
 

13th International Conference on Wirtschaftsinformatik, 

February 12-15, 2017, St. Gallen, Switzerland 

Detecting Compliance with Business Rules 

 in Ontology-Based Process Modeling 

Carl Corea1, Patrick Delfmann1 

1 University of Koblenz-Landau, Institute for IS Research, Koblenz, Germany 
{ccorea,delfmann}@uni-koblenz.de 

Abstract.  Extending business processes with semantic annotations has gained 

recent attention. This comprises relating process elements to ontology elements 

in order to create a shared conceptual and terminological understanding. In 

business process modeling, processes may have to adhere to a multitude of rules. 

A common way to detect compliance automatedly is studying the artifact of the 

process model itself. However, if an ontology exists as an additional artifact, it 

may prove beneficial to exploit this structure for compliance detection, as it 

provides a rich specification of the business process. We therefore propose an 

approach that models a rules-layer ontop of an ontology. Said rules-layer is 

implemented by a logic program and can be used to reason about the compliance 

of an underlying ontology. Our approach allows ad-hoc access to external 

ontologies, other than similar approaches that are reliant on a redundant logical 

representation of process model elements.  

 

Keywords: Compliance Management, Business Rules, Business Process 

Models, Business Ontologies 

1. Introduction 

Compliance management is an important part of business process modeling (BPM), 

aimed to ensure that the company practices which can be entailed from the respective 

process models are compliant to regulations and business rules [13]. This especially 

holds for sectors subject to a high degree of regulatory control, such as the financial 

industry or healthcare [2], [13]. As an example, vendors of financial services may want 

to warrant that their process for granting loans does not violate any laws or obligations. 

Compliance management therefore supports improving business processes, as potential 

violations can be eliminated after they have been found, e.g. through re-modeling the 

business process [3]. 

The necessity for compliance management has yielded the rise of automated 

approaches, as trying to investigate large company processes for compliance violations 

manually can be seen as an unfeasible task for humans [13]. Following [10], a core 

notion of such automated approaches is the study of the business process model itself. 

Such business process models are typically represented through graphical modeling 

languages such as Event-driven Process Chains (EPC) [26], in order to provide a 

suitable balance between specification and readability. However, using such languages 

226

Corea, C.; Delfmann, P. (2017): Detecting Compliance with Business Rules in Ontology-Based Process 
Modeling, in Leimeister, J.M.; Brenner, W. (Hrsg.): Proceedings der 13. Internationalen Tagung  
Wirtschaftsinformatik (WI 2017), St. Gallen, S. 226-240

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301370664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

to model business processes, as well as limiting compliance management to this arti-

fact, can bare restrictions in regard to the semantic interpretation of the process model 

[25]. Although languages such as EPC offer some guidelines towards how to encode 

process syntax and semantics, the content of the models ultimately lies in the response-

bility of the process modeler [21]. Especially when collaboratively creating process 

models, this can result in different interpretations of the process semantics due to 

problems such as ambiguity in human language [9], [25]. These different interpretations 

of the process model can pose potential problems, if they are meant to be analyzed as a 

central corpus in the scope of compliance management [7], [25]. 

 

 

Figure 1. 4-layered framework adapted from [25] 

To conquer the problem of different interpretations of business processes, works such 

as [7-8], [20], [24-25] have proposed to use ontologies to create a shared terminological 

and conceptual understanding of process models. Ontologies, which Gruber [16] 

defines as a formal and shared specification of a domain of interest, are a central object 

of interest in scientific fields such as the Semantic Web [18], which is why works such 

as [7-8], [20], [24-25] have proposed it may prove as beneficial to investigate applying 

this object for business process modeling. A main advantage of using ontologies in 

BPM is that a process model is extended such that machines can access it in a way 

useful for humans [18]. To this aim, elements of the process model can be annotated to 

ontology concepts, which is also referred to as semantic annotations. This promotes the 

understanding of the overall business process, as the process model is linked to a 

conceptual and terminological understanding shared by the modelers. Following [25], 

ontologies can be furthermore extended by the modelers. For instance, relevant policies 

or business rules can directly be included in such an ontology, explicitly specifying the 

relations between the business process and such regulations. Concluding, this report 

investigates utilizing such an ontology as an artifact for compliance management, as an 

ontology can be considered as an advanced basis for this form of process-oriented 

compliance management. 

This is clarified in figure 1. On the left, which shows the three-layered model for a 

semantic annotation by [25], we see a business process which has been related to a 

227



 

 

business ontology. The lower layer represents the classical business process - in this 

case an EPC diagram. The upper ontology comprises terminological concepts relevant 

for the respective business as well as their relations. The intermediate instantiation is 

used to assign elements of the business process to ontology concepts. I.e. instances of 

the business ontology are used to define the semantics of the EPC model elements. In 

this paper, we aim at providing an approach which layers a specification of business 

rules ontop of a business ontology. We refer to our approach as a 4-layered framework, 

meaning that our contribution extends the existing framework by [25]. This can be seen 

on the right of figure 1, which shows a rules-layer that can access the underlying 

ontology. There has been recent attention on combining rules and ontologies in the field 

of the Semantic Web, due to the complimentary characters of these components [23]. 

While there is no clear standard yet on how to combine these components, there is a 

consensus in literature that logic programs can be used to express rules over underlying 

ontologies [6], [15].  

As a result, logic programs can be applied to formalize business rules which can then 

directly access the vocabulary used in the underlying ontology. Due to the fact that the 

mentioned ontology is connected to the business process itself, the business rules 

expressed in the logic program can also access the actual business process itself. Thus, 

the approach proposed in this report allows to apply the amenities of logic program 

reasoning in the context of compliance management. By layering rules ontop of already 

existing business ontologies, detecting compliance is not limited to analyzing the arti-

fact of the business process model itself, but rather the more sophisticated description 

present in the business ontology can be exploited for verifying compliance in business 

processes. 

The contributions of this report can be summarized as follows. At first, we show that 

our framework is a novel approach on combining business rules and business 

ontologies by motivating the 4-layered framework in the context of related work in 

section 2. Furthermore, after providing a brief recap on how to create semantic annota-

tions for business processes, we show how the business ontology can be integrated into 

a logic program in order to ensure that company processes adhere to business rules and 

regulations in section 3. We illustrate our approach and also provide a demonstration 

in section 4. Finally, our discussion is concluded in section 5. 

2. Related Work and Motivation 

There have been numerous proposals for automatedly detecting compliance of 

processes with regulations or business rules [10]. One major school of thought are 

graph-based approaches [7], [10]. Here, graph-patterns which represent business rule 

violations are defined o graphically modelled, e.g in approaches like BPMN-Q, eCRG 

or DMQL[7]. Consequently, a pattern search can be applied to the graph-structure 

representing the business process in order to find respective violations. It is important 

to realize that mentioned graph-based approaches focus on analyzing the artifact of the 

business process model itself. 

228



 

 

As mentioned, process models can be linked to business ontologies. In result, next to 

the artifact of the business process itself, the company may have a second artifact of a 

business ontology, which can be used as a basis for compliance management. This has 

been proposed by works such as [7-8][20][24-25], due to the sophisticated semantic 

structure offered by ontologies. Our approach is therefore an extension to works such 

as [25], which tries to capture the possibilities that are potentially present.  

A main concept of our approach relates to defining business rules as logic expres-

sions. Many others have already proposed using logic expressions instead of graph-

based approaches. For example, there is a broad consensus in academia, that temporal 

logic is suitable to check process models against business rules [10]. While we do not 

disagree with this claim, we would like to point out that there are limitations of using 

temporal logic for this aim that have been identified by works such as [10]. For 

example, investigating process elements with complex annotations or dependencies can 

be seen as a very complex task [7], [10]. We therefore argue, that using temporal logic 

for compliance checking should not be taken as self-evident. Authors like Gruhn and 

Governatori also agree that such formalisms rooted in temporal logic may suffer from 

some limitations in compliance checking and have therefore proposed other families of 

logic for this use-case [13], [17]. 

Said authors have shown that logic programs can be used to validate syntax or 

compliance in business processes. Following [22], using logic programs to verify 

business rules is applied as follows: At first, a new logic program is derived from a 

process model. To clarify, the logic program is independent of the original process 

model. All model elements and their relations are redundantly translated into a logic 

representation. Only then can the logic program reason about compliance. In our 

approach, we propose to layer a logic program ontop of the already existing process 

ontology. In this way, process elements do not have to be redundantly translated into a 

logic representation of an independent logic program, but rather business rules in the 

form of logic expressions can directly access the underlying ontology and reason about 

the compliance of the ontology, respectively the business process itself. In case of 

changes to the business process or the business ontology, our approach is therefore still 

able to verify compliance without the effort of having to repeat a redundant translation 

of changed elements. 

Works such as [6], [15] have investigated integrating logic programs and ontologies. 

Said works are however for the Semantic Web and are not specifically aimed at 

business process management. [8] have also proposed an ontology-driven approach to 

detect compliance with rules. Here however, they do not investigate using logic 

programs in order to express regulations and rules. 

To the best of our knowledge, our approach is the first to study the intersection 

between (a) using rules to detect compliance based on the artifacts of both a process 

model and a business ontology, and (b) using logic programs to implement these rules. 

The framework therefore allows to exploit logic program reasoning relative to a 

business ontology, without having to translate elements of the business ontology into a 

redundant logical representation in a respective logic program. Table 1 positions our 

approach in the above mentioned intersection.  

 

229



 

 

Table 1. Approach research gap 
 

Literature Uses logic programs 

to detect compliance 

Logic programs can access underlying 

artifacts in an ad-hoc manner 

[1][13-14] 

[17][22] 

x  

[6][12][15] 

[19][23] 
 x 

Proposed 

Approach 

x x 

 

3. Layering Rules Ontop of Business Process Ontologies 

This section introduces modeling a rules-layer ontop of a business ontology. 

 

3.1. Ontology-Based Process Modeling 

Following [25], the scientific results in regard to extending information with semantic 

annotations can successfully be applied to BPM. Said authors employ a three-layered 

approach, combining the actual business process model with a business ontology 

through an intermediate instantiation, as can be seen in figure 1. 

The ontology classes define terminological knowledge relevant to the company.  For 

example, entities such as organizational units, tasks, events, services or rules and their 

individual relations can be modeled. It is important to realize, that companies do not 

necessarily have to model such an ontology themselves. Works such as [20] have 

already proposed reference ontologies that can be re-used and adapted to individual 

company requirements. In this work, we assume that the ontology is stored in the web-

ontology language format (OWL)1, which is the W3C standard for knowledge represen-

tations. Hence, next to the already introduced terminological knowledge, axiomatical 

instances of ontology concepts can be created. This is shown in figure 2, which provides 

an exemplary business ontology. One can observe that this ontology is subdivided into 

classes (e.g. Unit) and instances (e.g. Production and Sales), whose relationships are 

defined by this OWL graph-structure.  

As a next step, instances of the business ontology are used to define the semantics 

of process model elements. We want to emphasize that this approach can be applied to 

arbitrary process models [25].  

A process model is defined by element types and specific elements of such types [4]. 

The ontology can therefore be used to define the semantics of element types, also 

referred to as language constructs, and elements, also referred to as model elements. 

Language constructs, such as events, functions or connectors, should be modeled in the 

                                                           
1  https://www.w3.org/TR/owl2-syntax/ 

230

https://www.w3.org/TR/owl2-syntax/


 

 

reference ontology as can be seen in figure 2. As mentioned, the language constructs 

represented in OWL can be furthermore extended to fit individual company needs. For 

instance, EPC events could be specialized to create unique and distinguishable event 

types relevant to the company. Next, model elements can be represented in the ontology 

through an instantiation of the previously defined language construct classes. Figure 3 

illustrates mapping an EPC diagram to a business ontology excerpt. As can be seen, the 

ontology comprises all relevant EPC language constructs, represented through the 

respective ontology classes. Every model element resided in the business process model 

is assigned to an ontology instance. In this way, ontology instances represent the 

individual model elements from the viewpoint of the business ontology [25]. As a main 

result, this approach has generated a conceptual viewpoint for the EPC diagram by 

making the process model accessible in the ontology. This viewpoint could already be 

exploited to pose conceptual queries regarding the business process. Assuming an 

OWL ontology, the W3C query language SPARQL2  can be employed to answer such 

queries [18]. 

 

 

Figure 2. Exemplary business ontology 

The model elements of the EPC diagram can now be assigned to further ontology 

concepts in order to create richer semantic annotations and therefore foster the semantic 

understanding of the business process, as individual model element semantics  and their 

relations can be explicitly defined.  Following [25], a major advantage of this approach 

is that copious constructs offered by the OWL formalism can be exploited to define 

formal semantics of great granularity. For example, the possibility to model 

generalizations or properties such as transitivity, symmetry or inversion  between OWL 

instances allows to use sophisticated reasoning capabilities to analyze process models.  

Business ontologies can be modeled or extended according to company needs. 

Consequently, business rules or regulations and their relation to the business process 

can be incorporated in the ontology. In result, the business ontology can be seen as an 

advanced artifact to use in the scope of compliance management [7], [25]. This leads 

us to our proposal, namely to extend the framework by [25] by modeling a rules-layer 

ontop of the ontology-layer. This rules-layer should offer the possibility to express 

                                                           
2  https://www.w3.org/TR/rdf-sparql-query/ 

231

https://www.w3.org/TR/rdf-sparql-query/


 

 

business rules and regulations relative to the business ontology and verify their 

compliance accordingly. To this aim, we propose to utilize a logic program formalism 

in order to implement said rules-layer, which we introduce subsequently. 

 

 

Figure 3. Mapping an EPC diagram to an ontology 

3.2. DL-Programs 

The Semantic Web architecture allows to model rules ontop of knowledge 

representations, i.e. ontologies [18]. In this way, the complimentary characters of these 

two layers can be used to promote automated processing mechanisms. As an important 

design choice, the rules-layer and the ontology-layer should be interoperable but 

abstracted from each other, as dictated by the Semantic Web architecture [18]. While 

there is no clear standard yet on which technologies to use for combining rules and 

ontologies, there have been several proposals [6]. 

What is important in the context of this work, is that research suggests that the 

mentioned rules-layer can be implemented by logic programs [15]. To clarify, logic 

programs can be used to express rules that mention the vocabulary of an external 

ontology, i.e. a description logic knowledge base. Thus, the sophisticated reasoning 

possibilities offered by logic programming can be used to infer information regarding 

ontologies - more specifically business ontologies. Again, as there are many families 

of logic, many proposals have been made as to which form of logic programs to use in 

232



 

 

order to express rules for underlying ontologies. For a detailed survey, please see [15]. 

As a design choice, we have chosen an approach by [6] entitled DL-programs. DL-

programs are a formalism able to extend logic programs with description logic expres-

sions. More specifically, they allow to combine normal programs and description logic 

ontologies, respectively answer-set semantics with first-order semantics. Therefore, 

they meet our requirement of being able to express business rules and regulations rela-

tive to a business ontology. 

Recap of Logic Programming. To recall logic programs in general, a logic program 

is defined as a tuple t = (P,C), where P is a set of predicate symbols and C is a set of 

constants [23]. The rudiments of this signature can be used to express rules. Such a rule 

r consists of a premise and a conclusion of the general form  

 head ⟵ rule (1) 

meaning that the head, or conclusion, of r is true, if the body of the rule is satisfied 

[23]. If the body of r is empty, r is referred to as a simple fact. The head and body of 

the rule can be used to compose formulas of the form 

 h ⟵ a1, …, an, not b1, …, bm (2) 

where each h, ai and bi are so-called atoms. Such an atom is defined as p(t1, …, tm), 

where p is a predicate symbol of P and every ti is either a constant from C or a simple 

variable, the latter denoted by a capitalized character. Note that every ai  is a so-called 

positive atom, and every bi  is a so-called negative atom, indicated by the not.  

As an example, the following logic program in figure 4 could be used by a financial 

service to define rules regarding account values.  

(i)   account(a, 100) 

(ii)  account(b, -100) 

(iii)  positveBalance(A) ⟵  account(A,B), B > 0 

(iv)  error(A) ⟵  account(A), not positiveBalance(A) 

Figure 4. Exemplary logic program 

The first two lines of this logic program are simple facts, stating two accounts entitled 

a and b and their respective account balance. The rule in (iii) is used to verify if an 

account has a positive balance. Here, the capital A and B represent variables, 

respectively the account name and account balance. The body of this rule, i.e. the 

premise, is satisfied if B is positive, meaning that only in this case positiveBalance(A) 

could be concluded. A customer account may be required to be of positive balance due 

to business requirements. Hence, the rule in (iv) models a violation of this requirement. 

The head of this rule - error - is true as soon as there exists and account which is not of 

positiveBalance. As the account named b represents such a case, the depicted logic 

program can be used to entail that an error is present.  

Answer-Set Semantics. The use of variables allows to entail that an error is present 

for account b. This is an example of so-called answer-set semantics of logic programs 

[23]. In early research on logic programs, variables were not included, meaning that 

rules consisted of simple forms similar to a ⟵ b. Such logic programs can be used to 

233



 

 

entail so-called well-founded semantics [11], which can be seen as simple proofs. Other 

than such simple proofs, a paradigm shift to answer-set semantics, which can be traced 

back to the works of Gelfond and Lifschitz [11], has allowed to define answer-sets. 

These answer-sets can be understood as a model satisfying a logic program. Conse-

quently, an answer-set M = { account(b,-100) } can be derived from the exemplary 

logic program. As a result, the financial service could benefit from such an answer-set 

to identify specific accounts violating the business rule regarding a positive account 

balance [11]. 

Introduction to DL-Programs. Continuing our exemplary logic program, 

computing an answer-set was limited to facts and rules contained in this logic program. 

In order to allow the logic program, i.e. the rules, to reason about information in 

external ontologies, they have to be extended in such a way that they can access said 

external knowledge bases.  

DL-programs [6] represent such an extension of logic programs that allow to access 

vocabulary of underlying ontologies. A DL-program consists of a normal program P 

and an external knowledge base, i.e. ontology, L [6]. While P is a finite set of rules 

based on predicates and constants as introduced, the ontology comprises concepts, roles 

and individuals. In result, such a DL-program can use a business ontology as a 

knowledge base L and layer a logic program P ontop of it.  

A question that may arise is how exactly P can be extended to access concepts, roles 

and individuals in L. To this aim, [6] have proposed to extend the rules of P with so-

called DL-atoms. While it is not our intent to elaborate on the syntax of such DL-atoms 

in great detail, it is sufficient to realize that DL-atoms are of the general form:  

 DL[Q](t) (3) 

Inspecting this complex more closely, the sequence DL signalizes the beginning of 

a DL-query. One can observe that such a DL-query consists of Q, which may refer to a 

concept or role of the knowledge base L. The (t) is a simple logic program term as 

introduced earlier, i.e. a constant or a variable. By extending the logic program P with 

the DL-query DL[Q], it can refer to a vocabulary Q of an external ontology. As an 

example, figure 5 shows a DL-program based on the following logic program P and 

knowledge base L: 

L:  

(i)    event ⊑ modelElement 

(ii)    event(e1) 

(iii)   event(e2) 

P: 

(iv)    evt(X) ⟵ DL[event](X) 

Figure 5. Exemplary DL-program 

In this example, a business ontology L contains terminological knowledge about the 

language construct event, as well as axiomatical event instances. The logic program 

rule in (iv) shows how a DL-atom is used to extend a logic program rule. It is important 

234



 

 

to realize, that event in square brackets of the DL-atoms in (iv) refers to the event 

concept of the business ontology L. I.e. knowledge contained in the ontology L does 

not have to be redundantly expressed as a fact in P, but rather the DL-program allows 

a logic program P to access an ontology L in an ad-hoc manner. To conclude, regarding 

the logic program P, an answer-set M = { evt(e1), evt(e2) } could be directly entailed 

by the means of using (iv) to match the variable X in the head of the rule with the 

variable X in the DL-atom. This answer-set could then be processed in additional rules 

of P. 

As can be seen in the example, DL-programs allow logic programs to access the 

information stored in an external business ontology. This facilitates powerful and 

expressive ways to process knowledge bases by the means of rule bases formalized 

through logic programs [6]. In our opinion, enabling a rules-layer to access a business 

ontology in an ad-hoc manner is a stronghold of our approach which we discuss 

consequently. 

4. Compliance Checking Approach 

This section demonstrates how DL-programs can be used to express business rules in 

order to detect compliance based on both the artifacts of the business process model as 

well as a business ontology. 

 

4.1. Framework Architecture 

Creating an Ontology-Based Process Model. Figure 6 provides an overview of the 

framework architecture. The proposed approach extends the three-layered model by 

[25]. On the left, the process model is connected to a business ontology by instantiation. 

We denote this as an ontology-based process model.  

Next, the rules-layer consists of a logic program expressing business rules. The 

specific business rules may originate from business requirements or external regulatory 

policies. The rules-layer can directly access the ontology using the DL-program 

formalism. The rules of the logic program can therefore infer information about the 

entire ontology-based process model, as the ontology is connected to the process model. 

The proposed approach is therefore capable to detect whether a process model complies 

with business rules. This is depicted by the compliance detection component. Here, the 

DL-program is applied to infer answer-sets of compliance violations. To clarify, these 

answer-sets consist of ontology-instances violating rules of the logic program. These 

answer-sets therefore also reflect specific process model elements violating these logic 

program rules, respectively business rules. These sets of process model elements can 

consequently be browsed by the modeler and remodeled according to rules and 

regulations.  

A barrier for the implementation of our approach is the necessity for the artifact of 

an ontology-based process model. Companies must annotate their processes to an 

ontology. While a company could perform this task manually, there are existing approa-

ches showing that this task can be supported automatically [5]. In [5], the authors show 

that identifiers of processes and ontologies can be terminologically standardized and 

235



 

 

thus matched accordingly. This lowers the effort that has to be invested by companies. 

Undoubtedly, the initial creation of an ontology-based process model has to be 

considered by companies. However, in our opinion, modeling company processes 

geared towards a business ontology helps to create a shared understanding across the 

entire organization. On the long-term, this can be seen as beneficial for the scalability 

and maintenance of business processes [8]. 

 

 

Figure 6. Framework architecture 

Expressivenes. While temporal logic can be used to verify compliance, it still suffers 

from limitations [13], [17]. The expressiveness of our approach therefore aims to 

conquer some of these limitations, while not sacrificing any amenities. This is achieved 

through the instantiation. As shown in figure 6, every process model element is 

represented by an ontology instance. All flows between process model elements are 

also captured in the instantiation. This means, the execution semantics of the process is 

encoded in the ontology and can be processed accordingly. In result, sequences, loops 

or gateways can also be processed by our approach. Van der Aalst et al. [27] have 

categorized different types of compliance rules. It is beyond the scope of this report to 

discuss this categorization, but it is used here to specify the expressiveness of our 

approach in relation to said categorization. So far, we have successfully implemented 

rules of the categories existence, precedence, chain precedence, response, between, 

exclusive, mutual exclusive, inclusive, prerequisite and corequisite. A clear limitation 

are cardinality restraints or parallel processes. For further details on the DL-formalism, 

please see [15], as this paper introduces the syntax of DL-queries that are the foundation 

of compliance checking in our approach.  

 

4.2. Demonstration 

To demonstrate our approach, the following exemplary scenario was implemented. We 

envision a scenario where a company wishes to apply our approach to ensure a business 

236



 

 

process complies to a business rule. For simplicity, rules and business process will be 

kept minimal. We assume that the company conducts the task of paying a bill within 

their process. It is furthermore assumed, that a corresponding business rule demands 

that during this process the bill is checked before it is paid. Assuming that the exemplary 

company aims to create ontology-based process models, figure 7 depicts artifacts which 

can be utilized in the scope of compliance management for our scenario. Given that a 

modeler has created the process model in figure 7 (i), our approach allows to detect 

whether this model complies with the mentioned business rule as follows. 

 

 
Figure 7. Artifacts available for the compliance management scenario 

In (iii), the ontology is depicted as an OWL graph-structure. The company has modeled 

an ontology class Task, which is specialized into Check_bill and Pay_bill.  It is 

important to realize that these are not instantiations, but simply a specification of the 

two concepts, which are tasks. An instantiation is shown in (ii). The ontology in (iii) 

was extended by a business rule, indicating that the concept of Pay_bill requires 

Check_bill. In this context, the edge labelled requires encodes the business rule in (iv). 

Intuitively, the process model in (i) does not comply to the company policy in (iv), as 

the bill is not checked before it is paid. The company can implement a DL-program 

based on a logic program encoding (iv) and the business ontology in (ii)-(iii). Figure 8 

depicts this DL-program. For simplicity, namespaces for standard W3C vocabulary 

such as OWL:class are omitted. In the ontology, the class of a Task is defined. This is 

performed analogously for Check_bill and Pay_bill. Figure 8 also shows how a process 

model element can be serialized as XML exemplarily. In our scenario, as the modeler 

has only modeled the task Pay_bill, we may only create this single instantiation. The 

required relation, meaning that Pay_bill requires Check_bill, is also serialized. A logic 

program can then be layered ontop of this serialization, as shown in figure 8. In the first 

line of this logic program, an ad-hoc access to instances of the ontology is defined. The 

task in the head of the rule is a logic program predicate, whereas the Task in the body 

of the rule directly refers to the ontology concept by the means of the DL-atom. Line 

two of the logic program shows a specification of the aforementioned business rule. 

Here, we can conclude an error, if there exists an instance X requiring an instance Y, 

and there is no such instance Y. The  DL-atom in the body of the rule also directly 

mentions the required vocabulary of the ontology. Thus, this relation already present 

in the ontology can be accessed directly as opposed to being redundantly represented 

in the logic program. In result, the logic program can correctly infer that an error is 

present, through the answer-set M = { error("Pay_bill", "Check_bill") }. Such inferen-

ces can not only be drawn theoretically, but also by many logic program reasoners such 

as RACER or Hermit [7]. [6] provide a web-interface3 allowing to enter DL-programs. 

The serialization as shown in figure 8 can be entered in this web-interface in order to 

                                                           
3  https://www.mat.unical.it/ianni/swlp/ 

237

https://www.mat.unical.it/ianni/swlp/


 

 

conclude that mentioned error is present. In our opinion, this shows that our approach 

can successfully be applied to implement our scenario, namely to detect wether a 

process model complies to a business rule. Given the artifact of an ontology-based 

process model and a logic program encoding rules and regulations, the technology to 

conduct compliance management on the basis of our approach is ready to use. 

 

 

Figure 8. DL-program to entail process model elements that violate business rules 

Our example covered a rule that checks existence. This can be extended to model 

different types of compliance rules, as mentioned in the subsection on expressiveness. 

For example, one could verify that the Pay_bill function is executed between two 

events, or that a function A is limited in precedence over a function B. 

5. Conclusion and Outlook 

The contribution of this paper is an approach capable of verifying if a business process 

complies with business rules, based on analyzing the artifact of a so-called ontology-

based process model. The proposed approach allows to (a) specify business rules as 

logic program expressions relative to an external business ontology, (b) utilize logic 

program reasoning to find process model elements violating these rules and (c) access 

information stored in the business ontology directly, i.e. without a redundant 

transformation of ontology-instances into a logic program representation. 

An exemplary implementation of our approach shows that our approach can be 

successfully applied to find sets of process model elements violating business rules. 

Future work is to be directed to apply our approach to large-scale process models and 

business rules. However, the success of using DL-programs for Semantic Web data-

238



 

 

sets [6] leads us in our belief, that applying our approach to business related data-sets 

should pose no significant computational problems per se. 

A clear limitation of our approach is, that it is dependent of (1) a business ontology 

connected to a process model and (2) a logic program rule base. Following [7], 

implementing these artifacts is not yet significantly performed in practice. Literature 

however strongly suggests the potential of using these artifacts for process modeling 

and compliance management [7], [13], [20], [22], [24-25]. We therefore see great 

research potential in assisting companies to create and manage these artifacts. Works 

such as [5] show that these tasks can be supported automatedly. 

As a conclusion, incorporating semantics in the scope of compliance management 

can contribute towards finding violations in business processes and therefore aid the 

improvement of company process. Here, using logic program techniques to reason 

about business ontologies assists the automated detection of compliance violations. Our 

approach, allowing an ad-hoc access for rules relative to a process model, lowers the 

effort that has to be directed towards this aim by companies. 

References 

1. Antoniou, G., & Arief, M. (2001). Executable Declarative Business rules and their use in 

Electronic Commerce. Intelligent Systems in Accounting, Finance and Management, 

10(4), 211-223. 

2. Becker, J., Delfmann, P., Dietrich, H. A., Steinhorst, M., & Eggert, M. (2016). Business 

process compliance checking–applying and evaluating a generic pattern matching 

approach for conceptual models in the financial sector. Information Systems Frontiers, 

18(2), 359-405. 

3. Delfmann, P., & Höhenberger, S. (2015). Supporting Business Process Improvement 

through Business Process Weakness Pattern Collections. In 12th International Conference 

on Wirtschaftsinformatik (pp. 4-6). 

4. Delfmann, P., Steinhorst, M., Dietrich, H. A., & Becker, J. (2015). The generic model query 

language GMQL-Conceptual specification, implementation, and runtime evaluation. Infor-

mation Systems, 47, 129-177. 

5. Delfmann, P., Herwig, S., & Lis, L. (2009). Unified enterprise knowledge representation 

with conceptual models-Capturing corporate language in naming conventions. ICIS 2009 

Proceedings, 45. 

6. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008). Combining 

answer set programming with description logics for the semantic web. Artificial Intelli-

gence, 172(12), 1495-1539. 

7. Fellmann, M., Delfmann, P., Koschmider, A., Laue, R., Leopold, H., & Schoknecht, A. 

(2015). Semantic Technology in Business Process Modeling and Analysis. Part 1: Mat-

ching, Modeling Support, Correctness and Compliance. EMISA Forum, 15–31. 

8. Fellmann, M., Hogrebe, F., Thomas, O., & Nüttgens, M. (2011). Checking the semantic 

correctness of process models. Enterprise Modelling and Information Systems Architec-

tures, 6(3), 25-35. 

9. Fellmann, M., & Zasada, A. (2014). State-of-the-art of business process compliance 

approaches. In Proceedings of the 22nd European Conference on Information Systems (pp. 

1-12). 

10. Frappier, M., Fraikin, B., Chossart, R., Chane-Yack-Fa, R., & Ouenzar, M. (2010). Com-

parison of model checking tools for information systems. In International Conference on 

Formal Engineering Methods (pp. 581-596). 

239



 

 

11. Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. 

In ICLP/SLP (pp. 1070-1080). 

12. Gómez, S. A., Chesnevar, C. I., & Simari, G. R. (2009). Integration of rules and ontologies 

with defeasible logic programming. In XV Congreso Argentino de Ciencias de la Com-

putación. 

13. Governatori, G., Hoffmann, J., Sadiq, S., & Weber, I. (2008). Detecting regulatory compli-

ance for business process models through semantic annotations. In International Confe-

rence on Business Process Management (pp. 5-17).  

14. Governatori, G., & Rotolo, A. (2010). Norm compliance in business process modeling. In 

International Workshop on Rules and Rule Markup Languages for the Semantic Web (pp. 

194-209). 

15. Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description logic programs: 

combining logic programs with description logic. In Proceedings of the 12th international 

conference on World Wide Web (pp. 48-57). 

16. Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge 

sharing?. International journal of human-computer studies, 43(5), 907-928. 

17. Gruhn, V., & Laue, R. (2007). Checking Properties of Business Process Models with Logic 

Programming. In MSVVEIS (pp. 84-93). 

18. Hitzler, P., Krötzsch, M., Rudolph, S., & Sure, Y. (2007). Semantic Web: Grundlagen. 

Springer-Verlag. 

19. Kontopoulos, E., Bassiliades, N., Governatori, G., & Antoniou, G. (2011). A modal defea-

sible reasoner of deontic logic for the semantic web. International Journal on Semantic 

Web and Information Systems (IJSWIS), 7(1), 18-43. 

20. Koschmider, A., & Oberweis, A. (2005). Ontology Based Business Process Description. 

In EMOI-INTEROP. 

21. Nielen, A., Költer, D., Mütze-Niewöhner, S., Karla, J., & Schlick, C. M. (2011). An 

empirical analysis of human performance and error in process model development. In 

International Conference on Conceptual Modeling (pp. 514-523).  

22. Sadiq, S., Governatori, G., & Namiri, K. (2007). Modeling control objectives for business 

process compliance. In International conference on business process management (pp. 149-

164). 

23. Shen, Y. D., & Wang, K. (2011). Extending logic programs with description logic expres-

sions for the semantic web. In International Semantic Web Conference (pp. 633-648).  

24. Smolnik, S., Teuteberg, F., & Thomas, O. (2012). Semantic Technologies for Business and 

Information Systems Engineering: Concepts and Applications. Business Science Refe-

rence.  

25. Thomas, O., & Fellmann, M. (2006). Semantische Integration von Ontologien und Ereig-

nisgesteuerten Prozessketten. In EPK (Vol. 5, pp. 7-23). 

26. Van der Aalst, W. M. (1999). Formalization and verification of event-driven process 

chains. Information and Software technology, 41(10), 639-650. 

27. Van der Aalst, W. M., Ramezani, E., & Fahland, D. (2012). Where did i misbehave? 

diagnostic information in compliance checking. In International conference on business 

process management (pp. 262-278). Springer Berlin Heidelberg. 

240




