Device id="All">

 <Rule>

 <Type>Speed</Type>

 <Op>GT</Op>

 <Cond>and</Cond>

 <value>10.3458</value>

 <priority></priority>

 </Rule>

 <Rule>

 <Type>Temperature</Type>

 <Op>LE</Op>

 <Cond>and</Cond>

 <value>50</value>

 </Rule>

 <Rule>

 <Type>HeartRate</Type>

 <Op>GT</Op>

 <value>140</value>

 <priority>.234</priority>

 </Rule>

 </Device>

</Policy>

<Policy>

 <Device id="All">

 <Rule>

 <Type>Speed</Type>

 <Op>LE</Op>

 <value>10.3458</value>

 <priority>.226</priority>

 </Rule>

 </Device>

</Policy>

[1] root

| [2] Speed <= 10.3458: 0.226

| [3] Speed > 10.3458

| | [4] Temperature <= 50

| | | [5] Heart.Rate <= 140: 0.119

| | | [6] Heart.Rate > 140: 0.234

| | [7] Temperature > 50: 0.191

1407

up the training time, while retaining the same level of

accuracy.

Once the model has been trained and the tree has

been created, the tree is iterated over using a

traditional depth-first search algorithm. At each leaf

node, we get a certainty from 0-1 for the decision

present in that branch. If the certainty is high enough

and the decision is 1, the path is translated to an

intermediate language that we have designed for the

purpose of representing a set of conditions which

must all be true for a decision to be made. The lower

bound of certainty is determined beforehand based on

the risk we are willing to allow our users to take. This

value can be adjusted by the user from within the app

as needed. We look at optimal values from our initial

tests in Section 6.

The resulting language is then parsed according to

the original XML rule schema specified in [15] that

works within the existing app. An example of the

algorithm output can be seen in Figure 3. Each line is

parsed by the algorithm individually, then turned into

a rule. In the case of the tree in Figure 3, this means

creating a rule based around Speed first, then taking

both branches. The left branch is a leaf node, which

gives us the rule seen in Figure 4. The right branch

leads to two temperature options, one of which has

additional children. An example of one of these

completed branches can be seen in Figure 5.

After parsing, the rules are stored in a database on

the web server. When a request is made to the

service, the list of rules is returned to the requester.

This allows users to get updated rules at their

convenience. As previously stated, the tree and, thus,

the rules are resistant to noise, so the integrity of the

rules is preserved regardless of how long the user

reports snapshots without receiving the latest update.

5.2. Cloud-based Approach

The previous approach required the app to be

periodically updated to reflect potential insecure

environments by pushing the rules to the app. An

alternative approach is to poll a web service to

determine if the current state is insecure. In this

method, snapshots are sent to the Microsoft Azure

cloud where the Machine Learning studio is used to

deploy an algorithm to determine whether or not an

environment is insecure. Because of the cloud nature

of the algorithm, it can use snapshots that it receives

to continue to learn new, potentially insecure

environments constantly, adding and retraining on

each new snapshot that it receives.

The more simplistic architecture of this approach

can be seen in Figure 6.

Figure 6: Cloud-based Architecture

Using Azure ML studio, we trained a Decision

Forest Regression model to evaluate a set of

snapshots to determine how likely each snapshot is to

be from an insecure environment. The Decision

Forest Regression algorithm was chosen because it is

similar in function to the methods used in the rule-

based approach, is considered to have good accuracy,

and is fairly fast to train. This is because the

regression algorithm uses multiple decision trees, all

trained concurrently, which results in a model that

aggregates over all the trees to find a Gaussian

distribution close to the distribution of all the trees

taken individually. Ideally, these results could be

taken from Azure ML Studio and converted into rules

in much the same way as the rule-based approach.

However, Azure ML Studio does not support the

retrieval of the tree, preventing us from taking the

results and converting them to a series of rules. Azure

ML Studio makes it very simple to create a web

service to handle individual requests for data to be

scored, allowing us to use the system to evaluate

snapshots as they are generated by a user.

Azure ML Studio requires a CSV file for input,

which allowed us to use the same file to train this

model as was used in the rule-based approach. Unlike

the rule-based approach, Azure ML Studio requires

data to use for testing the model and requires the

output of the algorithm to be in CSV format.

The web service takes in a snapshot and reports

whether or not the snapshot is insecure, with a

certainty ranging from 0 to 1 which represents how

likely the algorithm thinks the snapshot is insecure.

To train the web service, we uploaded a training CSV

file. This file is automatically parsed by Azure ML

Studio into an internal format that Azure ML Studio

uses. This data is then fed into a tuning module which

takes the machine learning algorithm and trains a

model. The resulting model is then deployed via

another web service, as seen in Figure 7. This service

takes the model and compares it with the input from

the web, outputting the result to the requester. Azure

ML Studio requires that a sample set of snapshots is

included so that it knows the format the model is

trained on, and this is included with snapshots2.csv.

1408

Figure 7: Employing Web Services

Similar to the rule-based approach, this model

predicts if a snapshot given to it is insecure by

checking if its confidence in that choice is above a

specified threshold. We test a variety of thresholds in

Section 6.

6. Evaluation

To evaluate our solution, we trained both machine

learning approaches on the same set of one hundred

thousand generated snapshots. The trained models

were then tested against an additional one hundred

thousand generated snapshots, and scored at different

levels of confidence. To start, we trained each model

on a base set of snapshots which had predefined

clusters. These clusters were arbitrarily chosen, but

would appear in a real life setting. The generated

training set had a 10% chance that every snapshot

would be insecure. For each snapshot that was within

a cluster range, the chance was raised to at most 55%.

We feel that this approximates the type of data we

would get from an initial set of security conscious

users.

The results from this initial training set can be

seen in Table 1a. Our test set, which consisted of an

additional one hundred thousand snapshots, was then

scored by both learning algorithms. In the rule-based

approach, we checked how often the rules would

trigger based on the confidence values we set as a

threshold. We are able to achieve fairly stable results

with confidences between 25% and 50% on both

algorithms, though the rule-based approach provides

slightly lower values for all confidences. This implies

both learning algorithms are accurate. Note that, at

0%, when all locations are considered insecure, the

learning algorithm is still correct 38.8% of the time

on both algorithms. This is because the scored data

set had around 38.8% of the snapshots generated as

being insecure.

After the initial training set, we generated a new

set of training and test data, each with one hundred

thousand (100,000) snapshots, which introduced two

new clusters into the data. The first based on location

and the second based on temperature. The addition of

these two new clusters raised the total percentage of

the insecure environments to 48.9%. This simulated

additional attackers appearing after the initial

training, showing resilience in the training model and

the ability of the system to learn new clusters as they

arise.

The results of this dataset can be seen in Table 1b.

Again, we see the best results from confidences

between 25% and 50%, and a lower accuracy from

the rule-based approach. While both performed well

at 50% confidence, the cloud-based service

outperformed by 1.6-12.9%. This is most likely

because of the choice of the decision forest

regression as the training model, as this model is

fairly accurate.

Table 1. (a) Initial Training Set Results
 (b) New Cluster Results

%
 C

o
n

fi
d

en
t

%
 C

o
rr

ec
t

0 38.8

25 78.9

50 80

75 70.8

95 66.3

0 38.8

25 81.6

50 81.5

75 71.1

95 69.5

R
u

le
-B

as
ed

C
lo

u
d

-B
as

ed

%

 C
o

n
fi

d
en

t

%
 C

o
rr

ec
t

0 48.9

25 68.9

50 75.8

75 67.9

95 52.1

0 48.9

25 80.3

50 80.2

75 67.7

95 65

R
u

le
-B

as
ed

C
lo

u
d

-B
as

ed

7. Conclusion and Future Work

In this paper, we extended the functionality of

previous research on our existing mobile application

which prevents Bluetooth communication between a

base station and a device in an insecure environment.

We introduce a system that promotes the use of two

machine learning algorithms, trained on simulated

crowdsourced data, to predict if a user is in an

insecure environment. We found that both machine

learning algorithms were accurate, with the rule-

based method being accurate up to 80% and the

cloud-based method being accurate up to 81.6%.

Both options allow for increased security in

potentially insecure environments.

This method could be implemented by device

manufacturers and application creators using

preexisting machine learning packages and cloud

services. Similar to WAVE’s need for modified street

1409

maps, it would require modification only as new

sensors were configured on wearables and how the

data was formatted. The app creators could determine

how often to retrain the models based on their

security needs, which might provide a competitive

advantage. The main limitation for a third-party app

is whether device manufacturers are willing to allow

developers access to what the wearable

communicates, which could restrict how the device

can be adapted.

Future work will focus on both improving the

machine learning algorithms and increasing the

features which can be learned on. Additionally, we

would like to begin testing our app with a small user

base to see if our generated dataset is similar to the

real world data that users would generate. Since our

app relies on users to be aware of the locations and

situations where they are actually insecure, we plan

to analyze how often these users are correct. An

important consideration may be to identify if there

are other factors that can be assessed to automatically

detect insecure environments that users are in and

provide information on a more public scale.

8. References

[1] https://www.bluetooth.org/en-

us/Documents/Annual_Report_2014.pdf

[2] P. Bourelos, G. Kousiouris, O. Voutyras, and T.

Varvarigou, “Heating Schedule Management Approach

through Decentralized Knowledge Diffusion in the Context

of Social Internet of Things”, Proceedings of the 19th

Panhellenic Conference on Informatics, ACM, Athens,

Greece, 2015, pp. 103-108.

[3] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L.

Li, T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao:

A Machine-Learning Supercomputer”, Proceedings of the

47th Annual IEEE/ACM International Symposium on

Microarchitecture, IEEE Computer Society, Cambridge,

United Kingdom, 2014, pp. 609-622.

[4] A. Diallo, W. Al-Khateeb, R. Olanrewaju, and F. Sado,

"A Secure Authentication Scheme for Bluetooth

Connection", Proceedings of the International Conference

Computer and Communication Eng., 2014, pp.60-63.

[5] M. Georgescu, D. D. Pham, C. S. Firan, U. Gadiraju,

and W. Nejdl, “When in Doubt Ask the Crowd: Employing

Crowdsourcing for Active Learning”, Proceedings of the

4th International Conference on Web Intelligence, Mining

and Semantics, ACM, Thessaloniki, Greece, 2014, pp.

12:1-12:12.

[6] J. Hong, “Research Issues for Privacy in a Ubiquitously

Connected World”, NITRD Research Strategy on Privacy,

2015, pp. 1-20.

[7] T. Hothorn, K. Hornik, and A. Zeileis, “ctree:

Conditional Inference Trees”,

http://cran.nexr.com/web/packages/partykit/vignettes/ctree.

pdf, 2015.

[8] N. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and

F. Kawsar, “An Early Resource Characterization of Deep

Learning on Wearables, Smartphones, and Internet-of-

Things Devices”, Proceedings of the 2015 International

Workshop on Internet of Things towards Applications,

2015, pp. 7-12.

[9] Y. Minoda, I. Ohama, and E. Muramoto, “A Machine

Learning Approach for Lighting Perception Analysis via

Crowdsourcing”, Proceedings of the 2015 ACM

International Joint Conference on Pervasive and

Ubiquitous Computing and Proceedings of the 2015 ACM

International Symposium on Wearable Computers, Osaka,

Japan, 2015, pp. 1355-1360.

[10] P. Moreno, A. Artex-Rodriguez, Y. W. Teh, and F.

Perez-Cruz, “Bayesian Nonparametric Crowdsourcing”,

Journal of Machine Learning Research, JMLR.org, 2015,

pp. 1607-1627.

[11] X. Pan, Z. Ling, A. Pingley, W. Yu, N. Zhang, and X.

Fu, “How privacy leaks from Bluetooth mouse?”,

Proceedings of the ACM Conference on Computer and

Communications Security, 2012, pp. 1013-1015.

[12] M. Ryan, “Bluetooth: with low energy comes low

security”, 7th USENIX conference on Offensive

Technologies, USENIX, Washington, D.C., 2013, pp. 4-4.

[13] J. Saxe, R. Turner, and K. Blokhin, “CrowdSource:

Automated Inference of High Level Malware Functionality

from Low-Level Symbols Using a Crowd Trained Machine

Learning Model”, Proceedings of the 9th International

Conference on Malicious and Unwanted Software, IEEE,

Fajardo, PR, 2014, pp. 68-75.

[14] M. S. Shahriar and M. S. Rahman, “Urban Sensing

and Smart Home Energy Optimizations: A Machine

Learning Approach”, Proceedings of the 2015

International Workshop on Internet of Things Towards

Applications, ACM, Seoul, South Korea, 2015, pp. 19-22.

[15] C. Walter, M. L. Hale, and R. F. Gamble, “Imposing

Security Awareness on Wearables”, Proceedings of the 2nd

International Workshop on Software Engineering for Smart

Cyber-Physical Systems, ACM, New York, NY, USA,

2016, p. 29-35.

[16] C. Wang, C. Guo, Y. Wang, Y. Chen, and B. Liu,

“Friend or Foe?: Your Wearable Devices Reveal Your

Personal PIN”, Proceedings of the 11th ACM on Asia

Conference on Computer and Communications Security,

ACM, New York, NY, USA, 2016, pp. 189-200.

1410

