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Abstract—Conventional sentiment analysis usually neglects se-
mantic information between (sub-)clauses, as it merely imple-
ments so-called bag-of-words approaches, where the sentiment
of individual words is aggregated independently of the doc-
ument structure. Instead, we advance sentiment analysis by
the use of rhetoric structure theory (RST), which provides a
hierarchical representation of texts at document level. For this
purpose, texts are split into elementary discourse units (EDU).
These EDUs span a hierarchical structure in the form of
a binary tree, where the branches are labeled according to
their semantic discourse. Accordingly, this paper proposes a
novel combination of weighting and grid search to aggregate
sentiment scores from the RST tree, as well as feature engi-
neering for machine learning. We apply our algorithms to the
especially hard task of predicting stock returns subsequent to
financial disclosures. As a result, machine learning improves
the balanced accuracy by 8.6 percent compared to the baseline.

1. Introduction

Sentiment analysis refers to methods and applications
of computational linguistics that identify and extract the
subjective tone in textual materials. Among the most com-
mon methods are bag-of-words models that consider the
frequency of words and/or their N -gram combinations [1].
However, these approaches usually rely exclusively on the
number of occurrences of certain relevant words or phrases.
As such, these methods are not capable of taking into
account the actual semantic relationships between parts of
the document, individual sentences or even subclauses [2],
[3]. Accordingly, these methods often struggle to achieve
a favorable performance for longer documents and, hence,
new approaches are desired [4].

To overcome the previous limitations, this paper ad-
vances sentiment analysis by incorporating additional fea-
tures that represent the semantic structure. We thus utilize
rhetoric discourse structure (RST) to create a discourse tree
and then propose two innovative approaches to leverage the
information therein. To our knowledge, previous research
leaves many questions on this topic unanswered.

Research has proposed multiple approaches – besides
manual annotation – to extract discourse information in
an automated fashion. For instance, [5] uses syntax and
lexical information to obtain sentence- but not document-
level semantic structures. Similarly, [6] studies the internal
composition of sentences by considering the syntax tree
structure with the help of recursive deep neural networks.
Other approaches utilize low-level discourse-based features
in the form of connectors for (sub-)clauses [7]–[9]. However,
these are limited to sentences where such a connector is
present and thus cannot reflect the discourse of a full docu-
ment. Furthermore, examples of a document-level discourse
analysis include shift-reduce discourse parsers to create RST
annotations [10] or discriminative frameworks for rhetorical
analysis [11].

Previous work has started to utilize semantic information
to label opinions without the objective of analyzing senti-
ment. For instance, [12] develops a shallow semantic repre-
sentation and then assigns custom feature structures to a set
of 4 groups of top-level opinion categories. However, this
approach only serves the purpose of classifying opinions,
while it does not address how to extract a sentiment score
for individual texts. A similar work improves the automated
detection of opinion frames, but a demonstration of how to
use this information for sentiment analysis is missing [13].

In fact, previous research has largely neglected to enrich
sentiment analysis through semantic information. Among
the few works that do, is a study that utilizes sentence-
level RST, as well as a topicality measure, in order to
assign different sentiment weights to sentences depending
on their relevance [14]. However, the authors do not ad-
just for the different types of argumentative relationships
between clauses. This is complemented by [15], which uses
a Bayesian model to evaluate the sentiment of hotel reviews
using sentiment, aspect and discourse information.

Closest to our research is an approach by [3] that in-
corporates the rhetorical structure at document level, but
this paper neither presents a method of how to combine all
discourse units in an optimal fashion nor compares method-
ological variants, including machine learning approaches.
Many machine learning algorithms struggle with this type of
problem as it is virtually impossible to encode with a fixed-
length vector while preserving its order and context [4].
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The only investigation of machine learning for rhetoric-
structure-based sentiment analysis is given in [2], which
utilizes recursive neural networks (RNN). As such, it strug-
gles with small datasets, as in this case, where we need
to rely on hand-crafted feature engineering. Furthermore,
RNNs provide hardly any descriptive insights for inferring
the importance of different semantic relationships.

As our primary contribution, this paper proposes and
compares different methods for improving sentiment analy-
sis with semantic information. We utilize rhetoric structure
theory to disassemble documents into individual elementary
discourse units (EDUs), which are organized in the form of
binary trees [16]. Hence, one can compute the sentiment for
a whole document by aggregating the sentiment values from
individual EDUs, i. e. the leaves of the tree. By following
this approach, one can take knowledge of the rhetoric dis-
course structure into account. We then evaluate and compare
two methods that are based on (1) a weighting scheme
tuned by a grid search and (2) a novel feature engineering
approach to support machine learning. In the following
evaluation, we demonstrate our methods for discourse-based
sentiment analysis with the help of financial disclosures. We
utilize the insights to explain the meaning and importance
of semantic information for applications of computational
linguistics.

The rest of this paper is structured as follows. Section 2
presents how rhetoric structure theory uncovers the semantic
discourse of a document. This discourse structure serves
as an input to our novel methods for sentiment analysis in
Section 3. We then evaluate how the semantic structure can
improve sentiment analysis in Section 4. Section 6 finally
provides both a discussion and a conclusion.

2. Rhetoric Structure Theory

Rhetoric structure theory (RST) is a classification ap-
proach to computationally determine the organization of nar-
rative materials. As such, it aims at identifying the coherence
or structure of a text by evaluating the relationships between
different (sub-)clauses.

The smallest information item is called an elementary
discourse unit (EDU), which forms the smallest, indivisible
segment of sentences [16]. Each EDU is put into a hierarchi-
cal relationship to the other EDUs, depending on the rhetoric
structure of the document [11]. This hierarchy is ultimately
mapped to a binary tree to simplify the computational
processing.

An example of such a tree is shown in Figure 1. Here,
EDUs are assigned only to the leaves (i. e. N21, S22, S35,
N36 and N24, while all other internal nodes are required to
represent the hierarchical relations of these EDUs. Follow-
ing this, RST assigns one of 18 different relationship types
(as listed in Table 5) to each pair of neighboring child nodes.
These relationship types provide more detailed information
on the coherence linking the EDUs.

Furthermore, every node is classified as either a so-called
nucleus or a satellite. The former, nucleus Nij , contains the
core information, whereas satellite Sij provides supporting

R00
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N21 S22

S12

N23

S35 N36

N24

Elaboration

Elaboration Joint

Elaboration

Figure 1. Schematic rhetoric discourse structure as binary tree with root
R00, nuclei Nij and satellites Sij at depth i and number j.

information. Here, the index i denotes the depth, while j
enumerates all potential nodes at depth i from left to right.
An example is visualized in Figure 1, where exemplary
relation types, as well as nucleus and satellite information,
are shown. The root node R00 is not classified.

Previous research has proposed various methods – sta-
tistical approaches, machine learning and rule-based algo-
rithms – to automate the parsing of RST trees. For ex-
ample, [17] presents a rule-based discourse parser, which
has been advanced into a probabilistic, sentence-level parser
named SPADE [5]. Furthermore, the CODA project1 aims
at dialogue generation and, as part of this, annotates texts
with RST information. A detailed overview of approaches
and methods for manual and automated parsing is provided
in [11]. In addition, the so-called HILDA parser2 [18] em-
ploys support vector machine classification to perform the
identification of EDUs and label their type of relationship.
As labeling is combined with a greedy bottom-up tree
building approach, high accuracies can be achieved while
a linear time complexity is ensured.

This research utilizes HILDA for several reasons [19]:
its engine relies on a classification based on a support
vector machine to obtain RST features at document level. In
contrast to SPADE, it can thus create document-level RST
trees. CODA has a stronger focus on the segments and thus
only generates EDUs without internal nodes representing the
tree structure, whereas HILDA captures the full RST tree
across all levels – from root to leaves. This is confirmed
by a comparison in [10] where HILDA achieves the highest
performance in identifying the hierarchy of texts earning an
F1-score of 83.0 (only human annotation outperforms this
with an F1-score of 88.7). In terms of nuclearity analysis,
e. g., the identification of nuclei and satellites, HILDA also
achieves a favorable F1-score of 68.4, which is slightly be-
low that of newer state-of-the-art algorithms which achieve
F1-scores of up to 71.1. Only recently have algorithms such
as discourse parsing from linear projections succeeded in
outperforming HILDA at the task of relationship identifi-

1COherent Dialogue Automatically Generated from Text, see http://
computing.open.ac.uk/coda/.

2HIgh-Level Discourse Analyzer.
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[After adjusting for exchange rates ,]1A [the Company
generated an increase in sales of about two percent.]1B
[At EUR 21.2 million , provisional net profit has turned
out less than the figure]1C [budgeted at the beginning
of 2003.]1D

Figure 2. Classification of two sample sentences from an an exemplary
press release by HILDA. Arrows point from satellites towards nuclei.

cation, achieving an F1-score of up to 61.75 compared to
HILDA’s F1-score of 54.8 [10].

Figure 2 shows the markup created by HILDA for two
sample sentences from a press release in our financial news
corpus. In this figure, arrows always point towards the
nucleus. Accordingly, the first sentence contains 1A and
1B, while also representing the first nucleus. The second
sentence (1C and 1D) appears to be an elaboration, as
well as a satellite to the first. When looking at the leaves,
we observe that the first sentence is split into two parts:
1B forms the nucleus, whereas the satellite 1A provides a
background to 1B.

3. Novel Methods for Sentiment Analysis with
Discourse Structure

The previous literature review shows that knowledge is
scarce on how to leverage RST information in order to
improve the performance of sentiment analysis. Publications
in this field of study largely fail to explain the meaning and
importance of the various pieces of semantic information.

Fig. 3 shows our proposed methodology for analyzing
the sentiment of natural language using semantic relation-
ships. Accordingly, Section 3.1 describes our corpus in the
form of regulated financial news, before we describe the
steps of pre-processing and sentiment scoring in Section 3.2.
These steps thus obtain sentiment values for each EDU.
Subsequently, we aggregate these granular sentiment scores
at document level. For this purpose, we utilize (1) a simple
weighting rule, which we optimize via a grid search (see
Section 3.3). The grid search also provides insights into the
importance of different parts of texts for readers. In addition,
we propose (2) a machine learning approach, whereby we
can measure variable importance based on random forests.
Section 3.4 then illustrates how we use feature engineering
to apply random forests to our dataset and we introduce
random forests in Section 3.5.

3.1. Corpus

Methods for sentiment application are often evaluated
using datasets that are common in research, such as movie
reviews. We specifically refer in the following to the even
harder challenge of predicting stock market movements
following financial disclosures. These disclosures are mainly
targeted at investors, who can then incorporate the dis-
closures into their decision-making. Research shows that
investors do not only react to the facts in texts, but also
soft information in written communication such as the per-
ceived sentiment of a message [20]–[24]. The correspond-
ing evidence points out that investors in financial markets
frequently refer to textual information in order to decide
upon exercising ownership in stocks [24]–[28]. Such a rela-
tionship becomes especially evident in the link between the
content of ad hoc announcements and the subsequent stock
market response [29], [30].

Our corpus consists of 12,932 ad hoc announcements3

published between January 2004 and June 2011 in the
English language. This data forms a popular choice in
academic research [29]–[33]. We take the first 80 % of
the announcements in time for training and the remaining
20 % for testing. This splitting in adherence to the timing
prevents from training on the description of an event and
then applying it to the pre-event time span. For instance,
one wants to avoid training a classifier with data from after
a financial crisis and then map it to the time beforehand
in order to detect this crisis. Subsequently, we link each
announcement to the nominal stock market return of the
publication day. In addition, we use HILDA to dissect all
announcements into a total of 491,833 EDUs. Figure 4 re-
ports the number of EDUs appearing across different depths
of the RST hierarchy. Interestingly, the depth of RST trees
can reach as many as 95 levels, as the trees are of binary
structure and thus easily grow very deep.

Table 5 shows the different types of contextual relation-
ships connecting individual EDUs as detected by HILDA, as
well as their absolute and relative frequency in our corpus.
As a reference, we also compare their frequencies to the
typical distribution of relationships types in the rightmost
column based on the CODA parallel corpus [34]. Evidently,
the most common relationship types in financial disclosures
are elaborations and joints. This is especially interesting as
the occurrences of these relation types by far exceed the
share given in the CODA parallel corpus. A possible reason
might be the rather technical language used in financial
disclosures. It is thus likely that authors intentionally avoid
reader-engaging or complex text structures, such as contrasts
and conditions, in order to make the texts comprehensible.
Other types of relationships are not present in the corpus
under study (such as evaluation, topic-change and topic-
comment), possibly also because of deficits of HILDA to
identify some of them [18].

3Kindly provided by Deutsche Gesellschaft für Ad-Hoc-
Publizität (DGAP).
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Figure 3. Flow diagram visualizes the concept of our proposed methodology for sentiment analysis using sematic relationships.
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Figure 4. Plot shows the depths of all elementary discourse units (EDUs)
in the dataset with a logarithmic y-axis.

TABLE 5. COMPARISON OF RELATIONSHIP TYPES IN THE FINANCIAL
DISCLOSURE CORPUS COMPARED WITH CODA PARALLEL CORPUS.

Relation Financial disclosures CODA parallel
corpus

Count Percentage Percentage
Elaboration 311,808 65.11% 21.31%
Joint 104,717 21.87% 4.12%
Same-Unit 20,825 4.35% 0.00%
Background 9,875 2.06% 1.03%
Attribution 8,740 1.83% 4.12%
Textual-Organization 7,031 1.47% 0.00%
Comparison 4,545 0.95% 1.72%
Temporal 2,650 0.55% 0.69%
Enablement 1,964 0.41% 0.00%
Contrast 1,822 0.38% 20.27%
Summary 1,656 0.35% 1.37%
Condition 1,443 0.30% 8.25%
Manner-Means 874 0.18% 2.75%
Cause 676 0.14% 1.37%
Explanation 275 0.06% 18.90%
Evaluation 0 0.00% 8.59%
Topic-Change 0 0.00% 0.00%
Topic-Comment 0 0.00% 4.81%
Total 478,901 100.00% 100.00%

3.2. EDU sentiment calculation

We perform the following preprocessing steps, which are
common in text mining [35]:

1) Data filtering. First, we select only texts written
in English and that are longer than 150 words.
We further exclude so-called penny stocks, i. e.
we remove all announcements for which the stock
valuation is below 5 monetary units.

2) Content extraction. In addition, we remove all
parts of the content not belonging to the main
message. This includes disclaimers and contact in-
formation, but also hyperlinks and HTML tags.

3) RST parsing. We then use HILDA to parse the
announcements and obtain the corresponding RST
tree. This step also splits every document into the
individual EDUs.

4) Content cleaning. We remove punctuations, num-
bers and stop words. In this regard, stop words are
those which do not contain actual content, such as
the, is and of. We use a list from previous research
containing 571 stop words [36]. We subsequently
convert all characters to lower case.

5) Stemming. We perform stemming, whereby all in-
flected word forms are mapped onto their root. For
this purpose, we use the Porter stemmer [37].

We then proceed to calculate sentiment scores for each
EDU. For this purpose, we implement a dictionary-based
approach to sentiment analysis, whereby we utilize Henry’s
finance-specific dictionary [25]. This dictionary provides a
list of frequent words in financial communication, which
are classified as either positive or negative. For instance, the
positive word list contains entries such as achieve, expansion
or improve, while the negative one features expressions like
decline, penalty or weakened. We then simply count the
frequency of positive and negative words and insert them
into the ratio formula

σij =
P −N
T

(1)

for each EDU j at depth i, where P , N , and T are the
number of positive, negative and total words, respectively.

As an example, let us consider the sentence “the
strong+ demand increase+ exceeded+ our expectations in
this challenging− environment”. It contains three positive
words (strong, increase, exceed) and one negative word
(challenging). Excluding stop words, the sentence comprises
of seven words in total and, thus, we obtain a sentiment
score of 3−1

7 = 2
7 . This approach is frequent in related

works and has the advantage of performing well for financial
communication and also yields robust results when dealing
with fairly extensive documents [21].

3.3. Node weighting with grid search

After computing sentiment scores for each individual
EDU, a simple approach would be to average the senti-
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ment scores across all EDUs but this would neglect any
information from the RST tree. Hence, we utilize the for-
mer approach as a baseline and, as a remedy, propose a
weighting scheme that allows us to combine these based
on the structure of the RST tree. To achieve this goal, we
develop a weighting scheme that discriminates between two
elementary properties of the RST tree, namely, the node
type (nucleus vs. satellite) and the depth of each individual
node. The former enables us to encode the assumption that
nuclei are of greater importance than satellites, while the
latter can penalize sentiment scores from nodes depending
on their depth in the RST tree. For instance, we expect nodes
in closer proximity to the root to be of higher relevance.
Both discriminators are translated into a parameter of the
weighting scheme.

Mathematically, we introduce two parameters control-
ling the weighting. These are a weight ωij to discriminate
between nucleus and satellite, as well as Di+1 to penalize
EDUs located farther away from the root in the RST tree. We
thus yield the sentiment score of a document by combining
the weighted sentiment values of all children in a recursive
fashion, i. e.

σij = Di+1

[
σi+1,2j−1 ωi+1,2j−1

+ σi+1,2j ωi+1,2j

] (2)

with weights ωij depending on the node type and weight
Di+1 depending on the depth.

We now describe the choice of ωij and Di+1. First, we
take the sentiment scores σij assigned to the EDUs and then
weigh them according to an exponential decay. The weight
ωij for a node i at depth j is given by

ωij =

{
α, for nucleus Nij ,
1− α, for satellite Sij .

(3)

The variable α is later optimized by a grid search. Second,
we define

Di =

{
1+β
imax

i− β, β < 0,
β−1
imax

i+ 1, β ≥ 0,
∈
[
|β| , 1

]
(4)

with imax being the maximum depth of the corresponding
sub-tree and where β ∈ [−1,+1] is the second parameter
of the grid search. If β < 0, it puts an additional penalty
on deeper parts of the RST tree, whereas β > 0 means that
deeper components are considered more important.

The above approach is a generalization of two variants
used in the literature. On the one hand, it contains a weight-
ing based on the node type. In prior research, nuclei have
received a weight of 1 and satellites a weight of 0 [3].
A different study proposed the use of weights 1.5 and 0.5
for nuclei and satellites, respectively [14]. In contrast, our
approach benefits from the advantage that we do not set pre-
defined weighting parameters, but, instead, perform a grid
search to directly identify the optimal choice. Furthermore,
we include an additional factor for weighting based on
the depth in the tree. This thus allows us to compare the
importance of nuclei and satellites at different levels in the
binary tree.

Finally, we note that we tried different functions to
model the depth weight Di. Our experiments all point
towards the use of an exponential decay, since this works
well, even when facing very deep RST trees. In fact, we need
an algorithm that can easily handle trees of depths between
10 and 90, as the depth of trees varies strongly according
to Figure 4. For instance, we tried a linear decay to weigh
by depth. However, this results into an inferior predictive
performance. This is likely due to the fact that information
near the root or the leaves is more relevant than in the middle
of the RST tree.

3.4. Feature engineering for machine learning

In addition to the above weighting, we propose an
approach for incorporating RST information into machine
learning in order to compute sentiment scores at document
level. We especially strive to incorporate machine learning
as this hopefully allows us to overcome the rather rigid
structure of the above weighting scheme. In contrast, many
algorithms from machine learning entail a highly flexible
component and can thus detect non-linear relationships be-
tween variables in order to make more accurate predictions.
For this purpose, we now explain how we engineer ap-
propriate features that provide input to a machine learning
algorithm of our choice. That is, the RST tree itself cannot
be encoded by means of a fixed-length numerical vector
and, as a remedy, we propose a way to encode relevant
characteristics in such a vector.

Feature engineering describes the selection and encoding
of predictors or other data. It is especially important for
machine learning algorithms as good feature engineering can
improve the algorithm performance [38] and increases the
transparency of the underlying process. In our case, feature
engineering is required to bring the binary tree into a format
supported by machine learning algorithms (such as random
forests).

Based on the RST tree, we generate features as follows:
we choose a maximum depth i to generate a vector

[σN , σS , . . . , σN...N , . . . , σS...S ]
T
. (5)

Here, we insert sentiment values σij depending on their
semantic information, i. e. the corresponding location in the
RST tree. Hence, the labels represent a sequence of nuclei
and satellites, which one has to follow from the root to locate
the desired node. For example, σSN denotes the sentiment
score of the nucleus in the first satellite branch.

This encoding entails several benefits. Foremost, it
works well even when only a few observations are present,
as it reduces the complexity of the original RST tree sig-
nificantly. Second, one can derive additional explanatory
insights by measuring the variable importance for each node.

As part of our research process, we also explored other
forms of encoding, e. g. by using additional features for the
combination of node types and their relationships at each
hierarchical level. To take information about the relationship
into account, we encoded relationship types into our vector
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and combined it with nuclearity information. Unfortunately,
this resulted in an inferior predictive performance. Evidently,
this is due to the limited information contained in rela-
tionship types, since a predominant share of relationship
types come as eithre elaboration or joint. In contrast to
this, hierarchical information and nuclearity convey more
decisive information than the relationship type. In future
works, one might like to consider the use of a different RST
parser than HILDA, since newer parsers might achieve better
accuracy in detecting relationship attributes and, therefore,
one can potentially improve predictions further [3].

3.5. Random forest

Random forests [39], [40] represent an ensemble learn-
ing method that constructs a large collection of de-correlated
decision trees during training. The output is then the ma-
jority vote over all individual trees. The training algorithm
for random forests applies bagging (also called bootstrap
aggregating) to the single tree learner. Bagging repeatedly
selects a total of B bootstrap samples from the training set
and fits trees – using the Gini impurity – to these samples.
The number of bootstrap samples B is a free parameter.
Interestingly, increasing the number of trees often tends to
decrease the variance of the model without increasing the
bias.

In addition, random forests can be used to rank the
importance of variables [39] as follows. First, a random
forest is fit to the dataset. For each split in the tree, the
prediction performance is (1) recorded for the out-of-bag
portion of the data and then (2) the same is computed
after permuting each variable. The corresponding difference
between them is averaged over all trees and normalized.
Finally, the larger this difference, the stronger the influence
of that specific variable on the performance of the resulting
random forest.

In our analysis, we decided upon random forests for sev-
eral reasons. First of all, random forests cope well with non-
linearities and provide good protection against overfitting.
As a result, they achieve high predictive performance with
much effort of tuning. Finally, they allow for a ranking of
variables according to their importance. This thus provides
explanatory insights and contributes to our understanding of
how the reader responds to the discourse in a document.

4. Evaluation

This section compares the performance of both the
weighting scheme with grid search and feature engineer-
ing with machine learning. Table 6 reports the prediction
accuracy for all baselines to the RST-based approaches. We
discuss their results in the subsequent sections.

In the following, we compare the predictive performance
across different metrics. First of all, we compute the accu-
racy, which measures the ratio of right guesses. A different
variant of it, the so-called balanced accuracy, neutralizes im-
balances in the dataset, as it is calculated by taking the mean
of sensitivity and specificity. Here, sensitivity describes the

share of correctly identified downward movements from the
set of actual negative stock returns. Similarly, specificity
provides the same measure for upward movements. Finally,
the F1-score is another metric for measuring predictive
performance. It takes precision and recall into account or,
more precisely, it is calculated from the geometric mean of
precision and recall. Thus, the best possible F1-score takes
the value 1 (or 100 %), while the worst accounts for 0.

4.1. Baselines

Table 6 reports the predictive performance across the
baselines. The first baseline is given by the performance
of using no predictor, i. e. guessing the mean return from
the training set. This baseline already exhibits an above-
average accuracy of 59.761 %, which originates from a
severe imbalance of positive (54 %) and negative (46 %)
stock returns in our dataset. Therefore, we adjust for imbal-
ances between different labels by computing the balanced
accuracy. Hence, the balanced accuracy using no predictors
amounts to exactly 50 % as expected. The imbalance is
also mirrored by the sensitivity and specificity values. As
this approach always predicts an upward movement due
to the imbalanced dataset, the sensitivity amounts to 0 in
this case. The specificity, however, computes to 1, as all
upward movements are correctly identified. When using no
predictors, unsurprisingly, the F1-score is 0.

We now investigate the second baseline given by the
average EDU sentiment. This benchmark results from a
dictionary-based sentiment, i. e. the average sentiment across
all EDUs, while ignoring all RST-related information. The
corresponding results are listed in the second row of Table 6.
Here, we observe a slight improvement as manifested by a
higher sensitivity. At the same time, this results in a marginal
decrease of accuracy due to the large class imbalance in
the dataset. However, both the balanced accuracy and the
F1-score increase, which indicates that the sentiment values
actually contain discriminative power.

The above baselines illustrate the challenge of predicting
stock market movements using the sentiment of financial
news. In our case, sentiment analysis only entails a small
improvement over random guessing in terms of the balanced
accuracy. In contrast, sentiment is a considerably better
predictor in other datasets, such as movie reviews, where
accuracies go as high as 70 % with an approach comparable
to ours [3].

4.2. Weighting scheme with grid search

We perform a grid search to optimize the weighting
parameters α and β in order to achieve a high predictive per-
formance when computing a document-level sentiment score
for each news announcement in the corpus. Here, we use a
binomial regression with 10-fold cross-validation in order to
map the sentiment scores onto the the stock market return
subsequent to a news disclosure. The resulting performance
is shown in Figure 7. Maximum accuracy is achieved with
a nucleus weighting of α = 0.4, while all tested values of
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Method Accuracy Balanced
Accuracy Sensitivity Specificity F1-Score

Baseline
No predictor 59.761 50.000 0.000 100.000 0.000
Avg. EDU sentiment 59.752 50.014 0.228 99.800 0.456
RST-based approaches
Best weighting 59.798 50.057 0.160 99.954 0.319
RST-ML 60.490 54.315 83.371 25.260 71.889

TABLE 6. PERFORMANCE (IN %) COMPARED ACROSS DIFFERENT ALGORITHMS.
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Figure 7. Accuracy from binomial regression when performing a two-
dimensional grid search by varying weights for both node type and the
depth.

β yield a fairly similar, favorable performance. We observe
no clear trend regarding the choice of β for depth-based
weighting.

Altogether, RST information is capable of significantly
improving the predictive performance. The best result from
the grid search features an accuracy of 59.798 % and a
balanced accuracy of 50.057 %.

4.3. Machine learning with RST features

The last row in Table 6, named RST-ML, shows the pre-
dictive performance based on our extracted features from the
RST tree. Here we utilize a random forest with 1,000 trees,
as this method from machine learning seamlessly handles
non-linearities in an out-of-box fashion. Compared to the
average EDU sentiment, we see a relative improvement of
8.6 % in the balanced accuracy, which now totals 54.315 %.
Hence, the combination of RST and machine learning per-
forms extraordinarily well for the prediction task under
study. This is confirmed by the relatively high F1-score of
71.9 %.

In addition, Figure 8 presents the variable importance,
which ranks the predictors by relevance. When predicting
the stock market reaction, the most important sentiment
information is thus contained in the N and NS branches of
the binary tree. This is closely followed by S and we thus
deduce that information aggregated at higher levels plays
a more important role, while the nuclearity at deeper tree
levels is less relevant. This is especially confirmed by SS

NS
SN
SS
S
NN
N

0.020 0.025 0.030 0.035 0.040

Variable Importance

Figure 8. Variable importance of RST information measured across 1,000
trees. The labels correspond to the sequence of nodes encountered when
moving from the root to the node with the specific sentiment value (e. g.
SN denotes the first satellite branch, followed by a nucleus).

being the fourth most important variable, even before SN
and NS .

5. Discussion and Implications

Even in the face of recent advances in natural lan-
guage processing (NLP), machine learning still struggles
when incorporating semantic or contextual information for
text processing. The reason behind this difficulty is of a
fundamental nature as it is virtually impossible to encode
a text with a fixed-length vector while preserving its or-
der and context [4]. Therefore, research must identify new
paths towards analyzing natural language while adapting to
the order of words and sentences. On a word level, deep
learning approaches this problem formulation with the help
of recurrent neural networks. Recurrent neural networks
essentially process a sentence (or short text fragment) word-
by-word and maintain a short code vector that represents
the knowledge and meaning from the first to the current
word. However, experiments using ad hoc announcements
reveal that text fragments must be short and performance
improvements are nevertheless challenging to achieve [42].

While deep learning allows one to include context in-
formation when processing a single sentence, this paper
proposes an intriguing method for processing the semantic
structure within (extensive) documents. Therefore, we parse
the rhetoric discourse structure of a given document and
thereby unveil its internal semantic skeleton. Thus, we learn
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TABLE 9. COMPARISON OF PREDICTIVE APPROACHES WITH DIFFERENT TYPES OF CONTEXT INFORMATION FOR PREDICTING STOCK MARKET
RETURNS BASED ON ENGLISH-LANGUAGE AD HOC ANNOUNCEMENTS.

Author Context level Approach to context/semantics Sentiment source Comparison Text fragment

Hagenau et al. 2013 [41] Word groups n-grams Chi-based feature selection Single words retrieved from corpus Full contentvs. 2-word combinations

Feuerriegel and Fehrer 2016 [42] Word order Recurrent relationship
between words Implicit feature selection Random forest Headlines onlyvs. recursive neural network

Pröllochs et al. 2015 [43], Pröllochs et al. 2016 [33], Word-level Negation scopes Loughran and McDonald Financial
Sentiment Dictionary [26]

No negation recognition Full contentvs. negation detection

This paper Document structure Semantic relationship
between clauses

Henry Finance Dictionary [25]
No feature/word optimization

Average EDU sentiment Full contentvs. weighting from RST

how pieces of information from different sentences interact
and which storyline a document follows. Consequently, we
contribute to research on text mining by providing a novel
method for including semantic information when processing
texts. Furthermore, this paper provides a proof of concept
that semantic relationships can enhance the accuracy when
analyzing the sentiment of textual materials.

In the context of financial markets, researchers use
different approaches to improve the prediction of stock
market changes based on the tone of financial disclosures.
Depending on their experiment setups, they achieve relative
improvements of predictive accuracy in the range of 5 % to
15 %. An overview of this research – all using the same
ad hoc corpus – is shown in Table 9.

The corresponding improvements achieved by this re-
search, depend heavily on the filter criteria, which makes
comparisons intractable. Overall, the relative improvement
from our RST information is of similar magnitude to other
approaches – but without readjusting the polarity scores of
words. In fact, all other approaches in Table 9 implicitly
compute new polarity scores for each word or feature. In
contrast, we leave the individual scores unchanged and only
exploit the semantic structure to achieve our improvements.
This demonstrates the largely unused value of semantic in-
formation for natural language processing. Moreover, addi-
tional improvements are on the horizon, since some of these
approaches are likely to enhance the accuracy of sentiment
analysis further when combined with features from rhetoric
discourse structure.

Ultimately, a better understanding of human language
can spark business innovations in multiple areas in the
decision-support domain. In the future, embracing semantic
relationships is likely to become even more relevant with
the current rise of natural language processing. Prevalent
examples include voice control for mobile devices, such
as Siri and similar voice control services, as a convenient
form of human-computer interaction. Such applications need
to understand cross references to previous user commands,
interpret their relationship and extract their meaning in order
to execute the desired action. Semantic information can also
improve automated decision-support on the basis of almost
any source of textual materials. For example, investors or
automated traders can fine-tune their algorithms in order to
obtain better investment decisions from financial news. Fur-
thermore, in the case of recommender systems and opinion
mining, texts provide decision-support by tracking the public

mood to measure brand perception or judge the launch of
a new product based on blog posts, comments, reviews or
tweets. Altogether, the relevance of our methodology goes
beyond these examples and essentially comprises almost
all text-based applications of individuals, organizations and
businesses.

6. Conclusion and Outlook

Although rarely used, the semantic structure of docu-
ments presents a powerful lever to improve conventional
sentiment analysis. In this paper, we show how to system-
atically identify the best parameters for the use of RST
trees by performing a grid search. Furthermore, we propose
a machine learning approach that significantly improves
predictive performance. Our findings reveal that high-level
nucleus branches convey the most relevant information.

Future research should investigate methods that consider
all levels of the RST tree for sentiment analysis. As such,
training an auto-encoder on the full tree structure could be a
viable option to handle such a data structure that is not fixed
in length. In addition, including all relationship information
could be a compelling approach to improving performance
further. Finally, it would be very interesting to see how the
many different approaches to improving sentiment analysis
could be combined into one single best-of-breed approach.
To this end a combination of n-grams, negation scope
detection, dynamic dictionaries and RST with a suitable
algorithm seems very promising, yet challenging.
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