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Abstract. Big data analytics is becoming a veritable source of competitive ad-
vantage as it helps companies to better understand their business environment 
and to create or improve their products and services accordingly. However, big 
data analytics also poses challenges to organizations with respect to establishing 
the required capabilities. Building upon a design science research approach and 
the Work System Theory as a kernel theory, we identify several capabilities nec-
essary to leverage the potential of big data analytics. To achieve this goal, we 
conducted 16 interviews with experts from an IT-strategy consulting firm. We 
furthermore organize the identified capabilities into a coherent model. The re-
sulting capability model consists of eight capability groups that contain 34 capa-
bilities. It provides a basis to systematically develop the necessary capabilities 
for the adoption und strategic usage of big data analytics. 

Keywords: big data analytics, capability model, work system theory, design 
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1 Introduction 

The accumulating evidences of potential benefits provide a legitimation to consider big 
data analytics (BDA) a sustainable phenomenon rather than a buzzword [1], [2]. BDA 
opens up new business opportunities, such as using “real-time information from sen-
sors, radio frequency identification and other identifying devices to understand business 
environments at a more granular level, to create new products and services, and to re-
spond to changes in usage patterns” [2, p. 22]. The implementation of BDA poses chal-
lenges especially regarding the development of appropriate organizational competen-
cies [3], [4], because the “expanding sea of data […] is either too voluminous or too 
unstructured to be managed and analyzed through traditional means” [2, p. 22]. 

Those challenges originate from the vast amount of data that comes in both struc-
tured and unstructured forms and from various sources such as the Web, social media, 
or the Internet of Things [5], [6]. This leads to specific and novel implications for or-
ganizations on a procedural (e.g., new forms of decision-making), organizational (e.g., 
new employee competencies and new structures) and technological (e.g., new platforms 
and tools) level. Accordingly, the adoption of BDA requires organizational transfor-
mations as well as the development of specific analytical and technological capabilities 
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(e.g., the effective deployment within the current IT landscape) [1], [7], [8]. For in-
stance, the capability development encompasses the acquisition of sufficient 
knowledge of how to extract business value from big data and the application and man-
agement of the underlying technologies [2], [9]. Companies have a tough time trans-
forming towards a data-driven company and recognizing their data not as a side-product 
but as a source of competitive advantage. The development and adoption of capabilities 
represents a first step in following this path. To facilitate this journey, maturity or ca-
pability models provide guidance for companies to assess their current situation regard-
ing the capabilities required for a task (i.e., BDA) [10]. However, to the best of our 
knowledge no capability model exists in IS research, which helps companies to develop 
and manage big data analytics competencies [11]. In order to address this apparent re-
search gap, we pose the following research question: “Which capabilities are required 
to build a big data analytics competence?” A capability model for BDA will help to 
assess the current state of a company and to identify necessary initiatives to build re-
quired capabilities. To develop such a model in a rigorous scientific process, we follow 
the design science paradigm. Building upon the Work System Theory as kernel theory 
and the results of 16 expert interviews, we present 34 capabilities and summarize them 
in an initial version of our model that will be developed further in future iterations. 

Next, we describe the theoretical background and related work. In section 3, we pre-
sent our research approach. Thereafter, we discuss the interview results and describe 
the resulting capability model. We conclude by discussing future research avenues. 

2 Background and Related Work 

To set the background for our research endeavor, we first reflect BDA from a capability 
perspective, before we discuss related work that is potentially relevant for our research. 

2.1 Big Data Analytics as a Set of Capabilities 

BDA does not only stand for technological but also for organizational characteristics 
(e.g., data-driven culture) and their potential to be a source of competitive advantage 
[4], [12]. From a technological standpoint, BDA as a competence can be characterized 
by processing requirements with respect to data volume, velocity, variety, and veracity 
[23]. Big data itself is regarded as the result of all these dimensions [13]. However, 
conceptualizing BDA purely from a technological perspective does not sufficiently 
characterize the potential role of BDA in companies [14]. Indeed, BDA requires a data-
driven culture, new analytical methods, competencies and capabilities [15]. It “forces 
us to look beyond the tried-and-true methods that are prevalent” [16, p. 44] today and 
is characterized by the “belief that large data sets offer a higher form of intelligence and 
knowledge that can generate insights that were previously impossible, with the aura of 
truth, objectivity, and accuracy” [17, p. 663]. Data itself is useless if no process of 
sense-making takes place and the gained insights are not used to make data-based de-
cisions [18], [19]. Successfully translating big data-drawn insights into convincing ar-
guments for managers changes the dynamics of managerial decision-making [5]. In this 
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context, the development of specific BDA capabilities can be seen as a major challenge 
for companies, especially for those digitizing their business models [8].  

BDA has a transformative effect on the organization (e.g., substitution of inefficient 
business models) or competitive landscapes (e.g., entrance of new players, shift of 
power), which in turn leads to better organizational performance [1], [3], [8], [13]. BDA 
uncovers previously unknown patterns, correlations and information and can be seen 
as a solution for gaining better insights from diverse und previously unexploited data 
sources (e.g., social media, wearables, RFID) [20]. Organizations nowadays realize that 
analyzing big data can help to stay competitive in terms of profits, speed, efficiency 
and customer-orientated service through timely and profound decisions [12]. BDA 
hence poses a potential competitive advantage [1], [12], [13]. However, before this ad-
vantage can be achieved, organizations need to analyze how they can use BDA to im-
prove their business and how they can establish necessary organizational capabilities 
[19], [20]. Organizational capabilities, in general, comprise skills, abilities and exper-
tise of an organization and they are idiosyncratic and inimitable [21]. Representing a 
source of organizational value and leading to competitive advantages, they are con-
nected tightly to the history, culture, and experience of the firm [22–24]. 

In summary, BDA can be understood as a strategic competence to gain analytical 
insights from big data, which has a specific business value and cannot be analyzed by 
traditional approaches such as data warehousing. The strategic competence equally re-
sults from technological and organizational capabilities.  

2.2 Related Work 

To identify potentially relevant related work, we conducted a literature review follow-
ing the guidelines of Webster and Watson [25] and vom Brocke et al. [26]. In accord-
ance with our research question, we examined which capabilities are seen as relevant 
to build a BDA competence. Furthermore, we were interested in identifying prior BDA 
management approaches and/or maturity models to verify the research gap. We 
searched the literature base for articles addressing the maturity of BDA initiatives or 
the required capabilities. As keywords, we used three search terms (see Table 1) to 
query the AIS electronic Library and the EBSCO Host Business Source Complete data-
base. To extend the scope, we also queried Google Scholar using a fourth search string 
[27].  

Table 1. Results of the literature review 

Database Search String Hits Relevant 

EBSCO 
AIS 

“big data” 
AND 

(“maturity model” 
OR  

“capabilities”) 

16 9 

“business analytics” 17 1 

“business intelligence” 54 9 

Google 
Scholar 

allintitle: capabilities OR "maturity model" "big data" 25 7 

Total 113 26 

1143



We screened the titles and abstracts of the articles to sort out irrelevant articles. Ad-
ditionally, we conducted forward and backward searches based on the identified litera-
ture [25]. We then interpreted the remaining articles qualitatively, excluding non-peer-
reviewed and redundant articles [25]. We further excluded articles that only use one of 
the keywords as either the methodological approach or as supplementary information.  

In particular, we found several business intelligence maturity models (e.g. [28]–[31]) 
as well as reviews thereof ([32], [33]). While maturity models targeting the business 
intelligence or business analytics domains – as antecessors of BDA [1] – are potentially 
relevant for BDA, BDA differs to a great extent regarding the specific skills, compe-
tencies, and, in consequence, the required capabilities [34], [35]. Business intelligence 
and business analytics rather is focused on storing and analyzing structured historical 
data that is managed in enterprise systems or data warehouses [34], [36]. The according 
maturity models aim at supporting this task usually by focusing on capabilities to con-
duct the extraction, transformation, loading, warehousing, and historic analysis of data 
[34]. Moreover, some models hardly provide details, making their applicability difficult 
(e.g., [29], [31]), focus on technological capabilities of companies (e.g., [30]), or do not 
specifically look at the capabilities needed at all (e.g., [28]). Other models are too spe-
cific, focusing solely on topics such as information quality [37]. While these models 
might also provide guidance for a BDA scenario, BDA differs from business intelli-
gence both in technological and organizational aspects [34]. From a technological per-
spective, BDA differs regarding the breadth and depth of the processed data as well as 
regarding the types of questions answered. In particular, BDA builds upon exploration, 
discovery, and prediction. The experimental nature of BDA in combination with often 
undefined business questions frequently results in a co-location of BDA units with busi-
ness units to work closely to the analyzed products and processes [2]. 

While business intelligence maturity models provide a good starting point for the 
examination of BDA capabilities, literature only provides sporadic evidence concern-
ing the competencies that are required in such a scenario. Debortoli et al. [34] have 
identified several capabilities based on an analysis of job descriptions. However, such 
an analysis can only provide first indications as there might be differences between the 
capabilities that a big data analyst ideally should bring along and those that are required 
in practice. An MISQ special issue discusses different analytics techniques and de-
scribes, how business intelligence and analytics (BI&A) frameworks can be used to 
conduct BDA and where they might have to be updated [36]. While several application 
domains are highlighted, specific capabilities are only mentioned as an aside, though. 
In particular, the article does not summarize the capabilities needed to succeed in BDA. 

We were only able to identify one article focusing on this specific topic [7]. It de-
scribes challenges for governmental organizations that aim at using BDA. Proposing a 
preliminary set of capabilities that organizations ought to have to enhance their service 
through the use of big data, they address a comparable research question. However, 
they limit their framework to governmental organizations and only propose domain-
specific capability categories. We complement this research stream by investigating, 
which capabilities are important for private organizations such as enterprises.  
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3 Research Method 

To contribute to the closure of the above-mentioned research gap and to provide guid-
ance regarding the capabilities required to perform BDA, we develop a capability 
model. The development of the capability model is based upon the design science par-
adigm, which provides guidelines for the rigorous scientific construction of novel arti-
facts such as constructs, models, methods, or instantiations [38], [39]. To ensure the 
traceability of our results, we followed a structured design science process that has been 
proposed to support the systematic development of capability (maturity) models [40]. 
This process consists of the problem definition, scoping, model development, and eval-
uation stage.  

During the process, several requirements have to be fulfilled [40]. First, the process 
should be conducted iteratively. In this paper, we report on the results of the first itera-
tion. Repetitions of the above-mentioned stages will be conducted in future iterations 
to improve both the structuring of the model and its level of detail. Second, the iterative 
nature of the process shall be used to apply multiple methodologies such as literature 
reviews, Delphi studies, or expert interviews [40]. As sources regarding the capabilities 
required for BDA are still scarce in literature, we decided to begin designing our capa-
bility model based on the results of expert interviews, which we conducted to identify 
relevant capabilities. Third, the developed capability model ought to be compared to 
existing models to ensure that it indeed provides novel results. To fulfill this require-
ment, we relate our capability model to existing approaches in section 5. In general, it 
is furthermore necessary to describe the relevance of the addressed problem to docu-
ment the problem statement and justify the achieved results [40], [41]. Having docu-
mented the first two aspects in the former sections of this paper, we now focus on de-
scribing and justifying the results, i.e. the developed capability model. 

The design of the capability model is informed by the Work System Theory [42]. 
We used the holistic enterprise perspective of the Work System Theory as conceptual 
basis to address all relevant facets of a company that performs BDA to deliver new 
products/services or to improve existing ones. This includes internal (e.g., internal busi-
ness units) as well as external customers, which profit from BDA. Generally, a work 
system is a “view of work as occurring through a purposeful system” [42, p. 91]. It 
consists of nine components (see Figure 1): customers (people receiving products 
and/or services from a work system); products (products and/or services created by a 
work system); processes (work steps to create products and/or services); participants 
(persons doing work during the processes); information (either used or created); tech-
nologies (tools and techniques); environment (outside factors affecting the work sys-
tem); infrastructure (resources used by the work system); and strategies (goals of the 
work system). We structure our capability model into different competence fields ac-
cordingly.  

Moreover, we used the work system components as a structural guideline when in-
terviewing experts about the capabilities necessary to perform BDA. We hence asked 
for required capabilities in each of the fields. Generally, an expert is someone with 
privileged knowledge about the topic of interest [43]. As BDA is not a routine task in 
most companies yet and we nevertheless wanted to obtain knowledge from experts (i.e., 

1145



people who are intensively involved with BDA), we decided to interview members of 
a leading consulting firm that is specialized in supporting big data initiatives. In so 
doing, we gained access to specialists who had significant expertise in BDA and also 
had worked in different application domains, thus ensuring a broad feedback. Overall, 
we interviewed two managing partners (MP), three partners (P), eight managing con-
sultants (MC), two consultants (C), and a business analyst (B). We decided to conduct 
semi-structured face-to-face interviews, since they are considered to be the superior 
data collection technique for interpretive investigations [44]. The interview guideline 
was structured according to the recommendations of Myers and Newman [45]. In a first 
part, we asked for demographic information. With respect to each work system com-
ponent, we then asked for potential capabilities required to carry out BDA.  

To identify relevant capabilities, we performed a cross-interview analysis [46]. First, 
we analyzed the gathered data using open coding techniques. Doing so allowed us to 
identify recurrent patterns, which we thematically grouped into segments [47]. From 
the segments, we could then derive the capabilities that were recurrently emphasized 
by the experts. Furthermore, we analyzed the segments for consistent and distinctive 
statements to examine if the experts’ perception of the capabilities was homogeneous. 

4 Capability Model 

Based on the interview results, we identified 34 capabilities (CAP1-CAP34), which 
were mentioned as important by at least by 25% the experts. 

Figure 1. Big data analytics capability model according to the work system elements [42] 
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Based on their topic, we grouped the identified capabilities into the following eight 
competence fields, which each contain between two and eight capabilities: Customer 
Relationship Management, Partner Life Cycle Management, Product/Service Life Cy-
cle Management, Enterprise Risk Management, Strategy Development, Transformation 
Competence, Enterprise Architecture and Process Management, and Information Man-
agement. We arranged the competence fields according to the elements of the Work 
System Theory in Figure 1. The resulting capability model provides a generic library 
of capabilities that can be used to assess a company’s ability to successfully perform 
BDA. 

Customer Relationship Management (CAP1-3). The capabilities in this compe-
tence field describe a company’s ability to involve its customers into the value genera-
tion. The active involvement of the customers is critical to gather customer data and 
use it to improve or create products and services. Establishing Customer Care and Cus-
tomer Loyalty (CAP1; mentioned by as important 6 out of 16) facilities helps involving 
the customer after the buying process and taking care of customer incidents, ensuring 
customer satisfaction and customer retention and cross-/up-selling: “I have to make 
sure that my customer continuously requests my big data enabled services” (P#2). 
Multi-Channel-Integration Management (CAP2; mentioned by 7 out of 16 as im-
portant) is required to connect traditional channels with new digital channels (like so-
cial media, mobile sales etc.) in order to intensify the communication with the customer 
and generate data: “You have to make sure that your customers can contact you through 
any communication channel, which they want to use” (P#1). Creating an Understand-
ing of Customer Needs (CAP3; mentioned by 6 out of 16 as important) by evaluating 
appropriate information is a prerequisite to respond to customer requirements and to 
offer products/services to better suit the customers’ needs: “If I want to offer services 
or products, improved by big data analyses, I have to be really close to the customer 
needs in order to appropriately design such services and products” (P#1). 

Partner Life Cycle Management (CAP4-6). Installing BDA as a means to create 
or improve products/services typically requires the integration of diverse data sources 
including data from members of the existing value chain or new data suppliers. The 
capabilities contained in the competence field Partner Life Cycle Management describe 
a company’s ability to flexibly coordinate and integrate such partners in supply chains 
and to create value by creating partnerships. Providing means for a systematic Partner-
Channel-Integration (CAP4; mentioned by 6 out of 16 as important) ensures that all 
partners taking part in the value chain can be integrated. In particular, interfaces and 
communication protocols have to be established to allow the exchange of data: “A lot 
of data is coming from my partners. Thus, it is very important to integrate them with 
the right channels” (P#1). A company also has to have an Intelligent Partner Scouting 
(CAP5; mentioned by 4 out of 16 as important) facility to identify suitable network 
partners with whom to generate a competitive advantage in a specific product/service 
domain. In particular, this includes an examination of the credibility and reliability of 
the partner with respect to the dimensions time, budget, and quality to ensure that the 
partnership does not pose a risk: “For topics like big data you need the right skills as 
well as the right partners” (MP#2). Making use of a Multi-Layer-CRM (CAP6; men-
tioned by 4 out of 16 as important) allows sharing collected customer data with the 
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upstream partners in the value chain, for instance by using the above-mentioned partner 
channels. In so doing, all members of the value chain can use the collected data of the 
end-customers to improve their products/services: “I need to know the customer of my 
partner and to have the right communication protocols” (MC#8) 

Product/Service Life Cycle Management (CAP7-10). BDA can help to monitor 
the organizational environment as well as to improve products and services. To benefit 
from such an approach, a company has to reposition its Product/Service Life Cycle 
Management towards handling big data based products/services. Among others, this 
repositioning affects the Business Exploration (CAP7; mentioned by 4 out of 16 as 
important) activities of a company. On the one hand, the company needs to develop an 
ability to introduce new big data based products/services and the ability to withdraw 
them from the market if they do not add value (release often, sale early). On the other 
hand the company needs to be able to observe the market to discover potential new 
entrants: “This is the whole topic trial and error…develop and see how the service 
works out and, in the next step, to improve the service” (C#1).The repositioning also 
affects the Product/Service Development (CAP8; mentioned by 5 out of 16 as im-
portant), i.e. the ability of a company to develop big data based products/services ac-
cording to the customer needs and according to the desired product/service portfolio: 
“I have to consider the customers’ expectations in order to deliver suitable services 
and products” (P #2).By means of an adjusted Marketing Management (CAP9; men-
tioned by 4 out of 16 as important), a company has to ensure the proper marketing of 
big data enabled products/services. In particular, a company needs to successfully high-
light the added value of such products/services, so that potential customers accept the 
new offerings: “You have to ensure through specific marketing methods that a customer 
becomes aware of your service portfolio and says: oh, look, how awesome, they offer 
services based on big data analyses” (P#2). Finally, the repositioning also affects the 
Product/Service Delivery (CAP10; mentioned by 5 out of 16 as important), i.e. the abil-
ity of a company to continuously deliver big data enabled products/services in time and 
with the promised quality: “As service provider I have to be able to package and deliver 
continuously the insights of the big data analyses” (MC#4). 

Enterprise Risk Management (CAP11-13). The extensive usage of big data in 
business-critical domains implicates several potential risk factors. The category Enter-
prise Risk Management characterizes the robustness of data-driven business models 
and ensures an acceptable risk level through appropriate measures. A Risk Management 
(CAP11; mentioned by 5 out of 16 as important) is required to identify and prioritize 
data-related risks and their probability of occurrence, e.g., data theft. It includes the 
introduction of measures to reduce the likelihood of data risks and a monitoring system 
to supervise risks: „You have to identify and prioritize both the amount of damage and 
the probability of occurrence of the specific risk” (MC#1). A corporate Management 
of Internal Controls (CAP12; mentioned by 6 out of 16 as important) helps monitoring 
compliance guidelines through the development and maintenance of control systems 
(governance & compliance management system). This includes the definition of com-
pliance guidelines with a focus on the usage of data and the culture of respecting such 
guidelines: “I have to do my best in order to stay compliant and create an internal 
control system” (MC#1). An Information Security (CAP13; mentioned by 8 out of 16 
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as important) concept is able to address questions of privacy and access management. 
It ensures the treatment and transferal of data in accordance with compliance guide-
lines. Access Management focuses on ensuring authentication and authorization when 
accessing data. Privacy Management guarantees the protection of data, specifies infor-
mation ownership, and addresses digital identity issues: “In the context of such services, 
information security is an essential topic because data is an asset, a production factor. 
If I cannot handle the data accordingly, I have a huge problem” (MP #2). 

Strategy Development (CAP14-17). BDA as veritable source of competitive ad-
vantage must also be part of a company’s strategic capabilities. The capability group 
Strategy Development accordingly addresses the innovative usage of BDA in line with 
the business strategy and under the consideration of trends. This affects the Innovation 
Management (CAP14; mentioned by 4 out of 16 as important), i.e. the ability to think 
out of the box to develop new big data based innovations. Trends need to be detected 
early and monitored: “In the context of big data I have to be able to react quickly to 
trends and to use them to my advantage” (MP#2). A systematic Management of IT-
Strategy (CAP15; mentioned by 8 out of 16 as important) ought to ensure the derivation 
of the IT-strategy from company's business strategy. BDA initiatives are part of the IT-
strategy in order to manifest its importance and consequently its successful usage: “In 
the vein of digitization this capability becomes more relevant as new business models 
are based on information technology” (MC#8). IT-Business-Alignment (CAP16; men-
tioned by 4 out of 16 as important) is the ability to align IT-Strategy and its objectives 
with the objectives of the business strategy. In the context of BDA, it ensures the proper 
collaboration and communication between IT department, business department and, 
possibly, an analytics competence center in order to ensure a successful delivery of 
services or products: “It has to be totally in match what IT and business is doing” 
(C#2). Business Development (CAP17; mentioned by 5 out of 16 as important) includes 
the development and identification of new business cases, sales channels, pricing mech-
anisms and new business models that base on BDA analyses in order to sustain com-
petitiveness: “Many business models that were successful for decades are marginalized 
in the era of digitization“ (MC#1). 

Transformation Competence (CAP18-20). BDA requires companies to transform 
current ways of work and their business models because of its disruptive nature. In this 
context, the capability group addresses a company’s competence to transform and adapt 
to environmental dynamics. Establishing a Supportive Working Environment (CAP18; 
mentioned by 5 out of 16 as important) fosters personal responsibility, a flexible way 
of work and leadership supported by activity-based working structures and tools that 
enable employees to work efficiently and effective: “It is all about leadership, flexible 
way of work, responsibility, open office and activity-based working environments and 
the respective supporting tools” (P#2). For BDA approaches, it ensures a collaborative 
way of data sharing across departmental boundaries. Skill Development (CAP19; men-
tioned by 14 out of 16 as important ) enables employees to address to new topics 
through trainings and workshops and, in the context of BDA, to develop the skills to 
handle, to structure, and to exploit heterogeneous (big) data in the business context 
using tools or technologies: “Organizations nowadays do not have the people who deal 
with big data […] This is a big challenge to build up those capabilities […] data alone 

1149



without the right people and the right skill sets to generate insights from this data does 
not add any value at the end” (C#2). Culture Management (CAP20; mentioned by 8 
out of 16 as important) encompasses introducing and maintaining a culture of open 
communication through appropriate methods (e.g., continuous improvement or change 
management). In this context, the belief that data is an essential resource needs to be 
part of the company’s culture: “You have to get your employees to know that data is a 
strategic asset on which you can capitalize. The thinking that you can actually monetize 
your data through services does not yet exist in companies” (C#1). 

Enterprise Architecture Management and Process Management (CAP21-26). 
To leverage big data to its full potential the respective technologies and tasks need to 
be effectively integrated into the process and IT landscape. Consequently, the capability 
group Enterprise Architecture Management and Process Management is about having 
an understanding for the interplay of applications and for the respective data streams 
from a process perspective as well as from a technological perspective. It compromises 
the following capabilities: Value Oriented Process Management (CAP21; mentioned 
by 5 out of 16 as important) is the capability to modularize the own value chain and to 
integrate the own value chain with the value chain of the partners. Hence, it is a prereq-
uisite for the orchestration of end-to-end value chains across company borders and for 
an end-to-end data flow between partners: “You should be able to configure your pro-
cesses in a variable manner” (C#1). End-to-End Integration of Processes (CAP22; 
mentioned by 6 out of 16 as important) ensures the consistency of the process architec-
ture along the process chain over all departments and over organizational and IT bound-
aries and, consequently, ensures the data flow between partners: “In the context of big 
data this capability is a key capability as it ensures continuous flow of data” (MC#5). 
Management of Process Standards (CAP23; mentioned by 5 out of 16 as important) is 
about using and managing process standards and predefined processes. In the context 
of BDA, it has to guarantee the compatibility between various internal and external 
processes and their data exchange points: “Against the background of collaboration it 
gains relevance to use process standards and to orchestrate process chains” (MC#5). 
Policy Driven Process Management (CAP24; mentioned by 4 out of 16 as important) 
ensures that the process design and management is based on the company’s legal guide-
lines in order to stay compliant: “Especially in the context of big data and privacy is-
sues, the design and the management of processes along the principles and guidelines, 
which ensure compliance, are a vital point” (P#1). Agile Process Modeling & Imple-
mentation (CAP25; mentioned by 5 out of 16 as important) refers to the application of 
reference process frameworks, rules of modeling and compositing process chains for 
the design of functional processes: “It helps to bring big data enabled products to the 
market more easily if you have established something like this in the company” (C#1). 

Information Management (CAP26-34). Information is the most valuable resource 
for BDA. Consequently, Information Management must ensure the rightful manage-
ment, acquisition, processing, and distribution of information. Information Value As-
sessment (CAP26; mentioned by 9 out of 16 as important) evaluates the significance, 
relevance and the inherent value of (big) data: “Data is not a by-product of value cre-
ation […] but the source of value for the company and thus for my customers” (P#2). 
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To ensure the end-to-end integration of processes and the respective Information Ex-
change (CAP27; mentioned by 7 out of 16 as important) the data flow has to be estab-
lished via data communication protocols and interfaces. This enables a company to per-
form the first task of gathering data from different data sources (e.g., partners and cus-
tomers): “It is not only about having a huge amount of data but also to have current 
data as this defines the value of the data” (P#1). Master Data Management (CAP28; 
mentioned by 7 out of 16 as important) is about persistently saving critical company 
data in a structured and retrievable way: “Is the data we have semantically correct and 
similar or not?” (MP#1). Information Quality Management (CAP29; mentioned by 8 
out of 16 as important) takes care of data quality and readiness (provisioning at the right 
time in the right quality). Furthermore, data sources and data streams are monitored and 
processed in order to avoid blackouts. Especially in the context of BDA the assurance 
of quality is a prerequisite for reasonable results as the diverse data sources and data 
structures change rapidly: “If I deliver big data analytics analyses I have to make sure 
that my information quality is alright” (MP#1). Data Gathering (CAP30; mentioned 
by 8 out of 16 as important) comprehends the identification and gathering of data and 
(previously unknown) information sources. Data needs to be gathered beforehand from 
the different sources (e.g., processes, actors, and machines) such that BDA analysis can 
be performed: “I have to collect a huge data volume coming from sensors and other 
sources and know which sources to use” (P#2). Data Processing (CAP31; mentioned 
by 8 out of 16 as important) addresses the extraction and integration of structured and 
unstructured, old and new, external and internal data as well as its structuring, consoli-
dation, transformation and loading: “If I do not have the right methods to process the 
data I do not even have to start at all” (C#2). Analytics (CAP32; mentioned by 10 out 
of 16 as important) refers to the examination of the data in order to derive new infor-
mation: “It’s about finding the value and getting information that has been unknown 
beforehand” (MC#4). In this vein, new algorithms, which are capable to analyze big 
data, have to be developed/used that allow a company to derive insights from connected 
data pools. Information Presentation (CAP33; mentioned by 8 out of 16 as important) 
is essential for the digital delivery of BDA analyses. The results of those analyses needs 
to be visualized in a digestible manner such that the customer understands the value at 
a glance: “I have to display the information I generated in a reasonable manner such 
that the customer can actually use the data” (MP#2). Infrastructure Management 
(CAP34; mentioned by 7 out of 16 as important) ensures the provisioning and mainte-
nance of the technological infrastructure e.g., scalable big data database systems like 
Hadoop: “Which infrastructure do I need to enable big data in the first place? Do I 
need in-memory data bases or Hadoop clusters?” (C#2). 

5 Conclusions and Future Research 

Although “big data” belongs to the most intensively discussed topics today, little 
research has investigated the capabilities required to effectively perform BDA. Build-
ing upon the holistic enterprise perspective of the Work System Theory and the results 
of 16 expert interviews, we have developed a model that provides information about 
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several capabilities, which are potentially required to conduct BDA. In sum, we identi-
fied 34 generic capabilities that we assigned to eight capability fields: Customer Rela-
tionship Management, Partner Life Cycle Management, Product/Service Life Cycle 
Management, Enterprise Risk Management, Strategy Development, Transformation 
Competence, Enterprise Architecture and Process Management, and Information Man-
agement. The capability model gives an initial, yet unique and empirically grounded 
overview of the competencies that are generally required for BDA.  

The results of our research have implications for academia and practice alike. From 
an academic perspective, the created model embodies a theory of the organizational 
capabilities necessary to fully leverage the potential of BDA. Although this topic ap-
pears to be of critical importance to ensure the success of big data initiatives, it hardly 
has been examined until now. While we have only carried out a first iteration of our 
design science endeavor so far, the results show that the derived capability model sig-
nificantly differs from those that have been proposed for the business intelligence do-
main. Even though some aspects appear to be relevant in both domains, leveraging the 
potential of BDA appears to require additional organizational and technological capa-
bilities. In this respect, the results of our research endeavor corroborate recent findings 
in literature [34]. At the same time, the developed model is both more comprehensive 
and more structured than other capability models that have been developed for the elec-
tronic government domain in parallel [7] or related approaches that focus on gathering 
concrete competencies (such as NoSQL databases, JAVA programming etc.) from job 
descriptions [34]. Accordingly, it advances the current body of knowledge with novel 
findings. For practice, the presented capability model delivers a benchmark against 
which companies can assess their organizational capability to leverage big data initia-
tives. In particular, the capability model provides the semantics for company-internal 
assessments of its ability to benefit from BDA. The capability model furthermore is a 
step towards providing an instrument, which supports the development and transfor-
mation of organizational capabilities in order to perform BDA more effectively.  

Note that the relevance of the presented capabilities might vary depending on the big 
data scenario. This means that capabilities, which are highly important in one scenario 
(e.g., CAP4: Partner-Channel-Integration during supply chain improvement through 
BDA), might be of less importance in another scenario (e.g., in the context of a BDA 
service which improves customer interaction based on customer data). Moreover, some 
capabilities rather point to foundations for the successful usage of BDA (e.g., Infra-
structure Management). In future research iterations, we will therefore also focus on 
separating different types of capabilities and on providing guidelines for systematically 
using (parts of) the model in different application scenarios. To develop a preliminary 
rating scheme, the analytical hierarchy process (AHP) as a proven, reproducible, and 
comprehensible management instrument will be used [48]. In doing so, the question, 
which capabilities are important in a particular usage scenario, can be solved based on 
pairwise comparisons of the capabilities and the input of decision makers [48]. We plan 
to address and illustrate the use of AHP in the context of our model in future work. 

There exist several limitations in the light of which our research results have to be 
interpreted. Most notably, we have only conducted one iteration of the design process 
so far. The results might hence not be stable yet. In particular, not all capabilities are 
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on the same level of detail and they might also not be disjunctive or exhaustive yet. 
Additional limitations arise because we so far have only interviewed big data consult-
ants as experts. While this strategy originated from the impression that BDA is not a 
daily routine in companies yet and consultants might hence be among the persons with 
the most and diversified experience, our results might suffer from sample bias, because 
the experts worked for a single consulting company and shared certain practices. To 
increase the reliability of our findings, we plan to carry out additional iterations of the 
design process in which we will also involve experts with backgrounds from different 
companies. Moreover, we will apply additional research methodologies to verify our 
results. Finally, we have to emphasize that we have only evaluated our capability model 
by comparing it to related approaches so far. Although we used qualitative data for the 
design of the model, thus equipping it with empirical evidence, we will need to conduct 
empirical evaluations to further strengthen the quality of the results. To mitigate this 
limitation, we plan to evaluate our initial artifact, in particular its utility [49], using the 
four-step method of Venable et al. [50]. We intend to perform an ex-post naturalistic 
evaluation drawing on either a case study or a survey as evaluation method [50]. We 
plan to perform our evaluation at an original equipment manufacturer for the automo-
tive industry that is on the edge of leveraging BDA to a great extent.  

To fully leverage the potential of BDA, various organizational capabilities have to 
be developed [1], [9]. Despite the presented limitations, we hope to provide a basis to 
clarify and further investigate these capabilities with the presented capability model.  
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