
Stateful SOA-conformant Services as Building Blocks
for Interactive Software Systems

Roman Popp and Hermann Kaindl
TU Wien, Institute of Computer Technology, Vienna, Austria

{roman.popp, hermann.kaindl}@tuwien.ac.at

Abstract

Services implemented through information and commu-
nication technology need to provide value for customers,
with whom they usually have non-trivial interaction. How-
ever, user interface and (Web) service specifications are of-
ten disconnected. The most widely used Web services are
stateless, hence only trivial user interaction with one-step
input and output can be embedded in such a service. Re-
membering the state is a prerequisite for implementing non-
trivial user interaction with a service. We present new state-
ful SOA-conformant services as building blocks for interac-
tive software systems. This new kind of service has a unified
high-level protocol both for (non-trivial) user interaction
with a machine and for machine-machine communication.
Services with the same protocol can substitute each other
(also dynamically at runtime), whether they are machine
or user services. Using such services as building blocks,
interactive software systems can be composed, also recur-
sively. As a matter of fact, from such service specifications
(graphical) user interfaces for non-trivial interaction can
be automatically generated.

1 Introduction

Both consumers and enterprises have needs for services,
and essential parts of such services can be provided by in-
formation and communication technology. Currently, this
technology is often restricted to Web services and their
choreography, which have restrictions, in particular, for im-
plementing interactive systems (as explained below). The
Service-oriented Architecture (SOA) encompasses much
more elaborate technology. More recently, SOA has also
been focused more on the support of business-relevant ser-
vices [4].

Interactive systems need to be more and more connected,
both for interacting with their users and with each other.
Connecting software systems can be achieved, e.g., through
Web services. They have well-defined signatures specify-

ing how a Web service can be called, but they are state-
less. This allows only embedding trivial user interaction in
a single step of input and output in a Web service but no
multi-step interactions like a usual flight-booking process.
While Web service composition is possible with specific
languages, manual effort and glue code is necessary to in-
clude non-trivial user interaction. The resulting interactive
system cannot be provided as a (SOAP-based) Web service
for further composition, since Web services are stateless.

Fig. 1 illustrates a simplified example in the domain of
travel booking, where a travel agency system uses two flight
booking systems, two hotel booking systems, and a recom-
mender system. The flight booking systems allow booking
(single) flights with specific airlines. They are connected
with each other and result in a composed flight booking
round-trip system, which is included in the travel agency
system. All of these systems should be directly accessi-
ble by human users as well, without any adaptation, so that
each of these systems can either be used by another one,
or by a human user, without any additional specification.
Flight booking, hotel booking and the recommender system
are used together by the travel agency system. Each of these
services requires more than one step to fulfill the given task,
e.g., (single) flight booking involves first selecting departure
and destination airports as well as a flight date, in a second
step selecting a flight, and in a third one entering the pas-
senger and payment details. Of course, such a system can
be built with stateless (Web) services, as usual with some
code in a procedural language. The result, however, is no
(stateless) service any more, therefore it cannot be used for
further composition.

We strive for providing all such systems through (state-
ful) services, in order to allow for composing an interactive
system, e.g., for a travel agency from such building blocks,
which is again a stateful service. Since Web services are in-
sufficient for this purpose, we propose a new form of more
complex services, UCP:Services.1 (UCP stands for Uni-
fied Communication Platform, where the technology behind

1See http://ucp.ict.tuwien.ac.at for details.

1257

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41303
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND



Figure 1: Travel Booking Example

UCP:Services is implemented.) Web services can be used
for creating the functionality of UCP:Services, but this is
not required.

UCP:Services are stateful, so they can embed non-trivial
user interaction. In particular, this interaction is sup-
ported by automatically generated (graphical) user inter-
faces (UIs). For example, FlightBooking can be provided
as a UCP:Service, which includes both searching for a flight
and (possibly) booking it. This involves more than the triv-
ial user interaction possible in Web services, which only
have signatures as their interface specification. In addition
to signatures, defined protocols of UCP:Services include es-
pecially behavior specifications as their interfaces, which
specify such a non-trivial user interaction in the form of
behavioral models of possible ‘conversations’. The prop-
erty ‘stateful’ does not mean, however, that a UCP:Service
would keep any hidden information from one such conver-
sation to another one.

This kind of protocol also facilitates composition of
UCP:Services. In our running example, FlightBooking
Roundtrip is composed of FlightBooking (twice), and it is
again a UCP:Service. So, it is also directly accessible by a
human user (through an automatically generated UI), and it
can be further used as a building block for (recursive) com-
position of the TravelAgency system. The latter is, again, a
UCP:Service, which can again be used for further composi-

tion.
UCP:Services with exactly the same protocol can sub-

stitute each other, whether they are fully implemented in
software or just wrap a user interface. The Recommender
service in our example can either be an automated recom-
mender UCP:Service or a human providing recommenda-
tions through a UI with the same protocol. They may even
substitute each other dynamically at runtime, without any
technical difference for the composed TravelAgency sys-
tem.

Our approach for providing UCP:Services builds on
Discourse-based Communication Models, which have been
originally introduced for specifying communicative interac-
tion models as input for automated generation of (graphical)
UIs, see, e.g., [5, 16, 18, 19, 20].

Let us present this work using Design Science Research
according to [15], which includes six steps. Our introduc-
tion above covers steps one (problem identification and mo-
tivation) and two (definition of the objectives for a solution).
Step three (design and development) is covered by our pre-
sentation of new UCP:Services and their essential proper-
ties (in particular SOA-conformance) as well as the defi-
nition of our proposed runtime interface of UCP:Services.
The presentation of our reference architecture and a brief
explanation of its implementation corresponds to step four
(demonstration). Step five is an evaluation according to
[14]. Finally, step 6 (communication) is given by this pa-
per as a whole.

2 Background and Related Work

First, we present some background material and discuss
related work, in order to make this paper self-contained. In
particular, we provide some background related to services
and to Discourse-based Communication Models, which
serve as a technological basis of our new approach.

2.1 Background on SOA

Service-oriented Architecture (SOA) is an architectural
style that supports service-orientation according to a set
of principles for designing and developing software in the
form of inter-operable services. Such services are software
components of this architecture, with well-defined function-
ality and interfaces to be used by other services.

Specific services (according to SOA) provide, e.g., the
capabilities of booking a flight or a hotel room. A key idea
of SOA is that services can be composed to new services.
An example of such a composed service may provide the
capability to book a travel, using services for booking flights
and hotel rooms, respectively.

Another key idea of SOA is that services can be replaced
by other ones during runtime. If the services to be used for

1258



replacement are still unknown, they may be searched for.
Such searches by the requester of a capability are per-

formed according to SOA with a so-called Service Discov-
ery. It uses a (possibly global) Service Registry, where each
service registers its provided capability together with its ad-
dress. If a requester is looking for a specific capability, it
asks the Service Registry for an address of a service provid-
ing this capability.

The OASIS Reference Model for SOA [11] consists of
two models, an Information Model and a Behavior Model.
The Information Model specifies the information that may
be exchanged with a given service. This includes the format
of the exchanged information, the structural relationships,
and the definition of used terms. The Behavior Model spec-
ifies the possible actions of a given service and the temporal
order of single interactions.

An OASIS Service Description provides the informa-
tion needed to use the described service. It consists of the
service interface, the reachability of a service, and possi-
bly some policies (specifications of service performance or
quality of service). The service interface has to provide both
an Information Model and a Behavior Model.

2.2 Related Work

Web services can be composed, of course. While SOAP-
based Web services are stateless, RESTful Web services2

can have states represented in their resources. This allows
defining application state, but not transitions among the
states. A comparable approach for handling states, through
defining a session as a resource or service, is used in Open
Grid Services Architecture and Open Grid Services Infras-
tructure [6].

In order to allow specifying constraints on such transi-
tions, Rauf and Porres [21] extend the WADL3 definition of
RESTful services with pre- and post-conditions. Such con-
ditions can also be defined for SOAP-based Web services
using the Semantic Markup for Web Services (OWL-S).4

In general, however, a process with these states cannot be
uniquely specified in this way.

All these approaches are underspecified, as they do not
fully define the interaction with the service. Certain ap-
proaches using agents address this problem by dynamically
generating a suitable process (e.g., [23]), based on a seman-
tic service specification. Such a planning task may require
a huge calculation effort and result in different processes in
different situations. While this may be useful, it makes it
hard to define user interaction based on such processes.

Hence, all these approaches cannot define interaction de-

2https://docs.oracle.com/javaee/6/tutorial/doc/
gijqy.html

3https://www.w3.org/Submission/wadl/
4https://www.w3.org/Submission/OWL-S/

sign for user interfaces like UCP:Services, since they lack
a complete high-level protocol like UCP:Services. While
substitutability is possible between Web services imple-
mented by software, it is not with services provided by hu-
mans.

While simple HTML Web pages are stateless, in princi-
ple, Web Applications, which use a Web browser as a client,
are stateful. This allows them to hold a dialog state and to
cache values. For Web Applications, AJAX has established
itself as a standard for their interaction with the server. So,
interactive applications can be created with this technol-
ogy. However, no composition of Web Applications (like
with Web services) is possible and, therefore, they cannot
be used as building blocks for interactive software systems
like UCP:Services.

For the direct use of Web services through a human
via a (generated) user interface, several research contribu-
tions exist. Dynvoker5 [24] is a modular servlet application,
which allows the dynamic generation of GUIs for Web ser-
vices. However, it can only handle trivial user interaction
with one-step input and output through such a generated
GUI. For combining the access of independent services,
MashUp UIs can be constructed, but cannot be reused by
other services / UIs [3].

For specifying interactive software systems based on
Web services, MARIAE [13] uses CTT (Concur Task Tree)
models. MARIAE focuses on the UI generation for such
a system, but the system as a whole cannot be made avail-
able as a composed service. Vice versa, since such a model
does not define a protocol, only single Web services can be
replaced by a human, but not a non-trivial application as
whole.

2.3 Discourse-based Communication
Models

A simplified flight booking example as shown in Fig. 2
illustrates a Discourse Model for finding and booking single
flights as well as their payment. This is an example of one
of the three types of models contained in a Discourse-based
Communication Model, which we propose for specifying
UCP:Services.

In order to keep this explanation brief, let us focus on
the excerpt marked with an asterisk, which specifies the se-
lection of departure and destination airports. Both are mod-
eled as an Adjacency Pair [10] each (shown as diamonds),
connecting each a ClosedQuestion Communicative Act and
the corresponding Answer Communicative Act (shown as
rounded boxes). An Adjacency Pair models typical turn-
takings during a conversation (e.g., Request–Response or
Question–Answer. Communicative Acts are an abstrac-
tion from Speech Acts, introduced by [22] and also used

5http://dynvoker.org/

1259



*

Figure 2: FlightBooking Discourse

as a basis for common agent communication languages,
e.g., FIPA ACL [8]. The fill color of the Communicative
Acts illustrates the uttering communication party (yellow
for the Airline and green for the Customer). The Proposi-
tional Content of the Communicative Acts specifies the re-
quested functionality of the receiving communication party.
In Fig. 2, only a short-hand version is shown. The com-
plete content specification of the ‘select departure airport’
Communicative Act can be seen in Fig. 5 below. Adjacency
Pairs are connected with a Discourse Relation, partly de-
rived from Rhetorical Structural Theory (RST) [12], in this
example a so-called Joint relation.

Another concept that we adopted from Conversation
Analysis is the Inserted Sequence. In our approach, it is an
additional discourse that a communication party can start
in case it does not have enough information to respond to
a Request or Question directly. It can interrupt the normal
execution of an Adjacency Pair. After the communication
party having initiated the Inserted Sequence has all required
information, the normal execution of the interrupted Adja-
cency Pair is continued. In our running example, the main
part of the Discourse Model shown in Fig. 2 is actually an
Inserted Sequence of the Adjacency Pair in the box in the
top left corner.

The other two models contained in a Discourse-
based Communication Model are the Domain-of-Discourse
(DoD) Model and the Action-Notification Model (ANM).
Fig. 3 shows an example of a DoD Model, which fits the
Discourse Model example in Fig. 2. In essence, it specifies
those objects (and their relations) in the domain that the dis-

course ‘talks’ about. DoD Models are represented in Ecore
(similarly to UML class diagrams). The Action-Notification
Model specifies the actions and notifications that can be ex-
ecuted by a communication party, i.e., its functional inter-
face. Fig. 4 shows an example of an ANM. In fact, this
is an excerpt of the predefined Actions and Notifications in
UCP. If needed, a developer has the possibility to model
additional Actions and Notifications in the ANM.

Figure 3: FlightBooking Domain-of-Discourse Model

1260



Figure 4: Basic Action-Notifcation Model

3 UCP:Services

Now let us present our new UCP:Services and their es-
sential properties. We define these services and sketch
their conformance to SOA. In particular, we explain how
UCP:Services can be composed, also recursively, so that
they can serve as building blocks for interactive systems.

3.1 Definition of a UCP:Service

A UCP:Service encapsulates a software component that
may have a state. The interaction with the service is
specified through an interface definition, including a static
‘message-signature’ part and a dynamic part that defines its
behavior. The static part only defines the method for re-
ceiving messages. For the dynamic part, Discourse-based
Communication Models are used.

Each Discourse-based Communication Model can be au-
tomatically transformed to a protocol statemachine, which
defines the communication between two UCP:Services.
This protocol statemachine can be further transformed to
a statemachine from the viewpoint of each actor, for driving
its interaction and calling the assigned functionality. These
transformations have been previously defined in the context
of automated GUI generation [16, 19].

The functionality of a UCP:Service can be provided
by a human through such a GUI (UCP:UserService), or
by a software system (UCP:MachineService). In gen-
eral, a UCP:UserService can be an interactive system
that includes software functionality as well, which can
be provided by UCP:MachineServices it is composed of.
A UCP:MachineService is completely automated through
software, where (basic) functionality may be provided by
usual Web services. In general, a UCP:MachineService

may include hardware functionality as well, e.g., movement
of a robot.

3.2 SOA Conformance

For sketching the SOA conformance of UCP:Services,
we make use of the OASIS Reference Model. We show that
everything required by this reference model is available in
UCP:Services. In particular, we show this for the two mod-
els of OASIS and the encompassing Service Description.

• Information Model

All the information according to the OASIS Informa-
tion Model is captured in the DoD Model of UCP. In
particular, the DoD Model includes the format of the
exchanged information, the structural relationships,
and the definition of used terms, in an object-oriented
way.

• Behavior Model

Regarding to the OASIS Reference Model, we have to
have a closer look and to consider its two sub-models,
the Action Model and the Process Model.

The Action Model characterizes the actions that can
be invoked in a service, or at least the public view of
the actions. We use our Action-Notification Model for
specifying this for UCP:Services.

The Process Model deals with the temporal order of
single interactions in the sense of messages from and
to a service. Our Discourse Model fully specifies it for
UCP:Services. Hence, no glue code is needed in this
regard, in contrast to Web services.

More precisely, SOA requires that a service invoca-
tion is triggered by the service requester. In order to
achieve this with a UCP:Service, its Discourse Model
has to ensure that the Requester starts the defined con-
versation. Technically, this can be modeled as a Re-
quest Communicative Act triggering an Inserted Se-
quence as shown in Fig. 2 above.

• Service Description

So, the specification of a UCP:Service in the form
of a Discourse-based Communication Model pro-
vides models according to an OASIS Service Descrip-
tion. However, these models neither specify how
an invocation of a UCP:Service can actually be per-
formed at runtime, nor how the messages implement-
ing a conversation are exchanged. This is defined
for UCP:Services in their Runtime Interface, which
is presented below. In addition, also the techni-
cal reachability of a UCP:Service is not defined in
these models. So, a unique identification of each

1261



UCP:Service is needed as well as the address of the
hosting server (including the transport protocol used).
Each UCP:Service has a unique service name, and the
address has to be known by the Requester, possibly
taken from a Service Registry. Finally, UCP:Services
currently do not implement policies, but this is not
mandatory for SOA-conformance.

3.3 How to Compose UCP:Services

UCP:Services can be composed from other
UCP:Services. Since UCP:Services are stateful and
more complex than Web services, also the composition of
UCP:Services is more complex than the composition of
Web services. So, we have to explain specifically how this
can be done.

In order to keep this explanation simple, let us do it
with our running example, more specifically the compo-
sition of the UCP:Service FlightBookingRoundTrip using
two UCP:Services FlightBooking as shown in Fig. 1 above.
The interaction with FlightBooking (see Fig. 2) asks for in-
formation on the departure airport, the destination airport,
and the departure date. FlightBookingRoundTrip asks ad-
ditionally for information on the date for the inbound flight.
It also proposes a second list of flights for selecting an in-
bound flight. Such an enhanced Discourse Model has to be
provided for the composed service in order to specify its
protocol.

The more intricate task is to compose the logic of the
composed service by using the protocols of the ones it is
composed of. Let us explain it as a scenario as it unfolds
when the composed service works according to its protocol
while using the other ones. After FlightBookingRoundTrip
has been invoked, it requests all possible departure and des-
tination airports from both FlightBooking UCP:Services,
and merges them. Now it can enter the protocol with its re-
quester and display these merged lists. After the requester
has selected both airports and given the destination and ar-
rival dates, the composed service forwards all this flight
information to the FlightBooking services and asks for all
available outbound and inbound flights. More precisely, it
has to swap the airport information for defining the inbound
flight, of course. It merges the respective flight lists and
presents them to its requester. Analogously, booking and
paying flights are composed.

Since such a composition of UCP:Services results in a
UCP:Service, the composed one can be used for further
composition, i.e., recursive composition is possible.

3.4 Unified Usage

Each UCP:Service can either be used by a machine or a
human, without any change or annotation. A GUI for hu-

man use can even be automatically generated, see [19, 20].

3.5 Substitutability

UCP:Services with the same protocol can substitute
each other (also dynamically at runtime), whether they
are UCP:MachineServices or UCP:UserServices. Techni-
cally, only the address of the used UCP:Service has to be
changed, or alternatively, the implementation of the other
service has to be bound to the address of the substituted
one. The first possibility is easy to achieve through a
UCP:Service Registry. This registry allows for finding all
the UCP:Services with the same protocol (specified through
the same Discourse-based Communication Model), which
may substitute each other. It may even automatically de-
liver different UCP:Services depending on the time of the
day. This makes sense for a service like the Recommender
for a travel agency, where humans may provide this service
during working hours, and a machine otherwise.

4 Runtime Interface

Now let us define the new runtime interface for se-
rial communicative interaction between two communica-
tion partners each. These can be a user interface (represent-
ing a human user) and a (software) system, or two (soft-
ware) systems.

At runtime, only messages have to be exchanged. As
motivated above, however, their dynamic coordination
should be specified explicitly in behavioral models, which
can be understood as protocol-machines. We use Discourse-
based Communication Models for such specifications. They
can either be directly interpreted by both communica-
tion parties at runtime or transformed to statemachines
before, so that they can be executed more efficiently.
While Discourse-based Communication Models, in princi-
ple, model all possible behaviors from a view from the top,
their interpretation or transformation has to be done from
the point of view of the system whose interaction they drive.
Automatic generation of such statemachines is possible ac-
cording to [16], where also subsequent automatic genera-
tion of behavioral models for GUIs is defined (for handling
the cases where on one GUI screen more than one interac-
tion can be offered at the same time).

For allowing several conversations at the same time, each
one is assigned a unique ID. Such an ID is contained in each
message, so that it can be related to the conversation it be-
longs to. For making the approach technology-independent,
the messages are encoded in XML for being exchanged.
Their content is derived from the DoD Model, which also
defines the serialization.

The runtime interface also uses Communicative Acts for
the transport of messages between the two interacting com-

1262



Figure 5: Runtime Message Flow (based on [18])

munication parties. Fig. 5 shows how the communicative
interaction unfolds for the simple question and answer as
specified in the part of Fig. 2 indicated with an asterisk.

In this example, it is more precisely a ClosedQuestion
(for all available airports). Therefore, it is necessary to cre-
ate the list of possible answers (the list of available airports),
before it can be sent to the other system. Once this list
is available, the message is encoded in XML and actually
sent. The communication partner has to select one of these
choices and to send it back in a new message, which is again
encoded in XML. The system receiving this reply message
can act accordingly.

For acting as described above, several functions have to
be available to these systems, e.g., for creation of the choice
list, for selecting from it, and for acting based on the se-
lection. They are explained below, and more details are
available in [18]. The key point is that it does not matter
whether these functions are provided by software or a hu-
man (through a user interface).

5 Reference Architecture and Implementa-
tion

For facilitating the use of our approach, we created a ref-
erence architecture and provide an implementation.6 Our
proposed runtime environment as implemented in UCP is
called UCP:RT.

5.1 Overview

Fig. 6 illustrates the structure of our reference architec-
ture. It is based on the structure of common application
servers (such as JBOSS,7 etc.). The main component of this

6Eclipse update site at http://ucp.ict.tuwien.ac.at/
eclipse-update

7http://www.jboss.org/

architecture is the UCP:Server hosting the UCP:Services
and the UCP:TransportStacks (shown in a yellow box each).
A UCP:Service represents the interactive system, with the
exception of the message exchange. A UCP:TransportStack
is responsible for exchanging the messages. It is possible to
implement different kinds of UCP:TransportStacks. In the
context of composing systems provided by different servers,
the HTTP UCP:TransportStack is used. This stack uses an
HTTP/SOAP-based Web service8 for exchanging the XML-
encoded messages. If all systems are hosted on the same
host, it is also possible to use a different stack and direct
method invocation, which is more performant, of course.

To handle several conversations as sessions at the same
time, the concept of a dialog represents them. So, in addi-
tion to the three components explained above, there is also
a class Dialog (shown in a gray box in the figure). Each Di-
alog instance has a relation to exactly one UCP:Service and
one UCP:TransportStack instance each, hosted on the same
instance of the UCP:Server. Each UCP:Service provides
a separate ServiceDialogPort, used for receiving Commu-
nicative Acts for each ongoing conversation. For each
conversation, UCP:RT provides an instance of the Dialog
class for each communication party. Therefore, a con-
versation between two UCP:Services consists of two in-
stances of the Dialog class, which are connected through
UCP:TransportStack instances. This is illustrated with the
dashed line in Fig. 6.

5.2 Reusable Components

The components of our reference architecture can be
reused for any interactive system providing such a runtime
interface. The UCP:Server and each UCP:TransportStack
are independent of a specific UCP:Service, which is the
only component that depends on the specific system.

8Web Service available at http://ucp.ict.tuwien.ac.at:
18888/HttpServer

1263



UCP:Server

UCP:TransportStackUCP:Service

Dialog

*
1

1

*

1

*

*

1

UCP:Server

UCP:TransportStack
UCP:Service

Dialog

*
1

1

*

1

*

*

1

HTTP/SOAP

ServiceDialogPort ServiceDialogPort

Figure 6: Structure of the Runtime Architecture

A UCP:Service represents a communication party. It can
either be implemented as a (software) system or as a user in-
terface, which allows a human user to interact with another
communication party.

Each UCP:Service provides two interfaces. The first is
called ServiceDialogPort and provides the functionality to
receive Communicative Acts. To facilitate simple session
management, for each dialog/conversation a new instance
of the ServiceDialogPort is created. The second interface of
the UCP:Service is mainly used to request a new instance of
a ServiceDialogPort as defined in the Factory Pattern [9].

5.3 GUI/Software-specific Components

A UCP:Service can either be provided by a human
through a user interface or by a software system. There-
fore, we provide two corresponding reference designs for
UCP:Services. For a user interface, the reference design
follows the MVC pattern. It is explained in [17].

For a software system, two main components exist: one
for interpreting the Discourse-based Communication Model
or the statemachine transformed from it, respectively (the
execution engine), and one for providing the specific appli-
cation functionality of the software system. The first com-
ponent is independent from a specific model or can be gen-
erated fully automatically, and can, therefore, be reused for
each system.

So, only the application functionality has to be imple-
mented/provided specifically. What functionality is needed
can be extracted from the Discourse-based Communication
Model and is based on the Action-Notification Model and
the Domain-of-Discourse Model, and it is independent from
the behavior model (with the restriction that all precondi-
tions for a specific functionality have to be fulfilled, e.g., for
selecting a flight, a departure and a destination airport have
to be set). If such a functionality is available through Web

services, these can be directly connected to the provider of
the application functionality.

The current implementation of the execution engine
directly interprets the Discourse-based Communication
Model, but also an implementation as a statemachine
(which is fully automatically generated) can be provided
easily.

5.4 Implemented Examples of
UCP:Services

The example introduced above is fully implemented on
top of UCP:RT, including the (generated) GUIs.9 Our uni-
fied interfaces provide substitutability of user services with
software services, or vice versa. For example, we used (an
earlier version of) this unified interface both for connect-
ing (generated) GUIs and for interfacing robots with other
robots [7].

In effect, this allows for a novel form of service compo-
sition, as illustrated in the example of Fig. 1 and explained
above. All these (composed) services are implemented with
our reference architecture and its implementation, and can
be accessed through the runtime interface, see above. Ser-
vice discovery is already possible with such UCP:Services.
The corresponding Service Registry is implemented as a
UCP:Service as well [19].

In addition, our approach and its reference implementa-
tion allow a service to be used by different GUIs. For ex-
ample, we have tailored GUIs for different devices for the
FlightBooking service [20].

9The (generated) GUI for the FlightBooking service can be found
at http://ucp.ict.tuwien.ac.at/UI/FlightBooking,
and the GUI for the TravelBooking service, which uses the Flight-
Booking service, at http://ucp.ict.tuwien.ac.at/UI/
travelBooking.

1264



Table 1: Comparison of Approaches

Approach API Definition Stateful Process
Definition

Stateless Recursive
Composability

Stateful Recursive
Composability

W
eb

se
r-

vi
ce

ba
se

d
ap

pr
oa

ch
es Web services x x

Web services with
pre- and postcondi-
tions

x o x

U
I

Fr
am

e-
w

or
ks

MariaE x
Mashup UIs x
Web-Apps x
UCP-Services x x x x

6 Evaluation

Evaluation according to Design Science Research in [14]
distinguishes several evaluation method types. We pro-
vide an illustrative scenario in the Introduction section,
which is also implemented in a prototype using our new
UCP:Services as explained above. This prototype enables
the automatic generation of GUIs for each UCP:Service
and their execution, as well as the composition of new
UCP:Services using existing ones (even recursively). GUIs
can be generated automatically, and in the course of genera-
tion tailored for different devices (smartphones, tablet com-
puters and desktop PCs) [20].10 In effect, each change of
some service can quickly and cheaply result in newly gen-
erated GUIs.

As a logical argument, we compare all the competing ap-
proaches simply based on their key properties. The result of
this comparison can be seen in Table 1. An “x” means that
the approach in the given line has the property of the given
column. An “o” means that a property is partially fulfilled.
Let us explain the properties used for this comparison:

• API Definition means, as usual, the availability of a
machine-readable interface definition.

• Stateful Process Definition means a definition of a pro-
cess with states, for non-trivial interaction with a given
service.

• Stateless Recursive Composability means that services
can be composed, also recursively, but none of the
(composed) services has a Stateful Process Definition.

• Stateful Recursive Composability means that services
can be composed, also recursively, and they can have a
Stateful Process Definition.

Web services as well as the approaches based on them
focus on an API Definition and on Stateless Recursive Com-

10see e.g., http://ucp.ict.tuwien.ac.at/UI/
FlightBooking for our running example and http://ucp.
ict.tuwien.ac.at/UI/accomodationBooking for more
real-world GUIs

posability. The latter can be achieved through service com-
position, e.g., implemented in BPEL [1]. However, this
do not provide processes with states for non-trivial inter-
action. Web services with additional information as well as
WADL provide pre- and post-conditions in various forms.
From these a planner implemented in an agent (see e.g.,
[23]) could possibly generate processes, but this does not
always result in a uniquely defined process. Manual def-
inition of processes is possible, e.g., through BPMN [2].
Such a choreography can result in a process with states for
non-trivial interaction. It cannot, however, be packaged as
a service again, and thus not recursive composition is pos-
sible.

The UI framework approaches, in contrast, focus on the
interaction with a human user. In order to facilitate non-
trivial interactions, they have a Stateful Process Definition.
However, they do not support any composition.

UCP:Services (our new approach) fulfill all the listed
properties. So, they allow both recursive composition and
non-trivial interaction.

7 Conclusion and Future Work

UCP:Services are stateful and more complex than
the wide-spread Web services. Hence, they allow also
non-trivial user interaction with a service (even through
a generated user interface). The protocol for spec-
ifying this interaction, a Discourse-based Communica-
tion Model, is actually the same as for interaction with
a UCP:MachineService. In effect, this is a unified
high-level protocol both for (non-trivial) user interaction
with a machine and for machine-machine communication.
UCP:Services with the same protocol can also substitute
each other (even dynamically at runtime), whether they are
machine or user services. Using UCP:Services as building
blocks, interactive software systems can be composed, also
recursively.

In addition, this paper presents a flexible runtime ar-
chitecture for interactive (software) systems represented as
services. It is specified for the runtime environment of
user interfaces called UCP:RT. According to this specifica-

1265



tion, UCP:RT is implemented in the Unified Communica-
tion Platform. This runtime architecture allows both user in-
terfaces and services to be run on the same platform, based
on Communicative Acts.

The unification of UCP:Services for human users and
machine services has the potential to close the gap between
the service community and the user interface community.
Even more importantly, UCP:Services may improve imple-
mentations of services for providing value for customers.

In future work, a composition language for
UCP:Services should be developed, which is still lacking.
In addition, our approach needs to be evaluated in a larger
real-world context.

References

[1] Web services business process execution language ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html, April 2007. [Online; accessed 23-August-2016].

[2] Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/2.0, Jan. 2011. [On-
line; accessed 08-February-2015].

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and
L. Yan. Distributed orchestration of user interfaces. Infor-
mation Systems, 37(6):539 – 556, 2012. {BPM} 2010.

[4] T. Erl, P. Chelliah, C. Gee, J. Kress, B. Maier, H. Normann,
L. Shuster, B. Trops, C. Utschig, P. Wik, and T. Winter-
berg. Next Generation SOA: A Concise Introduction to Ser-
vice Technology & Service-Orientation. Prentice Hall Press,
Upper Saddle River, NJ, USA, 1st edition, 2014.

[5] J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and
E. Arnautovic. A discourse model for interaction design
based on theories of human communication. In Extended
Abstracts on Human Factors in Computing Systems (CHI
’06), pages 754–759. ACM Press: New York, NY, 2006.

[6] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
physiology of the grid. Grid computing: making the global
infrastructure a reality, pages 217–249, 2003.

[7] H. Kaindl, R. Popp, D. Raneburger, D. Ertl, J. Falb, A. Szep,
and C. Bogdan. Robot-supported cooperative work: A
shared-shopping scenario. In Proceedings of the 44th An-
nual Hawaii International Conference on System Sciences
(HICSS-44). IEEE Computer Society Press, January 2011.

[8] Y. Labrou. Standardizing agent communication. In J. G.
Carbonell and J. Siekmann, editors, Multi-agents systems
and applications, pages 74–97. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[9] C. Larman. Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and Iterative De-
velopment (2nd Edition). Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2002.

[10] P. Luff, D. Frohlich, and N. Gilbert. Computers and Con-
versation. Academic Press, London, UK, January 1990.

[11] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and
R. Metz. Reference model for service oriented architecture
1.0. http://docs.oasis-open.org/soa-rm/v1.0/, 2006.

[12] W. C. Mann and S. Thompson. Rhetorical Structure The-
ory: Toward a functional theory of text organization. Text,
8(3):243–281, 1988.

[13] F. Patern, C. Santoro, and L. D. Spano. Engineering the
authoring of usable service front ends. Journal of Systems
and Software, 84(10):1806 – 1822, 2011.

[14] K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi.
Design Science Research in Information Systems. Advances
in Theory and Practice: 7th International Conference,
DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012.
Proceedings, chapter Design Science Research Evaluation,
pages 398–410. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[15] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatter-
jee. A design science research methodology for information
systems research. J. Manage. Inf. Syst., 24(3):45–77, Dec.
2007.

[16] R. Popp, J. Falb, E. Arnautovic, H. Kaindl, S. Kavaldjian,
D. Ertl, H. Horacek, and C. Bogdan. Automatic genera-
tion of the behavior of a user interface from a high-level dis-
course model. In Proceedings of the 42nd Annual Hawaii
International Conference on System Sciences (HICSS-42),
Piscataway, NJ, USA, 2009. IEEE Computer Society Press.

[17] R. Popp, H. Kaindl, and D. Raneburger. Connecting interac-
tion models and application logic for model-driven genera-
tion of Web-based graphical user interfaces. In Proceedings
of the 20th Asia-Pacific Software Engineering Conference
(APSEC 2013), 2013.

[18] R. Popp and D. Raneburger. A High-Level Agent Inter-
action Protocol Based on a Communication Ontology. In
C. Huemer, T. Setzer, W. Aalst, J. Mylopoulos, N. M. Sadeh,
M. J. Shaw, and C. Szyperski, editors, E-Commerce and Web
Technologies, volume 85 of Lecture Notes in Business Infor-
mation Processing, pages 233–245. Springer Berlin Heidel-
berg, 2011. 10.1007/978-3-642-23014-1 20.

[19] R. Popp, D. Raneburger, and H. Kaindl. Tool support for au-
tomated multi-device GUI generation from discourse-based
communication models. In Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’13), New York, NY, USA, 2013. ACM.

[20] D. Raneburger, H. Kaindl, and R. Popp. Strategies for au-
tomated GUI tailoring for multiple devices. In Proceedings
of the 48th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-48), pages 507–516, Piscataway, NJ,
USA, 2015. IEEE Computer Society Press.

[21] I. Rauf and I. Porres. Designing level 3 behavioral rest-
ful web service interfaces. SIGAPP Appl. Comput. Rev.,
11(3):19–31, Aug. 2011.

[22] J. R. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, Cambridge, Eng-
land, 1969.

[23] W. Shen, Q. Hao, S. Wang, Y. Li, and H. Ghen-
niwa. An agent-based service-oriented integration architec-
ture for collaborative intelligent manufacturing. Robotics
and Computer-Integrated Manufacturing, 23(3):315 – 325,
2007. International Manufacturing Leaders Forum 2005:
Global Competitive Manufacturing.

[24] J. Spillner, I. Braun, and A. Schill. Flexible human service
interfaces. In Proceedings of the 9th International Confer-
nce on Web Services, pages 79–85, 2007.

1266


