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Abstract 

Risk management in IT projects still is more an art than a science. Reliable figures about the risks of a 

project portfolio still depend on intuition and experience of project managers. A central challenge is 

to aggregate the risks of a project into a single risk measure that makes it easy for the senior 

management to compare projects and see which projects need their attention. We first analyze 

different approaches to aggregate risks and compare them in terms of theoretical foundation and 

practical usability. In particular we explore the applicability of the well-known financial risk figure 

Conditional Value-at-Risk (CVaR). Using data from 110 IT projects we demonstrate that the CVaR 

offers a well-defined risk measure that provides clear information for senior management decision-

making. Since the CVaR is flexible concerning its confidence level it can be changed to fit the 

management’s risk aversion. Finally, we derive suggestions for risk management to make the 

calculated CVaR even more reliable. In sum, we show that well-defined risk measures can be 

transferred to the domain of project risk management if companies establish central risk reporting. 

 

Keywords: Risk Management, Project Management, Conditional Value at Risk, Monte Carlo 

Simulation 



Introduction 

While there is much data available for risk management with financial instruments, the managers of 

projects mostly have to rely on their experience about possible risks. Many companies have 

implemented a risk monitoring system that basically consists of structured reports for answering 

questions on the probability of occurrence and the impact of risks in each project. Since a lot of 

companies are still struggling with their projects, managing the project portfolio usually is a senior 

management task. It is therefore necessary to provide a quick and reliable overview of current 

projects. The challenge is to aggregate the risks of a project without losing important information on 

the state of the project and without losing the ability to compare projects. 

In this paper, we explore several approaches to represent the risks of a project by a single project risk 

measure. We suggest the Conditional Value-at-Risk (CVaR) as an appropriate risk measure. 

Compared to other risk measures that are used for project risk aggregation, the CVaR is well-

understood and based on a theoretical foundation. We explain the advantages of the CVaR and show 

that with the current computational power it is possible to use the risk monitoring reports to first 

calculate the correlation between different risks and than a common loss distribution of a project. This 

paper further shows that the CVaR is flexible enough to fit to every management’s risk aversion. 

This paper is structured as follows. First, we analyze different methods from financial risk 

management and project risk management with regard to aggregating of risks. We compare the 

methods in terms of theoretical foundation and practical usability. We conclude that the risk measures 

from the project literature were just created because of missing historical data. We argue that a 

company that follows a structured project risk management approach can create historical data. That 

makes it possible to use the well-defined approaches from financial risk management. Thus, we 

describe how to apply our method to real project data and discuss the results. We use an archive of risk 

assessments by project managers of the enterprise software company GAMMA to complete this task. 

Finally, we derive implications for the risk management in terms of how to improve the database for 

the calculation of the CVaR and outlines further areas for research. 

1 Theoretical Background 

This section gives an overview of some common techniques of risk aggregation and the most common 

risk measures. The first three models we discuss all come from the finance sector. Since there are very 

strong regulations about risk management in this sector, those models are used and discussed on a very 

broad basis. Especially VaR and CVaR models are very popular in current scientific discussion 

(Alexander et al., 2007; Degen et al., 2010; Ewing et al., 2007; Kibzun and Kuznetsov, 2006; Ma and 

Wong, 2010). The theory of Markowitz (1952) was one of the very early papers about aggregation of 

risks and is still used for portfolio selection today. It is therefore discussed for historical reasons and 

gives a short overview of the usage of variance as a risk measure. Lower partial moments offer a very 

flexible way to look at risks and may therefore be a good choice for the difficult aggregation of project 

risks. We also have a look at two concepts that explicitly deal with calculating one risk measure for 

projects.  

1.1 Markowitz Portfolio Selection Theory 

Although the main purpose of the theory was not an aggregation of risk the Portfolio Selection Theory 

by Markowitz (1952) is one of the most popular publications on this topic. In this paper he stated “that 

the investor does (or should) consider expected return a desirable thing and variance of return an 

undesirable thing” (Markowitz, 1952). So the variance is the risk measure in his framework. 



When selecting multiple assets for a portfolio, he introduces the concepts of covariance and 

correlation. This is necessary because the variance of a weighted sum is not the weighted sum of the 

single variances. He defines the covariance between two assets R1 and R2 as: 

 

and the corresponding correlation coefficient as: 

 

It follows that the weighted variance of a portfolio consisting of N assets is given by: 

 

with ai as the weight of Ri in the portfolio. 

This definition of risk makes it possible to account for positive and negative diversification effects, 

e.g., if two assets are negatively correlated, the variance (or the risk) of the portfolio is lower than the 

sum of variances of the assets. 

Although this is a widely used model for the calculation of risks it has certain drawbacks that can be 

overcome by the usage of different models. Markowitz defines risk as variance, and any deviation 

from the expected value of the portfolio would therefore be called risk. When investors or managers 

talk about risk they are usually only interested in those cases that imply a downward deviation (March 

and Shapira, 1987). Shortfall measures like the VaR and the CVaR use a different approach to only 

look at those cases. Another drawback in the Markowitz model is the assumption of normally 

distributed returns of the assets. Since risks are usually not normally distributed this model is often not 

appropriate for the modeling of risks. Additionally, the covariance matrix has to be known to model 

the portfolio risk correctly. 

1.2 Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) 

The shortfall models or “safety first models” were first mentioned by Roy (1952). One of the current 

standard approaches to measure firm wide risk is the Value-at-Risk (Duffie and Pan, 1997). Its origins 

go back to Baumol (1963). The VaR is the loss of a portfolio that will not be exceeded with 

probability 1-, for any given  in a given period. It provides an upper bound for a loss that is only 

exceeded on very small number of occasions. Its formal definition is as follows: 

 

with Q as the -quantile of the distribution of losses L in the given period. 

The aggregation of risk is therefore done by calculating the common loss distribution. This implies 

that we either need to rely on the historical common loss distribution or we have to design a model for 

it. In the latter case, correlations between the losses are needed to model the common distribution 

correctly. 

The major advantage over the Markowitz model is that the VaR can handle any kind of distributions 

and doesn’t require normal distribution (Kibzun and Kuznetsov, 2006). Another benefit is that the 

VaR only looks at the downfall risk. A deviation from the mean in a positive way is no longer handled 

as a risk. 

This VaR has drawbacks as well. For instance, it is not coherent in the sense of Artzner et al (1999). 

Coherence describes a set of properties that a risk measure should have. Artzner et al. (1999) define 

four criteria for a coherent risk measure, namely translation invariance, positive homogeneity, 

monotonicity and subadditivity. The VaR concept lacks subadditivity. Subadditivity can be 

summarized as “a merger does not create extra risk” and means that the portfolio VaR of two assets 



should not be higher than the sum of VaRs of the assets (see Frey & McNeil (2002) for an example of 

non-subadditivity with the VaR).  

Another drawback of the VaR concept is that “it is incapable of distinguishing between situations 

where losses that are worse may be deemed only a little bit worse, and those where they could well be 

overwhelming“ (Rockafellar and Uryasev, 2002). Therefore another concept is suggested in more 

recent literature: the Conditional Value at Risk (CVaR). 

The CVaR measures the expected loss L, if a loss higher than the VaR occurs. It is therefore defined 

as: 

 

The CVaR is by definition always higher than the VaR and is therefore the more conservative risk 

measure. In contrast to the VaR, (2000) showed that the CVaR is coherent. The main advantage 

however, that drives the development of CVaR methodologies, is that it offers some computational 

advantages over the VaR methods, such as its numerical efficiency and stability of large-scale 

calculations (Rockafellar and Uryasev, 2002). 

The concepts of VaR and CVaR offer a lot of flexibility to be fit to the management’s risk aversion by 

just adjusting the -level. A very risk averse management would chose a low  and therefore increase 

the regarded number of risk scenarios. Once again, the probability of a loss exceeding the VaR is 1-. 

1.3 Lower Partial Moments 

Closely connected to the VaR in terms of using the properties of the risk distribution but using a 

different approach are the lower partial moments (LPM). They were first introduced as a risk measure 

by Fishburn (1977). As the VaR and CVaR, LPM only account for the downside risk. The difference 

to those is that one can explicitly define a target return t. Any profit that doesn’t exceed t will be 

thought of as loss. In the general model Fishburn (1977) defines risk with a two-parameter function in 

case of continuous returns: 

 

or in the case of discrete returns 

 

with xi ≤ t for all xi . Table 1 shows the most important -values (Unser, 2000). 

 

 Risk measure 

0 Probability of loss 

1 Expected loss 

2 Semi variance 

Table 1. Frequently used risk measures and their -values 

Table 1 shows how LPMs are linked to very common risk measures. One just has to change the value 

for  to come to another risk measure. Nawrocki (1992) stated that “the degree n can be matched to a 

specific investor’s utility, such that the higher the n, the greater the risk aversion of the investor.” Note 

that his n is the same as . 

Since the LPMs are closely linked to VaR and CVaR, they have very similar advantages and 

disadvantages. To aggregate risks, we need a common loss distribution of multiple risks. One 

therefore has to rely on historical data or generate a model using correlations between different losses. 

Just as VaR and CVaR, LPMs can be used with any distribution. Compared to them, LPMs offer more 



flexibility because they can easily account for the risk aversion of different individuals. The higher , 

the higher the punishment for deviations from the target t. 

For risks, where it is more common to use loss distributions than return distributions, we would use 

the Upper Partial Moments instead. Examples of the usage of upper partial moments can be found in 

Pavabutr (2003) and Bäuerle (2002) 

1.4 The one-minute Risk Assessment Tool 

Tiwana and Keil (2004) describe how to derive a risk measure for a project. They asked 70 MIS 

managers to evaluate a total of 720 software development projects. Tiwana and Keil (2004) then 

analyzed the results and found that the six most important risk drivers in the projects are: 

 An inappropriate development methodology 

 Lack of customer involvement 

 Lack of formal project management practices 

 Dissimilarity to previous projects 

 Project complexity 

 Requirements volatility 

Using structural equation modeling, they fit the regression coefficients to the model and standardized 

them. The standardized regression coefficients stand for the weight that is assigned to each risk driver. 

An example for the completed project rating worksheet is shown in figure 2. 

 

Figure 2: Risk assessment using the one-minute risk assessment tool (Tiwana and Keil, 2004) 

The advantage of this tool is that is very easy for a project manager to get a risk measure for his 

project that he can report to the management. It is so simple that it is even possible for a project 

manager to give it to all stakeholders in order to find significant differences in risk perception that may 

create problems. It doesn’t need any assumptions about underlying distributions, no historical data and 

no correlations. 

The disadvantage of the tool is that it is too simple to take into account all possible risks that could 

exist in a project. It just analyzes the six risk drivers that Tiwana and Keil (2004) identified in their 

survey and they are probably not suitable for every company to use. In their paper they state that their 

one-minute risk assessment tool provides a “quick-and-dirty assessment of overall project risk”. When 

it comes to a more detailed analysis, however, the tool reaches its limit. It is for example very hard to 

fit the tool on one company but it rather takes the 720 software projects as a constant basis for its 

calculations. 



1.5 Assessment of software development risks by Barki et al. (1993) 

Barki et al. (1993) first developed a comprehensive list of 35 risk variables for software development 

projects and organized them into five risk categories related to:  

 the novelty aspects of a project,  

 size or scope of an application,  

 lack of expertise,  

 application complexity, and  

 the organizational environment.  

To get a single project risk measure they simply transformed each risk variable to a 0-1 scale, 

calculated their average and multiplied the risk score with the magnitude of loss score. They then 

present the distribution of risk scores with a table of percentile risk scores. The conclusion is that a 

project with a score in the 90
th
 percentile needs more managerial attention than one with a score in the 

10
th
 percentile. 

In this approach, there is no need for special data, since the data is collected using questionnaires. It 

can provide a good overview about the risk situation of a project compared to other projects. The 

disadvantage is that application users and project leaders have to be asked for their opinions on 

different risk topics concerning the project. Another weakness is how the uncertainty variables are 

aggregated. The transformation to a 0-1 scale is done by dividing the score on each variable by the 

maximum value observed in the sample. After the transformation, variables that always have a low 

score have the same value as variables that are always evaluated with a high value. Finally, Schmidt et 

al. (2001) as well as Moynihan (1997) pointed out some methodological issues in Barki et al.’s (1993) 

approach.  

1.6 Comparison of the analyzed approaches to risk measures 

The problem for a project manager becomes obvious if we look at the comparison of the different 

approaches (Table 3). The first three approaches (Markowitz, VaR/CVaR and LPMs) are very well 

founded in financial theory but the underlying assumptions are very restrictive for adoption in project 

risk management. They have special requirements concerning the risk data and also need historical 

data to calculate a correlation matrix between different categories of risks. The other two approaches 

provide a good starting point to evaluate a project. As Tiwana and Keil (2004) put it, those are good 

for a “quick-and-dirty assessment of overall project risk”. They do not account for any correlation 

between risks and the methods for the aggregation of risks do not meet the requirements for a 

scientific approach.  

The main limitation of financial risk measures such as the VaR and the CVaR are that historical data is 

required to estimate the loss distribution and the correlations. Those concepts further provide one 

single risk measure for a project that is on a metric scale. It therefore seems to be the best possible 

approach to use the historical data and calculate the VaR or the CVaR of the projects. As the VaR has 

the discussed drawbacks, we decided to use the CVaR approach in this paper because overall it seems 

to be the approach with least disadvantages and most advantages. 

  



 

 

Markowitz 

Portfolio 

Selection 

Theory 

(Conditional) 

Value at Risk 

Lower Partial 

Moments 

One-minute 

Risk 

Assessment 

Tool 

Assessment of 

Software 

Development 

Risks 

Requirement

s on the 

statistical 

scale level 

Interval-scaled 

data 

Ordinal data, 

but metric data 

allows more 

precise results 

Metric data. 

Actually ordinal 

data would be 

sufficient but 

interpretation is 

hard if >0. 

No special 

requirements 

No special 

requirements 

Assumptions 

for the 

underlying 

risks 

distribution 

Normal 

distribution 

No special 

distribution, but 

need for a 

common 

distribution 

No special 

distribution, but 

need for a 

common 

distribution 

No special 

requirements 

No special 

requirements 

Theoretical 

foundation 

Very well theoretically supported. Researchers are 

discussing and developing them on a broad basis. 

Weak Weak 

Flexibility No flexibility. Very flexible by 

adjusting the -

level. 

Different 

measures for a 

risk distribution 

can easily be 

created by 

changing . 

Only flexibility 

is given by 

filling in the 

rankings for six 

predefined risk 

drivers. 

Managers can 

decide which 

percentile of 

projects they 

want to look at. 

No flexibility 

which risk 

categories are 

used and no 

possibility of 

changing the 

underlying 

correlations. 

Usability in 

day-to-day 

risk manage-

ment 

Not usable, 

because risks 

are usually not 

normally 

distributed but 

follow a 

leptokurtic 

distribution. 

(Unser, 2000) 

Are actually the 

most used risk 

measures and 

the VaR has to 

be used 

according to 

industry 

regulations 

(Rockafellar 

and Uryasev, 

2002). Need 

enough 

historical data 

to calculate the 

correlation 

matrix. 

Easy to 

interpret as VaR 

and CVaR but 

not easy to use 

for project 

risks. Need 

enough data to 

calculate the 

correlation 

matrix. 

Very easy to 

use. Project 

manager just 

has to fill in the 

rankings. 

Questionnaires 

have to be 

designed and 

for each project 

a project 

manager and a 

future user have 

to complete 

them. 

Calculation is 

easy afterwards.  

Table 3. Comparison of the five analyzed risk measure approaches 

 

2 Using the Conditional Value at Risk to aggregate IT project risks 

Since the instruments from finance have a more stable theoretical foundation we would like to use one 

of those for the aggregation of risks. Our final risk measure will be the Conditional Value at Risk 

(CVaR) due to its advantages mentioned in the analysis of the different instruments.  



2.1 Data collection and preparation 

We analyze the project risk data base of the multinational software company GAMMA resulting in a 

data set of 110 software implementation projects. The project risk management process at GAMMA is 

as follows: First, risks are identified and assessed. Then actions for controlling the risks are planned, 

implemented and monitored. This happens in so-called risk reviews take place once before and several 

times during a project and are jointly conducted by the project manager and the project office. Risk 

identification is supported by a check list containing 45 different types of risks from which the project 

manager chooses the risks that he thinks might occur during the particular project. Since all involved 

people are experienced professionals and since they come to a combined estimation one can assume 

that there estimates should be comprehensive. 

To calculate a common loss distribution we need the input data to be on a metric or interval scale. The 

probabilities already meet this requirement but the impacts are given on an ordinal scale from 1 to 5 

with 1 being “Insignificant” (<0,56% of project value), 2 “Minor” (0,56%<x<2,8% of project value), 3 

“Moderate” (2,8%<x<14% of project value), 4 “Major” (14%<x<70% of project value) and 5 

“Catastrophic” (>70% of project value). Those values have to be transformed prior of using them to 

calculate a CVaR. 

We generate the common loss distribution by using a Monte Carlo Simulation. We first calculate the 

covariance matrices for probabilities and impacts separately using Spearman’s rank correlation 

coefficient. We separate the calculation of correlation coefficients because impact and probabilities do 

not have to move in the same direction. We then create 10,000 correlated random variables for the 

probabilities and impacts in each risk category by using the Cholesky decomposition. According to 

Wang (2008) the Cholesky decomposition is used to transform “independent standard normal random 

variables into correlated normally distributed random variables within a given variance-covariance 

structure”. The decomposition creates a matrix L that solves the equation  with A as the 

correlation matrix. This new matrix L is then multiplied with the set of random variables to make them 

correlated in the same way as the original data. 

To transform the ordinal data of the impacts to metric data we use the project value together with the 

impact classes above to calculate the average loss in a certain risk category for a certain project. We 

then apply a normal distribution with the calculated average and the random variables to find the 

results for the 10,000 simulation runs. For the probabilities we say a risk occurs, if the created random 

variable is higher than the probability stated by the project manager.  

2.2 Calculation of the CVaR 

Usually the CVaR is calculated for  = 1% or even less. But in the context of project risks, we would 

like to use a much higher  because we are not only interested in the worst 1% of cases that could 

happen to our project. In this paper we use =30%. The economical interpretation of the CVaR0,3 is 

that the average loss of the project in the worst 30% of cases. For 10.000 simulation runs, the CVaR0,3 

is the average loss of the worst 3.000 runs. 

The results of the simulation showed that it is hard for the project managers to estimate risks using loss 

categories and probabilities. About 50% of the projects have a CVaR0,3 that is higher than the value of 

the project. Taking into consideration the economic interpretation of the CVaR0,3 that is a very bad 

result. In 30% of the projects even the average loss is higher than the project value. It is very likely 

that those numbers are not real. They are either based on too conservative estimations about the 

underlying risks or the reason is the ordinal impact scale. We will later provide another way for the 

estimation of the impact which could lead to much better results. However, contemporary studies 

suggest that still around one third of IS projects fail so the results could maybe support that fact (El 

Emam and Koru, 2008; Sauer et al., 2007). Table 4 shows the TOP10 projects with the highest CVaR 

30% in descending order. 



 

# Project Value in € CVaR 30% in € Average Loss in € VaR 30% in € 

1 215.000.000 778.008.025 459.950.354 612.354.055 

2 5.000.000 344.282.826 194.205.053 239.573.085 

3 7.000.000 39.678.038 27.391.852 33.560.029 

4 11.873.000 26.108.366 20.042.037 22.976.982 

5 6.300.000 18.936.180 9.189.352 12.920.442 

6 8.000.000 17.609.858 9.027.774 13.203.772 

7 6.950.000 15.288.197 10.400.165 13.160.913 

8 5.475.000 12.416.351 8.324.617 10.693.773 

9 3.500.000 10.925.741 6.478.111 8.732.873 

10 2.500.000 9.279.460 5.307.691 7.053.344 

Table 4. Top 10 projects on CVaR 30% 

Figure 5 shows the simulated loss distributions of two different projects. It is obvious that they have 

completely different risk profiles. We can see that the left distribution has its average loss at about € 

900.000 but has very fat tails. That means that the losses are not centered around the average but are 

spread widely between 0 and 2.500.000€. There is even a small peak at 1.700.000€. The CVaR0,3 is at 

1.800.000€. The loss distribution on the right is much more centered around its average at 2.700.00€ 

and the only peak is at 3.000.000€. The CVaR0,3 for this project is 3.600.000€. 

The CVaR accounts for the whole distributional information. This means that even if the loss 

distribution has fat tails the CVaR would perfectly reflect that fact. It is about twice as high as the 

average in the left project but just 30% higher than the average in the right project.  

 

 

   

Figure 5. Loss distribution of two projects 

Since we also included correlations into our calculations, it is possible to account for the 

diversification effect that comes from different risks in a project. That makes it possible to better 

estimate the true total risk of a project. If a company can include correlation in their risk calculations 

the management can make better decisions if they would like to run a project or not. 
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Another considerable advantage of this approach concerns the monitoring of project risks. Due to the 

fact that the CVaR considers the whole loss distribution of a project it can actually be used as a single 

figure to compare different projects. That makes it very useful for the management of companies 

because they just need to have a look at one figure to see which projects are the most risky ones. 

As we have seen, the estimation of risks is a big challenge. Since the simulations are based on those 

estimations, they depend on the experience of the estimators. We show that using impact classes is not 

advisable. Companies should rather use a system which applies triangular distributions. That means 

that the estimator of the risks has to give the most likely monetary impact value and he has to add an 

upper and a lower bound to this value. The advantage of this approach is twofold. First, the expert who 

estimates the loss value can provide an exact value of the most probable loss and does not have to 

stick to five impact classes. Second, he is able to adjust the upper and lower bounds according to how 

confident he is with his estimation which gives him much more flexibility. 

Figure 6 shows an example of a density function of a triangular distribution with mode at € 300.000, 

lower bound at € 100.000 and upper bound at € 1.000.000. This distribution would be used if an expert 

would estimate the most probable loss will be € 300.000. In the best case, he would estimate the loss 

to still be € 100.000 and in the worst case it would be € 1.000.000. These three numbers contain a lot 

of information about the experts’ opinion. He was not bound to fixed loss classes, which gives him the 

opportunity to really express his estimate. If he had to chose between the risk class € 1 to € 500.000 

and the risk class € 500.000 to € 1.000.000, which class would he chose? In any case, his choice would 

not really reflect the true estimation. 

 

Figure 6. Example of a density function of a triangular distribution 

 

3 Conclusion and Outlook 

In this paper, we explored the potentials of creating a single figure that is able to measure risks in IT 

projects and present it adequately. We suggested the CVaR because it offers many advantages 

compared to other risk figures. To use it, a loss distribution is needed, which we simulated with data 

from 110 projects. Most importantly, we included the correlations between different kinds of risks in 

our calculations and can therefore account for diversification effects between the risks. 

We suggested the use of triangular functions for impact estimations rather than impact classes because 

they offer more flexibility and more accuracy. In this paper however, we had to rely on data with 

impact classes. Thus, it was very difficult to estimate the true impact value for each project risk. The 

best estimate we had was the average of an impact class. Nevertheless, this paper offers a way to 

financially evaluate the risk of one project and make it easily comparable to others. 

We demonstrated that due to its special properties the CVaR can account for the whole distributional 

information. That makes it possible to use one single figure to compare projects. If we used the 

average loss instead, much more information would be lost. Looking at the CVaR of one project and 



comparing it to the CVaR of other projects, the management is able to get a much clearer picture of 

where exactly the risks in a project portfolio come from. Due to its metric scale, it is easier to compare 

for decision makers than other measures. 

Further research focuses on the aggregation of all project CVaRs to a company-wide risk measure. 

This would make it possible to immediately get an overview about the risk situation of a company. It 

would not only be interesting for the management of the company but also for other stakeholders like 

banks for example. 

The goal of this paper was not to prove that the CVaR is the best instrument to measure project risks. 

It has some valuable properties but the user certainly has to modify it for his special context. The 

paper was rather meant to initiate a discussion about the usage of the well-known financial risk 

measures in project risk management and the value of reviewing risks in projects on a recurring base 

and establishing integrated data bases of risk reports across projects. Such a discussion may lead to 

surprising results and make the risk management of projects more reliable and comprehensible. 
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