

Cross-Organizational Software Development: Design and Evaluation of a De-
cision Support System for Software Component Outsourcing

Tommi Kramer

University of Mannheim
 kramer@uni-mannheim.de

Armin Heinzl
University of Mannheim

 heinzl@uni-mannheim.de

Tillmann Neben
University of Mannheim

 neben@uni-mannheim.de

Abstract

While the decision to outsource software devel-
opment tasks was mainly considered strategically
and economically, it relies on technical properties of
single components and their integrability into com-
plex systems, as well. This paper suggests a decision
model that evaluates technical properties of software
components to support the outsourcing decision with
its implications on the cross-organizational distribu-
tion of development tasks. Following a design science
approach decision criteria are deduced and logically
combined in order to design a decision model. The
model is then used to implement a mobile prototype
for a decision support system in order to classify all
software components regarding their outsourcing
applicability. Both model and tool are evaluated in
depth: we examine the quality of model and tool in a
naturalistic and experimental evaluation setting. The
overall satisfaction with utility, ease of use and inten-
tion to use is very positive.

1. Introduction

IT Outsourcing (ITO) has become a common
phenomenon within software development projects.
It leverages competitive hurdles such as cost pres-
sures and the so-called war for talents. However, out-
sourcing decisions are often made in an unstructured,
at best heuristic manner. Thus, coordination of devel-
opment tasks in cross-organizational settings is un-
controlled. This research supports outsourcing man-
agers in identifying software components that can be
outsourced and, thus, developed cross-organizational
with the help of a decision support systems (DSS).
As this paper also comprises the development of such
a system, we follow a design science research ap-
proach [1]. Theoretical insights into the interfaces
between decision support, outsourcing and compo-
nent based software development, as well as the
technological contribution in form of a decision sup-

port software to perform such decisions allow for a
better structuring of outsourcing decisions.

For more than 20 years different outsourcing
models have evolved within the software industry;
especially the rising demand for cloud services has
increased and diversified the software outsourcing
market [2]. The multitude of possible solutions made
outsourcing decisions even more complex. Addition-
ally, interoperability of different outsourced services
or resources has to be considered after the outsourc-
ing decision has been made.

Literature about software outsourcing so far has
rather focused on the strategic fit for the buying firm
and less considered technical impacts [3]. In a soft-
ware world of modularity, though, composing differ-
ent technical components to build an integrated sys-
tem as a whole may predominantly have strategic
impact and improve cross-organizational collabora-
tion by assigning tasks to the right organization.

Current research in outsourcing decision-making
emphasizes on appropriate supplier selection, loca-
tion selection, or considers communication and coor-
dination aspects for the assignment of development
tasks [4, 5]. Thus, applicable approaches mainly
comprise best practices and guidelines for relation-
ship management [5, 6]. However, the advantages of
a component based software product and its devel-
opment process have not yet been examined and
evaluated together in an outsourcing scenario. On the
one hand, modularity in a collaborative setting ena-
bles cost efficiencies by flexible staffing of working
capacities and increased production speed [7, 8]. On
the other hand, cultural differences and a lack of ex-
change of data and information may hinder an effi-
cient and successful development process in out-
sourcing scenarios [9, 3].

Considering these aspects, the existing body of
knowledge concerning cross-organizational collabo-
ration so far helps to answer the when and the how
but not the what of cross-organizational outsourcing.
Although a software product is the focus of software
development, existing outsourcing studies have wide-
ly neglected product characteristics to be considered

343

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41190
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

when deciding about outsourcing. Therefore, in our
paper we specifically investigate the following re-
search question: Which components of a software
system can be outsourced to a vendor during devel-
opment?

Accordingly, we intend to make a contribution for
theory and practice by developing and providing a
normative decision-making approach for the devel-
opment of software components in cross-
organizational collaboration settings. We apply de-
sign science approaches in doing so [1]. Thus, the
remainder of our paper structures as follows: At first,
we develop and provide a decision support model for
software components and expand existing outsourc-
ing knowledge in doing so. Second, we design and
develop a software prototype instancing the previous-
ly defined decision support model in order to support
practitioners facing such outsourcing challenges. Fi-
nally, a rigorous evaluation reveals the usefulness of
the decision model and the ease of use of its imple-
mentation as well as an intention to use the re-
searched solution within collaborative software de-
velopment projects. The paper concludes with a
summary and limitations.

2. Outsourcing decision support model

The first part of our contribution represents a de-
cision support model that contains several character-
istics of a software component, which have an impact
on the sourcing decision. A differentiation of these
characteristics is made between the structure of a
component, the procedural influence on the develop-
ment process, and required knowledge specifics. Ac-
cording to the design science research approach [1]
we deduce our characteristics from established in-
formation systems (IS) theories. Thus, we determine
the design for a software tool which instances the
decision support model developed in this section.

To get there, at first the outsourcing decision has
to be specified. Then, the deduction of appropriate
characteristics and their categories is described. Fur-
thermore, a decision support model for classifying
each component of a software product is developed
out of the given characteristics. Adjacent decision
logic is also part of this section and enables for re-
peatable classifications of components with equiva-
lent results.

2.1. Decision to be supported

In line with our research question we pursue the
goal to answer the question: What shall be out-
sourced? Hence, the object of investigation is the

decision which software component qualifies for in-
ternal and which one for external development. In
this context we take a holistic perspective on each
software component in terms of a cohesive and dis-
crete logical unit - the atomic entity of an entire sys-
tem [10]. Assumptions and decisions about the struc-
ture of these entities can be made after the design
phase within the development process. Consequently,
an according decision model can be established with
a target function to provide guidance (develop the
selected component internally, externally or either
way) using decision criteria (structure of a compo-
nent, development process specifics or knowledge
specifics) in order to evaluate the decision field (op-
timal cross-organizational task allocation within the
development process). Therefore, we determine the
following design requirements:

For the decision criteria search process we distin-
guish between three distinct groups: These criteria
can either address structural, procedural or
knowledge- based attributes of a software component.
We enrich our search for criteria with several estab-
lished theories used in IS research. By that, we assess
the organizational impact of component-based out-
sourcing and the structure of the decision model.

Transaction cost economics: Limited rationality
and opportunistic behavior foster costs occurring for
every transaction. Within outsourcing they are the
only costs besides production. For the decision to
outsource components, hence, the transaction costs of
outsourcing have a major impact on the sourcing de-
cision [3]. As a consequence, components that entail
high transaction costs have to be identified and kept
for in-house development.

Resource-based view: Markets are supposed to
learn quickly, inducing the need for single corpora-
tions to use explicitly the resources from the market
complementing their profile [11]. Without adequate
resources, outsourc- ing becomes necessary. Re-
sources constituting a com- petitive advantage, how-
ever, must not be outsourced. Therefore, the decision
support model must contain criteria that help to iden-
tify components that comprise critical resources and
prevent them from draining off.

System theory as complex system are composed
from single interacting fragments, the developer has
to secure effective interaction [12]. This can be
achieved by minimal inter-component dependency,
but strong intra-component dependency and well
defined interfaces [13]. To this end, central compo-
nents must be kept in-house whereas loosely coupled
components are rather suitable for outsourcing.

From the theoretical definition of DSS we draw
additional design requirements: Selecting and defin-
ing software component attributes must be flexible

344

and editable [14]. Also, all weights used within the
decision logic have to be individually adjustable [15].

2.2. Decision model

According to the previously defined design re-
quirements we propose an initial decision model in
this section as presented in figure 1. In the following,
the structure of our decision model is explained in
detail. The essential decision logic for our model is
defined and illustrated subsequently.

Figure 1: Decision model

At first, structural attributes of a component in re-
lation to the software product can be well explained
through systems theory, which recommends a modu-
lar setup for complex systems [12]. To do so, the
aggregation of functions into components must be
exhaustive, while mostly independent from each oth-
er. In the model we cover that by cohesion (compo-
nent modularity) and coupling (component interde-
pendence). A component can be called modular if it
can execute the necessary functions itself at most.
High modularity suits outsourcing, as it enables
handing over strictly defined items and decreases the
need for coordination. The degree of interconnected-
ness defines the coupling of components [13]. Cou-
pling can be measured by evaluating the defined rela-
tions of components within requirements. Highly
coupled components may act as communication in-
terfaces and are crucial to the functionality of the
whole system. Therefore they should not be out-
sourced.

Second, we focus on procedural attributes of the
development process for software components while
applying the lens of transaction cost economics.

Those processes that induce high transfer costs (such
as direct communication, personal meeting, etc.) de-
crease the outsourcing potential due to higher devel-
opment duration, integration effort etc. as shown in
the decision model above.

Components with a high development period are
likely to be on a critical path. If the critical path is
violated externally, high transaction costs may arise.
Further, priorities connected to requirements indicate
the attention of interest groups. The failure of high
priority components for this reason may lead to more
(communication) transactions. More specifically with
a higher degree of customer interaction, higher com-
munication effort will follow if problems occur. In
the interest of customer satisfaction, as well, compo-
nents with high customer involvement do not suit
outsourcing. As another procedural aspect, if devel-
opers must interact intensively, e. g. because of high
coupling, such a component would also not qualify
for outsourcing. This accounts especially within dis-
tributed software development. At last if integration
needs high effort, the component should be devel-
oped internally as well, as a continuous integration is
important within the development process.

Third, knowledge-based attributes can be embed-
ded by applying the resource-based view. Central to
this perspective is the term specificity that may be
described by characteristics that embody an ad-
vantage of specialization compared to the market
[16]. A business process specificity can be identified
where software components match business process-
es more specifically than standard software on the
market [17]. Functional specificity expresses in how
far a software component can fulfill the specific
needs of a business function [18]. At last, technical
specificity is used to determine the degree of integrat-
ing highly specific technology, such as core banking
software [17]. Highly specific components are diffi-
cult to imitate and may hold a competitive advantage.
As a result they should be kept in-house. Out of a
knowledge-based perspective additionally the novelty
of the application should be considered as well as the
sensitivity of test and user data.

Having defined all structural, procedural and
knowledge-based characteristics, the decision criteria
of the decision model are now completely derived
from aforementioned theoretical approaches. They
now have to be applied by decision logic in order to
receive reliable outsourcing results.

A target function is required for repeatable and
valid outsourcing decisions regarding every single
component of the software product. In order to
achieve such a function our decision logic comprises
three discrete evaluation potentials (high / medium /
low) for each of the decision criteria (e.g. integration

345

effort). These potentials are the only ones that out-
sourcing managers have to adjust when applying our
decision model. Optionally, they also may shift de-
fault weightings ad libitum but are not required to.

For defining the target function, decision support
systems literature differentiates between evaluating
action alternatives due to given criteria (multi attrib-
ute decision-making - MADM) or calculating a pre-
ferred alternative out of non-distinct solution sets
(multi objective decision-making - MODM) [19].
Evaluating the outsourcing potential of each related
component of a software product when the potential
can be either high or medium or low results in an
almost uncountable amount of different solutions.
Therefore, MODM approaches do not fit the required
needs for our decision logic. Instead many attributes
must be accounted for and that is why we pick deci-
sion matrices from MADM as an appropriate mean to
apply in our decision logic. They offer possibilities to
enhance attributes, enable a multi-stage decision pro-
cess, traceability, lucidity and re-usability of the ini-
tial configuration [20, 21]. Thus, it has been selected
to enrich the goal function of the decision model.
Within the decision table, all conditions are listed in
the upper rows, while all alternative actions are listed
below. Rules for decision-making are embedded via
columns that connect all combinations of conditions.
Hence, single cells define concrete conditions for a
rule that deduces a specific guidance below [22].

Figure 2: Decision logic

Having subdivided the decision criteria of the

model into three categories, the groups must be
weighted, resulting in a preference function for indi-
vidual decision makers. Such a weighting function
can be implemented using a priority list that indicates
the individual use of the criteria groups [23]. Priori-
ties can be addressed on an ordinal scale and will
then be normalized to a weight between 0 and 1. This
easy process makes prioritizing more transparent for
the decision maker [24]. Finally, the amalgamation of
all weighted criteria into one synthetic value express-
es the total utility value of the outsourcing alterna-
tive. That value is returned from the target function.

The logic of the model including the decision criteria
as characteristics, aggregated values and the final
utility value is illustrated in figure 2.

2.3. Applying the decision model

This decision model and its amalgamating calcu-
lation can be used to compare components to out-
source through a single score. To do so, an adapted
utility value analysis will be presented to determine a
comparable value for each component. A criterion
can be rated high, medium or low indicating how
distinctively a criterion is fulfilled by the considered
component. For each different rule the criteria can be
rated respectively and summarized. This may serve to
support the outsourcing decision. To apply this strat-
egy on decision tables, all rules must be specified in
before. The ordinal scale can easily be transferred to
a cardinal one in order to find a median for each cri-
teria category. During this process the specific influ-
ence of each category on the outsourcing decision
can be calculated. Only when this is done, the
weighted criteria values can be amalgamated. One
exception has to be made for the structural criterion
cohesion. Due to its inverse function, it must be cor-
rected by subtracting the value for cohesion from 4.
However, this can be neglected since the values for
cohesion and coupling can automatically be calculat-
ed by a clustering algorithm.

The total utility value can, hence, be calculated as
following: The single utility value of each decision
category will be calculated by the average of its re-
spective characteristics. These categorical values will
then be multiplied by the normalized weight. As the
weight is normalized from 0 to 1 and the single as-
sessments of the characteristics can be valued from 1
to 3, the amalgamated final outsourcing recommen-
dation value lies within 1 to 3 as well, with values
from 1,00 - 1,66 indicating low specificity and hence
outsourcing, while values from 2,34 - 3,00 indicate
low outsourcing potential due to high specificity and
neutral otherwise.

3. Implementation of the model

The second part of our design-oriented research
contains the instantiation of the previously developed
decision model and its logic. In order to receive a
viable prototype that is useful for a rigorous evalua-
tion, we set our focus on technical feasibility and
ease of integration. Thus, the resulting tool is intend-
ed to be easily applied in real cross-organizational
collaboration scenarios.

346

3.1. Architecture

The architecture of the decision technology is
based on three layers (cf. figure 3). The first layer
(from bottom to top) is a mobile application used to
perform the decision support process. It is the main
application of the suggested solution and is called
SmartSourcer. In order to easily distribute our proto-
type in the evaluation phase to the stakeholders of the
DSS we have decided for a mobile application.

Figure 3: Architecture of the DSS

The second layer of the architecture serves as
communication layer between the mobile app and
different collaboration platforms that could be con-
nected to our DSS. The so called proxy server trans-
lates the different field names of known collaboration
platforms to a unique and identifiable field for
SmartSourcer. Thus, the proxy is not only used to
read from platforms but also to write back resulting
information from the mobile app.

The third and last layer represents a set of existing
collaboration platforms for software development.
We include existing tools at this place in our solution
since software companies that engage in cross-
organizational collaboration heavily rely on them.
They provide the means for development process
support in collaborative scenarios like outsourcing.
As a result, we can make use of already pre-defined
software components that are stored in these plat-
forms.

As indicated by the grey box in the upper right
corner of figure 3 the given architecture can simply
be extended by further collaboration platforms. The
proxy server will then take over the task of correctly
translate corresponding fields. Thereby, we support
our claim for ease of integration.

3.2. Implementation details

For replication purposes of our research we pro-
vide implementation details for the aforementioned
architecture. At first, the mobile application (Smart-

Sourcer) is based on the iOS operating system and is
implemented for tablet usage. The programming lan-
guage used for coding is ObjectiveC and delivers a
native iOS application. Thereby, optimal use of the
operating system’s hard- and software components
are guaranteed. The integrated development envi-
ronment (IDE) XCode helped extensively to generate
graphical user interfaces, corresponding storyboards,
clearly arranged screens and especially with data
modeling and handling. The storage concept of the
application provides meta-data as well as decision
criteria of the decision model to be saved within the
local storage. For versioning the code, GitHub as a
free online versioning tool was chosen. Therefore, the
source code is freely available with the authors. Ad-
ditionally, a model-view-controller pattern is used for
implementation.

For the implementation of the proxy server
Eclipse for Java EE Developers was used as IDE.
The compiled code is deployed on an Apache Tomcat
server. This server guarantees a bidirectional map-
ping of corresponding data fields for details about
planned software components. It also exchanges
management reports and final assessment data be-
tween the mobile application and the collaboration
platform.

The third layer is only an abstraction and can be
seen as the connection (interface) to existing collabo-
ration platforms used in distributed software devel-
opment. In our case, we used the comprehensive
CodeBeamer platform for establishing a connection
of the proxy server to a collaboration platform.
CodeBeamer operates as a Java webserver instance
on a self-hosted server. The platform offers support
for almost all phases of the software development
process and provides communication and collabora-
tion means for stakeholders of a software project.
Therefore, we were able to test our DSS on all three
layers of its architecture.

The communication of the proxy server to
CodeBeamer is realized via a Web-API on the proxy
server. Thus, CodeBeamer information can be read
and manipulated via the Web-API that is built in Java
as well as the CodeBeamer server. Web services of
the proxy server enable our mobile app to exchange
data in form of the JSON format with the proxy. The
JSON format was chosen, as it enables a lightweight
exchange without defining variables within the data
sent. Thereby, the reduced amount of data sent re-
flects appropriate characteristics for mobile applica-
tions.

In order to setup an equal DSS environment as we
use in our research, the following must be guaran-
teed: a collaboration platform (as indicated in the
architecture section) must be in place in order to be

347

able to define the requirements, an architecture, the
design, and corresponding components for a software
product to be developed. Additionally, for a quick
installation of the mobile application, iPads are re-
quired. Apps for different devices had to be prepared
otherwise.

3.3. User interface

SmartSourcer as the implementation of the deci-
sion model is at the core of this paper’s contribution.
It facilitates the assessment of a software components
outsourcing potential for the person in charge and can
easily be used wherever the iPad is accessible.
SmartSourcers main functionality can be described
by three main functions:

3.3.1. Project selection. After starting the app, a user
can select a project for which its components can be
evaluated regarding their outsourcing potential. Al-
ternatively, previously evaluated components can be
retrieved from system storage. Personal login data
and decision model configurations can be specified
within the settings.

3.3.2. Evaluation. In a second step the user can eval-
uate all components drawn from a CodeBeamer re-
pository. In this step, a label (high / medium / low) is
assigned to each decision criteria of the decision
model (cf. figure 1). Meta information for each com-
ponent is pulled from the collaboration platform. Ad-
ditionally, the categories of the decision model must
be weighted (cf. figure 4). In case the user has no
preferences, the weights are distributed equally
among all categories. The weights are normalized
within the process of choosing weights.

Figure 4: Selection of the weightings

3.3.3. Results. When weights are provided and each
criterion is evaluated, the user can continue to a result
screen. The calculation takes place with respect to the
specified values as explained in the decision model
before. An overall outsourcing recommendation is
given, as well as advice for each component of the
system. As indicated in figure 5, users can look up a
detailed result view that makes each calculation
transparent. Results can further be exported as a PDF

for sharing, e.g. via mail. Additionally the results can
be processed back to CodeBeamer and there be used
for making decision within this collaboration plat-
form transparent.

Figure 5: Detail screen on SmartSourcer

3.4. Calculations of results

Decision-making within the mobile application
are aligned to the developed decision model and can
be broken down in three central substeps. Finally, an
outsourcing decision for each software component is
suggested by the system.

3.4.1. Value assignment to decision criteria. Before
any calculation can be executed by the decision sup-
port system, the manual assignment of the labels
high, medium and low to each decision criterion of a
component has to be translated into a utilizable value.
In line with the decision logic of our model (cf. figure
2) only then a reliable and repeatable calculation can
be realized. According to table I, the value assign-
ment to each criterion of a component is conducted.

Table I: Value assignment of labels

High 3

Medium 2
Low 1

348

3.4.2. Calculation of aggregated values. According
to the decision logic as introduced in figure 2, the
aggregated values A1, A2 and A3 represent partial
utility values for the decision categories (structural /
procedural / knowledge characteristics). These values
are calculated by the arithmetic mean of all decision
criteria of a category. The result is a value between 1
and 3. In order to provide clearly understandable in-
termediate results that are transparent for the users
and to comply with the decision logic, we transfer the
arithmetic results back to previously used labels.

In table II the corresponding intervals are trans-
ferred into labels. This is coherent with the usage of
decision tables as indicated in the decision logic of
our model in section 2.2.

Table II: Labels and intervals

1.00 – 1.66 Low (in-house)
1.67 – 2.33 Medium (indifferent)
2.34 – 3.00 High (outsourcing)

3.4.3. Amalgamation. The final calculation step is
required to amalgamate the previously calculated
partial utility of the aggregates. Thus, a decision rec-
ommendation can be derived for the sourcing of each
software component. The calculation of the outsourc-
ing potential P follows the formula

P = w1 * A1 + w2 * A2 + w3 * A3
and results again in a value between 1 and 3, as the
weights are normalized. By translating the resulting
value with the help of table II we immediately re-
ceive decision support for the software component
under investigation.

A high outsourcing potential recommends to have
a supplier developed the respective component. A
low potential indicates that the component should be
developed in-house. Medium values do not have the
power to provide a clear decision support. A detailed
screen of all resulting values and recommendations
given by the system is presented in figure 5.

4. Evaluation

As an integral part of the design science ap-
proach, the artifact must be evaluated [1]. The ad-
vantages of the technology developed must rigorous-
ly made visible for both the theoretical knowledge
base, as well as for practical operation. The tool un-
der investigation is the decision support system, in-
cluding the decision model and SmartSourcer.

4.1. Importance of the evaluation

In order to demonstrate its proposed usefulness,
the tool designed has to prove practical relevance and
formalized knowledge gained [25]. According to [1],
the evaluation is an essential part of the design sci-
ence paradigm and systematically gives proof of use-
fulness and quality of the artifact. [26] suggests be-
sides the common artificial evaluation a naturalistic
one taking place in the environment of the user and
thereby including interference not visible in a labora-
tory setting.

[27] refine this approach and develop a systematic
distinction between artificial or naturalistic, ex ante
or ex post and process vs. product evaluations. Other
parameters are the current development phase, goals
and requirements for research as well as costs, re-
sources and time restrictions.

[25] at last provides the most comprehensive
evaluation guidelines within the design science ap-
proach. It classifies the artifact due to its context
properties and suggests an appropriate evaluation
strategy based on the aforementioned options.

4.2. Evaluation methodology

We subdivide the evaluation of our DSS in a
quantitative and a qualitative part. For the quantita-
tive section we make use of essential constructs of
the technology acceptance model (TAM). Our quali-
tative analysis is based on criteria for measuring
quality within the Soft Systems Methodology intro-
duced by [28] and extended by [27, 1, 29]: effective-
ness, efficiency, ethnic aspects and elegance. Howev-
er, collection feedback about the utility and the quali-
ty of our artifact is in the scope of this evaluation.

4.2.1. Quantitative evaluation. Perceived usefulness
and perceived ease of use are central constructs of the
technology acceptance model (TAM), which suits ex
ante as well as ex post analyses over different time
periods [30, 31]. In order to rigorously evaluate our
decision model and its implementation within Smart-
Sourcer, we derive our evaluation model as presented
in figure 6 from TAM. Therefore, it contains TAM’s
central constructs and fits well to our evaluation
strategy.

Within this context, perceived usefulness can here
be seen as the degree to which a person expects in-
creased quality from the structured outsourcing deci-
sion within SmartSourcer. Perceived ease of use may
here be the degree to which using SmartSourcer is
possible without additional effort and can be meas-
ured using established items. The same holds for the
intention to use of SmartSourcer, which is a good
indicator for the actual use of our system.

349

To measure these constructs, measurement pa-
rameters have been specified. Perceived usefulness is
derived through the quality of the decision, broken
down into information quality and quality of the log-
ic, and the perceived improvement through higher
information quality. Perceived ease of use is defined
as the quality of implementation and the perceived
ease of using the implemented decision model. The
intention to use can simply be measured directly by
asking the user.

Figure 6: Evaluation model

4.2.2. Qualitative evaluation. The qualitative part of
our study focuses on the implementation of our DSS.
Thereby, we gain precious feedback of real users
during the development process of our application in
order to inform the release cycles of our prototype.
On the one hand we further improve our prototype in
doing so. On the other hand we also collect feedback
for further development after our study.

We apply the framework of [32] for measuring
and comparing information systems as it summarizes
several evaluation criteria for such systems that ana-
lyzes their utility and usability [29]. The framework
is subdivided into organizational, individual, infor-
mation related, technology related, and systemic as-
pects. Thus, it serves as a basis for the questionnaire
we use in our study.

4.2.3. Evaluation strategy. According to the quanti-
tative and qualitative setup of our evaluation we de-
cide to create a questionnaire covering the require-
ments from both types and addressing participants
with outsourcing experience. In the quantitative part
we ask the user in total for 29 items. These items
cover the constructs that we discussed in our evalua-
tion model. The questions are generally adapted from
existing literature about TAM. All these criteria are
measured on a Likert scale form 1 to 5.

The qualitative section of the evaluation ques-
tionnaire contains amongst personal data like age,

experience with outsourcing or employment with the
company additional 19 questions covering the cate-
gories of the applied evaluation framework.

For the data collection we applied an ex ante and
ex post evaluation approach. At first, an artificial ex
ante evaluation of our DSS is conducted. Its goal is to
collect information for the improvement of the proto-
type in additional release cycles of the development.
In total, we received 15 answered questionnaires
from master students and academics with majors in
business economics, business administration and in-
formation systems. They were invited to first receive
an overview of SmartSourcer and the underlying
DSS. A CodeBeamer project had been prepared and
served as example case for the participants to go
through the entire outsourcing decision process. Af-
terwards the DSS was assessed via the previously
defined questionnaire.

Second, our DSS is evaluated in a naturalistic ex
post scenario. On this occasion, branch experts within
their regular environment guarantee a rigorous evalu-
ation. Two medium sized software companies with
proven experience in outsourcing supported our
study. This naturalistic ex post evaluation delivered
additional 15 results of outsourcing experts with ex-
perience between 1 and 13 years with an average of
6.5 years. The employees were confronted with deci-
sions about outsourcing software components in their
daily business. After presenting SmartSourcer and
introducing its functionality (decision model and log-
ic), a fictitious outsourcing project had to be conduct-
ed. At the end, all of them evaluated our DSS within
the given questionnaire.

4.3. Quantitative results

In the quantitative part of our evaluation we use
descriptive statistical methods to assess the constructs
of the evaluation model (cf. figure 6). For analyzing
the questionnaire results we use IBM SPSS software.
Although we have two different evaluation groups
(ex ante and ex post), the result of the t-test indicates
that both groups do not significantly differ from each
other. For that reason, we give a short overview of
the descriptive analysis in which we hint at minor
differences between the groups before we reveal the
correlation of the constructs. In doing so we combine
the results of both groups as claimed by the t-test.

Perceived ease of use (EASE) was the best-rated
construct. It expresses the quality of implementation
with a 4.49 as good to very good, with hardly any
difference amongst both user groups. Especially the
low complexity and stability were very positive.
While the experts ranked stability higher, students
expressed the application was easier to understand.

350

The familiar and safe use of the system was rated
relatively low – however the system was indeed nov-
el to the participants. Regarding style elements ex-
perts were pickier than the students.

The perceived usefulness (USEFUL) was rated
good amongst both groups (4.03 and 4.01). However,
the experts perceived the quality of the DSS slightly
better, which is interesting due to their daily business.
Regarding possibilities to interact with coworkers
was as an outlier rejected with 2.65.

The perceived intention to use (INTUSE) was rat-
ed with a solid 4.27. The total results between both
groups are marginal and do not prove different popu-
lations beyond. However, for N = 30 the t-test pro-
vides restricted validity only. A correlation matrix
(cf. table III) further shows that perceived usefulness
and perceived intention to use significantly correlate.
The same holds true for perceived ease of use and
intention to use. It can be stated that there is a high
intention to use SmartSourcer and that this effect is
increased due to the interaction of the constructs.
With high quality of implementation and perceived
usefulness, it is not surprising that the intention to use
is high, as well.

Table III: Correlation matrix

 α µ σ min max 1 2 3

1 INTUSE - 4.27 0.64 3.00 5.00 1.00
2 USEFUL 0.78 4.06 0.37 3.00 5.00 0.52** 1.00
3 EASE 0.62 4.51 0.31 3.00 5.00 0.4* 0.43* 1.00

N = 30, * p < 0.05, ** p < 0.01

4.4. Qualitative results

The answers to the open questions of our ques-
tionnaire provide feedback regarding the prototype’s
implementation. The analysis reveals some weak-
nesses of the user interface that have been improved
in further release cycles of the mobile application.

For instance, many student respondents criticized
that the additional multi-branched start menu were
confusing and did not add value. It was therefore
reduced to a simple one-page menu. Additionally, a
more detailed listing of the calculation was favored.
Regarding information flow, critic rose that the con-
nection to other systems was not visible enough –
settings were changed accordingly. Further, a reset
function was missed and implemented afterwards. At
last the portrait mode was said to be not utilized
which was then also implemented afterwards.

The experts mainly provided organizational feed-
back. At first, it was stated that coworkers new to
outsourcing decision-making could learn from such

an application. Second, the decision model could be
used as a company-wide standard if success is proven
– making it necessary to save and share settings. The
tablet implementation was mentioned positively, as
well. One participant mentioned that the tool could be
used to justify outsourcing decisions. Some men-
tioned that known graphic elements would make nav-
igation easier. Time-driven budget functionality was
demanded, as well. Information related aspect of the
interviews were at most self-reflective for the candi-
dates. Technologically the tool experienced positive
feedback, a PDF- export function would be desirable.
The integration into existing collaboration software
was mentioned positively as well.

5. Summary

In line with the research question stated in the in-
troduction section, the research contribution of this
design science paper is the design, implementation
and evaluation of an innovative artifact. The major
contribution of this paper is the novelty of including
technical characteristics of a software product for
ITO decision-making. To the authors’ knowledge,
this is the first approach to consider technical charac-
teristics of software components in order to facilitate
a component based outsourcing decision. It supports
decision makers whether to outsource a component or
not and, thus, makes gut decisions superfluous.

The second contribution is the development of a
normative decision model to conduct outsourcing
decisions within software development teams. Nor-
mative models for outsourcing information systems
have been rare; hence, this paper complements the
knowledge base. The development of a holistic deci-
sion model based on established IS theories was
achieved, as well.

Third, the model has proven utility and usability
for both the decision model and the prototype. A cor-
relation between usability and intention to use was
proven to be significant for SmartSourcer.

5.1. Limitations and perspective

The praxeological-conceptual deduction of the
decision model from theoretical concepts is certainly
subject to criticism. Instead of rigorously deducing
criteria, those that were suitable for practical applica-
tion were chosen and included. Since we follow a
design science approach there is no request for theo-
retical deduction but rather for creative and unprece-
dented design aspects. Nevertheless, further research
could include a more stringent theory deduction part.

351

In our evaluation, the number of participants lim-
its the explanatory power of the significant relations
between the constructs of our evaluation model. A
longitudinal setup with additional companies partici-
pating could further validate the insights gained in
this study.

Despite its limitations this paper provides innova-
tive artifacts to support the decision to outsource
software components. It consists of both a normative
decision model and the regarding decision logic to
evaluate the individual components. The theoretically
deduced and implemented decision criteria embody a
new concept that includes technical characteristics
into the decision. This approach was implemented via
SmartSourcer in a successful manner according to the
evaluation. It confirms the quality of both the deci-
sion model as well as the implementation and thereby
the utility and usability of SmartSourcer to decide
about outsourcing software components.

6. References

[1] A. R. Hevner, S. T. March, J. Park, and R. Sudha, “De-
sign science in information systems research,” MISQ, vol.
28, no. 1, pp. 75–105, 2004.
[2] M. Böhm, S. Leimeister, C. Riedl, and H. Krcmar,
“Cloud Computing: Outsourcing 2.0 oder ein neues Ges-
chäftsmodell zur Bereitstellung von IT-Ressourcen?” In-
form. Mgmt. and Consult., vol. 24, no. 2, pp. 6–14, 2009.
[3] J. Dibbern, J. Winkler, and A. Heinzl, “Explaining
variations in client extra costs between software projects
offshored to India,” MISQ, vol. 32, no. 2, pp. 1–30, 2008.
[4] V. Grover, M. Cheon, and J. Teng, “The effect of ser-
vice quality and partnership on the outsourcing of infor-
mation systems functions,” Journal of Management Infor-
mation Systems, vol. 12, no. 4, pp. 89–116, 1996.
[5] M. C. Lacity, S. A. Khan, A. Yan, and L. P. Willcocks,
“A review of the it outsourcing empirical literature and
future research directions,” Journal of Information Tech-
nology, vol. 25, pp. 395–433, 2010.
[6] J. Lee, M. Q. Huynh, K. R., and S. Pi, “IT outsourcing
evolution – past, present, and future,” Communications of
the ACM, vol. 46, no. 5, pp. 84–89, 2003.
[7] U. Apte, “Global outsourcing of information systems
and processing services,” The Information Society, vol. 7,
pp. 287–303, 1990.
[8] E. Carmel and R. Agarwal, “Tactical approaches for
alleviating distance in global software development,” IEEE
Software, vol. 18, no. 2, pp. 22–29, 2001.
[9] E. Carmel and P. Tjia, Offshoring Information Tech-
nology: Sourcing and Outsourcing to a Global Workforce.
Cambridge, USA: Cambridge Univ. Press, 2006.
[10] J. Cheesman and J. Daniels, UML Components – A
Simple Process for Specifying Component-Based Software.
Addison-Wesley, 2001.
[11] R. M. Grant, “The resource-based theory of competi-
tive advantage: Implications for strategy formulation,”
Calif. Mgmt. Review, vol. 33, no. 3, pp. 114–135, 1991.

[12] H. A. Simon, “The architecture of complexity,” in
Proceedings of the American Philosophical Society, vol.
106, 1962, pp. 467–482.
[13] C. Y. Baldwin and K. B. Clark, Design Rules: The
Power of Modularity. Cambridge, USA: MIT Press, 2000.
[14] R. Grünig and R. Kühn, Successful Decision-Making.
Springer, 2005.
[15] K. Manz, A. Dahmen, and L. Hoffmann, Entschei-
dungstheorie. München: Vahlen, 1993.
[16] O. E. Williamson, The Economic Institutions of Capi-
talism. New York, USA: Free Press, 1985.
[17] L. M. Applegate, F. W. McFarlan, and R. D. Austin,
Corporate Information Strategy and Management: Text
and Cases. New York: McGraw-Hill, 2003.
[18] J. Winkler, J. Dibbern, and A. Heinzl, “The impact of
software product and service characteristics on internation-
al distribution arrangements for software solutions,” in
Proceedings of the 30th ICIS, Phoenix, Arizona, 2009.
[19] J. Jahn, Vector Optimization: Theory, applications,
and extensions. Heidelberg: Springer, 2004.
[20] F. Eisenführ, M. Weber, and T. Langer, Rational Deci-
sion Making. Dordrecht: Springer, 2010.
[21] A. A. Mullur, C. A. Mattson, and A. Messac, “New
decision matrix based approach for concept selection using
linear physical programming,” in Proceedings of the 44th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics,
and Materials Conference, 2003.
[22] L. J. Heinrich, F. Roithmayr, and A. Heinzl, Wirt-
schaftsinformatik-Lexikon, München: Oldenbourg, 2004.
[23] C. Zangemeister, “Nutzwertanalyse von Projektalter-
nativen,” Logistik Management, vol. 5, no. 2, pp. 50–59,
2003.
[24] M. Weber, Entscheidungen bei Mehrfachzielen. Wies-
baden: Gabler, 1983.
[25] J. Venable, J. Pries-Heje, and R. Baskerville, “A com-
prehensive framework for evaluation in design science
research,” in Design Science Research in Information Sys-
tems. Heidelberg: Springer, 2012, vol. 7286, pp. 423–438.
[26] J. Venable, “A framework for design science research
activities,” in Proceedings of the 2006 Information Re-
source Mgmt. Assoc. Conf., Washington, USA, 2006.
[27] J. Pries-Heje, R. Baskerville, and J. Venable, “Strate-
gies for design science research evaluation,” in Proceedings
of the European Conference on Information Systems, 2008.
[28] P. Checkland and J. Scholes, Soft systems methodolo-
gy in practice. Chichester, UK: Wiley, 1990.
[29] C. Sonnenberg and J. vom Brocke, “Evaluation pat-
terns for design science research artefacts,” in Practical
Aspects of Design Science, M. Helfert and B. Donnellan,
Eds. Berlin, Heidelberg: Springer, 2012, pp. 71–83.
[30] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User
acceptance of computer technology: A comparison of two
theoretical models,” Management Science, vol. 35, no. 8,
pp. 982–1003, 1989.
[31] V. Venkatesh and H. Bala, “Technology acceptance
model 3 and a research agenda on interventions,” Deci-
sion Sciences, vol. 39, no. 2, pp. 273–315, 2008.
[32] J. Palmius, “Criteria for measuring and comparing
information systems,” in Proceedings of the 30th IRIS in
Scandinavia, 2007.

352

