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Abstract 

Diagrammatic conceptual schemas are an important part of information systems 
analysis and design. For effectively communicating domain semantics, modeling 
grammars have been proposed to create highly expressive conceptual schemas. One 
such grammar is the Web Ontology Language (OWL), which relies upon description 
logics (DL) as a knowledge representation mechanism. While an OWL DL diagram can 
be useful for representing domain semantics in great detail, the formal semantics of 
OWL DL places a burden on diagram users. This research investigates how user’s prior 
knowledge of the application domain impacts solving inference tasks as well as schema-
based problem-solving tasks using OWL DL diagrams. Our empirical validation shows 
that application domain knowledge has no effect on inference performance but 
enhances schema-based problem-solving performance. We contribute to the conceptual 
modeling literature by studying task performance for a highly expressive modeling 
grammar and introducing inference tasks as a new task type. 

Keywords:  Conceptual modeling, IS analysis, Laboratory experiment, Task characteristics 

Introduction 

Understanding domain semantics is critical to stakeholders involved in information systems analysis and 
design (ISAD). For representing domain phenomena, diagrammatic conceptual schemas created using a 
modeling grammar are an important tool. One important characteristic of grammars is their 
expressiveness, i.e., the extent to which they provide constructs to represent relevant domain semantics 
(Gemino and Wand 2004; ter Hofstede and van der Weide 1993). A particular type of highly expressive 
conceptual schema is a diagram created using the Web Ontology Language (OWL) (W3C 2004), 
specifically its sublanguage OWL DL, with DL denoting description logics (Calvanese et al. 1998). While 
an OWL DL diagram represents the concepts and relationships within a domain, its modeling constructs 
embrace the formal semantics of description logics. The expressiveness of the OWL DL grammar has 
attracted some inquiry in information systems (IS) research (Bera et al. 2010; Sharman et al. 2004). 

From an IS perspective, the role of OWL DL diagram is to assist analysts, developers, and users of 
information systems in understanding the domain of interest. Specifically, OWL DL diagrams have been 
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proposed for communicating application domain semantics in the analysis phases of ISAD (Bera et al. 
2010; Dermeval et al. 2015; Kaiya and Saeki 2006). Users who want to learn domain semantics from an 
OWL DL diagram must be aware of the formal semantics of modeling constructs used. Formal semantics 
enriches the semantics that is explicitly stated in the diagram by statements that are not visible but 
derived through logical inferences. Thus, users looking at a diagram must have some sense of the formal 
semantics to acquire a complete understanding of the domain semantics conveyed by the diagram. 

Prior research has examined contextual factors that might affect how users understand a conceptual 
schema, including the user’s application domain knowledge. While it was found that the role of 
application domain knowledge is contingent upon the task type (Khatri et al. 2006), the grammars used 
lacked formal semantics. Whereas OWL DL specialists are accustomed to interpreting the diagrams, other 
stakeholders face difficulties, which are due to the formal semantics (Rector et al. 2004; Warren et al. 
2014). How far diagram users include formal semantics in their diagram understanding can be tested by 
inference tasks, which ask the user to infer statements from the diagram. While a computational reasoner 
could perform inferencing automatically, we see at least two scenarios in which using a reasoner might 
not always be possible or appropriate. 

First, in the early analysis phases, OWL DL diagrams will often be interactively developed by a group of 
people involving domain experts, analysts, and modelers. These diagrams capture domain semantics at a 
rather high level of abstraction and will be revised during several rounds of discussions. Their 
development is made difficult by OWL DL modeling tools, which only provide limited visualizations for 
the large set of modeling constructs. For instance, many tools focus on few types of relationships between 
concepts but exclude equivalence, negation, union, and intersection. The latter constructs, however, are 
just those with formal semantics. Therefore, diagrams might be developed using other tools such as MS 
Visio, or no tool at all. In this case, automatic reasoners, which require an OWL serialization (file), cannot 
be employed for inferencing. 

Second, for the setting described above, the use of UML-based representations of OWL DL has been 
proposed. In particular, some editors for UML class diagrams are being extended to include the 
constructs of OWL DL (Brockmans et al. 2004). This extension relies upon a so called UML profile for 
OWL (Djurić et al. 2005). Therefore, an OWL DL diagram will look very similar to a class diagram but 
may include additional symbols and labels to indicate the OWL-specific constructs. While the UML 
approach to OWL DL helps improve the modeling and visualization of OWL DL diagrams, reasoners still 
cannot be employed in those tools. Inferencing will only be possible if the resulting OWL file will be 
handed over to an OWL-specific tool. In summary, tool support is still inadequate because of separate 
tools being used for modeling and inferencing. 

Considering the importance of formal semantics for understanding OWL DL diagrams, exploration of the 
factors that affect this understanding is still limited. We aim to fill this gap by investigating how the user’s 
prior knowledge of the application domain impacts their task performance. In ISAD, team members are 
expected to have some basic knowledge of the application domain (Robillard 1999; Tiwana 2004). 
Sometimes, finding people with appropriate domain knowledge is difficult. In such circumstances, if the 
conceptual schemas contain enough domain semantics, then it may not be critical that the team members 
have some domain knowledge. If this can be ascertained with some degree of confidence through 
empirical evidence, then it makes it easy for project managers to form development teams since they don’t 
have to be searching for people with enough domain knowledge. Hence, hypothesizing and empirically 
studying the impact of domain knowledge of the project team members on task performance is important. 

Prior research informs how application domain knowledge affects task performance (Khatri et al. 2006) 
but no study has yet investigated OWL DL diagrams with formal semantics. Thus, the objective of our 
research is to empirically validate how application domain knowledge affects users of OWL DL diagrams 
in solving inference tasks as well as schema-based problem-solving tasks. While OWL DL diagrams 
provide all the information required to solve tasks of both types, knowledge of the application domain 
might have different effects. Similar to prior research, we base our argument on the theory of cognitive fit 
(Vessey 1991). The results of testing our hypotheses indicate that application domain knowledge has no 
effect on inference task performance but enhances schema-based problem-solving performance. Our 
research contributes to conceptual modeling by: (1) studying task performance for highly expressive 
conceptual schemas, and (2) introducing inference tasks as a new task type. 
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Our paper proceeds as follows. We first discuss the theoretical background for understanding OWL DL 
diagrams and present our hypotheses. Then, we report on the experiment we conducted to test these 
hypotheses. We discuss the findings from our study before concluding the paper. 

Theoretical Background and Hypotheses 

We refer to the theory of cognitive fit concerning how users employ representations for their problem-
solving processes (Vessey 1991). This theory suggests that a match (fit) between the problem 
representation and the representation required for the problem solving task will enhance task 
performance. If there is a fit, the user can formulate a mental representation for task solution that uses 
corresponding information from both the problem representation and the problem solving task, which 
then improves task performance. In case of conceptual schema understanding, problem representations 
are the diagrams used and problem solving tasks are the types of understanding tasks that diagram users 
deal with. We first discuss OWL DL for problem representation. Then, we discuss understanding tasks 
and the role of application domain knowledge in solving these tasks to derive our hypotheses. 

Problem Representation 

An OWL DL schema can be represented in at least three different ways: diagram targeted at persons 
(OWL DL diagram), machine-readable format (e.g., XML), and abstract syntax of the underlying 
knowledge representation formalism. As with any modeling grammar, diagram understanding depends 
foremost on the ability to correctly interpret the constructs used in the diagram (syntax) and their 
mappings to concepts in the domain of interest (semantics) (Wand and Weber 2002). Because of 
description logics that underlies OWL DL, diagram users must also be aware of the impacts of that 
formalism on the diagram semantics. In discussing these impacts, we refer to the exemplar diagram 
shown in Figure 1.  

While a variety of diagrammatic representations for OWL DL have been proposed (Katifori et al. 2007; 
Lanzenberger et al. 2010), the general approach is to use directed labeled graphs. Figure 1 illustrates the 
main constructs. Concept is the construct for representing domain phenomena at the type level (e.g., 
Project, Person), which can be linked by the role construct (e.g., hasPerson), and individual is the 
construct for capturing phenomena at the instance level (e.g., William). 

PersonProject
hasPerson

subClassOf

Employee
External
Person

subClassOf

Internal
Project

subClassOf

Retired
Employee

subClassOf

unionOf
Non

Employee

equivalentClass
William

type

≥1

 

Figure 1. An excerpt of an OWL DL diagram for the project domain 

Figure 1 contains some of the advanced modeling constructs, which are marked by lowercase labels on 
nodes (e.g., unionOf) and arrows (e.g., type). These labels have been standardized in the OWL 
specification. Unfortunately, the terminology defined in the OWL specification differs from the 
description logics literature (Baader et al. 2010). For instance, OWL uses class instead of concept, and 
property instead of role. Because of OWL’s wide use in practice, visualizations implemented in modeling 
tools replace the DL-specific terms by the intuitive OWL terms (e.g., subClassOf, equivalentClass). In 
Appendix D, we provide a definition of the grammar used in both Figure 1 and our experiment. 

The first characteristic of OWL DL is the larger set of constructs. Logical relationships between concepts 
other than the common IS-A-relationship can be described; these relationships include equivalence, 
negation, union, and intersection. For instance, the diagram shown in Figure 1 defines that NonEmployee 
is equivalent to the union of RetiredEmployee and ExternalPerson (represented by an arrow labelled 
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equivalentClass from the NonEmployee node to the unionOf node, which then has un-labelled arrows to 
the two concept nodes). Figure 1 also provides examples of the IS-A-relationship, which is referred to as 
logical containment and represented by an arrow labelled subClassOf (e.g., ExternalPerson is contained 
in Person). The diagram shown in Figure 1 defines that the individual William (represented by a node) is 
an instance of the RetiredEmployee concept (represented by a dashed arrow with label type). 

The second characteristic of OWL DL is the formal semantics of constructs. Formal semantics is the study 
of the meaning of a representation in terms of formal statements that are valid for that representation. If 
we create an OWL DL diagram, then its semantics are all the statements that are contained in the 
representation (explicitly stated) and all the statements that are also valid. The latter statements are 
implicit but can be concluded due to the underlying logic. For users of OWL DL diagrams, formal 
semantics is important to their understanding because the inferred statements are part of the diagram 
semantics. However, we stress that OWL DL inferences are different from perceptual inferences that 
users mentally construct when looking at a diagram. Perceptual inferences are due to intuition rather, and 
thus they are “extremely easy for humans” (Larkin and Simon, 1987, p. 98).  

We illustrate formal semantics by inferring statements from the diagram shown in Figure 1, which defines 
that William is an instance of RetiredEmployee. Then, all statements about RetiredEmployee hold true 
for William. Hence, we can infer that William is an instance of (1) Person (because the RetiredEmployee 
concept is contained in the Person concept; represented by the subClassOf arrow between these two 
concepts), and (2) NonEmployee (because the RetiredEmployee concept is contained in the union that 
defines the NonEmployee concept; represented by the unionOf node and its equivalentClass arrow). Let 
us assume that the diagram contains two more individuals named CloudProject, which is an instance of 
InternalProject, and Linda, which has not been assigned to any concept. In addition, the two individuals 
are linked via the hasPerson role. We can conclude two statements: (1) Linda belongs to Person due to the 
hasPerson relationship with InternalProject, and (2) CloudProject belongs to Project because the 
InternalProject concept is contained in the Project concept. 

This form of inferences is an important feature of OWL DL because it allows inferring some properties of 
an individual by its membership to a concept, without the need to directly assert these properties. This 
mechanism resembles the categorization function of concepts in human information processing (Smith 
and Medin 1981): If we know very little about an individual except that it belongs to a particular concept, 
then we can infer all or many of the concept’s properties for that individual (considering all other 
statements). Furthermore, OWL DL allows us to draw inferences from an individual participating in a role 
(as discussed for the Linda example in the preceding paragraph). In this case, roles have a categorization 
function as well. 

The formal semantics of OWL DL is subject to two assumptions, namely the open-world assumption 
(OWA) and the non-unique name assumption (NUNA). Because neither assumption holds true for 
grammars such as the Entity-Relationship Model (ERM), newcomers to OWL DL will often face 
difficulties in integrating these assumptions into their problem-solving processes when using a particular 
schema (Rector et al. 2004). In the OWA, from the absence of a statement alone, it cannot be concluded 
that the statement is false. In other words, although our schema does not contain a statement, the 
statement might have been made somewhere else. For instance, the OWA impacts how to interpret the 
RetiredEmployee concept. The diagram states that William is an individual of RetiredEmployee but 
neither does the diagram define that William is not an instance of Employee nor can we infer such a 
statement. 

In the NUNA, from two individuals having different names we cannot conclude that the two individuals 
are actually different; it could be the case that the two names designate the same individual in the domain. 
For instance, let us consider that Paul is an individual that has been assigned to Employee in Figure 1. 
From that statement alone, we cannot conclude that Paul and William are different. However, we could 
define Employee and RetiredEmployee as distinct concepts (syntax: arrow with label complementOf). 
Then follows that William is different from Paul due to both belonging to distinct concepts. 

Understanding Tasks 

Understanding tasks require the user to examine a diagram and derive information from that diagram. 
The information that the user derives from the diagram is his or her perception of domain semantics. 
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Understanding is best if the domain semantics articulated by the user equals the actual domain 
semantics; however, equivalence is difficult to achieve (Lindland et al. 1994). 

The conceptual modeling literature distinguishes two types of understanding tasks (Khatri et al. 2006). 
First, comprehension tasks are concerned with domain elements that are represented in the diagram by 
modeling constructs. These tasks depend on a thorough understanding of the constructs used, and require 
mostly a surface-level understanding of the domain (Bodart et al. 2001). A deeper level of understanding 
is required by problem-solving tasks (which must not be confused with the general problem solving task 
construct in the theory of cognitive fit). A problem-solving task describes a problem in the domain and 
then asks the user to provide either explanations as to why this problem occurred or potential solutions to 
the problem. We focus on so called schema-based problem-solving tasks, which can correctly be solved by 
using information represented in the diagram (schema). Thus, the OWL DL diagrams provide all the 
information required for solving the task. Another type of problem-solving tasks require information 
beyond what is represented in the diagram; these tasks are referred to as inferential problem-solving task 
(Khatri et al. 2006). Next, we introduce inference tasks as a new task type and then discuss problem-
solving tasks. Table 1 provides exemplars of the task types discussed. 

Table 1. Task types used in conceptual modeling research 

Task Type Examplar with respect to Figure 1 Prior Studies 

Comprehension task Syntactic comprehension task: How many concepts are contained in 
the Person concept? 

a) 0, b) 1, c) 2, d) 3 

Khatri et al. 2006 

Semantic comprehension task: A given employee must be assigned to: 

a) one project, b) more than one project, d) any number of projects, d) 
no project 

Bodart et al. 2001; 

Khatri et al. 2006 

Inferential 

problem-solving task 

A project requires additional persons but no employees are available. 
What should the project leader do? Write as many alternatives as you 
can think of. 

Bodart et al. 2001; 
Burton-Jones and 
Meso 2008; Gemino 
and Wand 2005 

Schema-based 
problem-solving task 

A quality manager asks for a report that identifies all the internal 
projects in which non-employees have been taken part. Based on the 
diagram provided, can you find an answer to the above problem. 

Khatri et al. 2006 

Inference task Let us assume that Bill is equivalent to William. What statements 
about Bill can be inferred, if any? 

- 

Inference Tasks 

Inference tasks are concerned with the formal semantics of modeling constructs used. Inference tasks ask 
the user to provide all the statements that can be inferred from a given statement. For instance, we can 
describe the inference task discussed earlier for Figure 1 as follows: “Let us assume that Bill is equivalent 
to William. What statements about Bill can be inferred, if any?” Diagram users can answer this question 
by trying to reproduce the steps of DL reasoning. This reproduction invokes deeper-level cognitive 
processes than comprehension tasks. Although users cannot avoid making perceptual inferences when 
looking at the diagram (Larkin and Simon 1987), they should focus on the logical inferences to maximize 
their task performance. Because the inferred statements are part of the diagram semantics, users must 
consider inferences when consulting an OWL DL diagram to learn domain semantics. Therefore, 
inference tasks are a useful vehicle for assessing how well the user has acquired an understanding of 
domain semantics conveyed by the diagram. 

Our definition of inference tasks for OWL DL diagrams is consistent with the work of Larkin and Simon 
(1987) on how diagrammatic representations are processed. In their model, inference is the execution of 
some action “to add new (inferred) elements to the data structure” (p. 69). First, “data structure” can be 
considered as a mathematical graph that associates nodes via links. It is important to note that any 
diagram will be formalized using that structure. For instance, in case of OWL DL, the data structure would 
provide different types of nodes and links based on the grammar’s constructs. Second, actions (A) will be 
triggered if some conditions (C) are fulfilled. While Larkin and Simon considered rules in the abstract 
form A→C, the formal semantics of OWL DL is defined by such inference rules. Therefore, if a diagram 
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user performs an inference task on a given OWL DL diagram, their knowledge of these inference rules will 
help in succeeding in the task. This task resembles the setting described by Larkin and Simon (p. 67): 
Although the OWL DL diagram is directly available to the user, the inference rules that operate on the 
diagram are in the user’s memory. 

Inference tasks for OWL DL diagrams as defined above must not be confused with other tasks that have 
been studied in conceptual modeling research. Specifically, the experiment reported by Dunn and Gerard 
(2001) had two sets of so called inference tasks, which were also motivated by the work of Larkin and 
Simon. The first set of tasks is concerned with how to derive database tables from an ERM diagram. 
Solving these tasks required knowledge of the derivation rules for the relational database model (RDM). 
Considering that inference adds elements to the data structure, in this case, the data structure is a 
composite structure that allows storing elements of both the ERM diagram and the relational database 
model. The major difference with our inference tasks is that the inference action processes elements of 
one modeling grammar (ERM diagram) to add elements using another modeling grammar (RDM). In 
addition, the inference rules are not due to the formal semantics of the constructs used in the diagram. 
The second set of tasks used by Dunn and Gerard (2001) asks if the ERM diagram allows making some 
specific statements within the application domain. Similarly, the answer, i.e., yes or no, cannot directly be 
stored using the data structure for ERM diagrams but requires a supplementary data structure. In 
summary, Larkin and Simon’s concept of inference has much broader coverage of possible tasks than the 
type of inference used in our study, which relies only on the formal semantics of the grammar used. 

Problem-Solving Tasks 

Two types of problem-solving tasks have been identified (Khatri et al. 2006): Schema-based problem-
solving tasks can be solved using information represented in the diagram, while inferential problem-
solving tasks require using information beyond the information represented in the diagram. For the 
latter, making an inference means using tacit background knowledge of the domain, which is opposite to 
reproducing the DL reasoning as required for inference tasks. Thus, inferential problem-solving tasks 
must not be confused with inference tasks. 

We focus on schema-based problem-solving tasks that come in the form of a query formulation task, 
which asks the user to describe whether and how some particular information can be retrieved from the 
diagram. Unlike a query against a database, the answer to this type of task will not be a statement in 
formal language but a textual description of how the user would use which elements of the diagram to 
solve the problem. Let us consider the following task directed at the diagram shown in Figure 1: “A quality 
manager asks for a report that identifies all the internal projects in which non-employees have been 
taken part. Based on the diagram provided, can you find an answer to the above problem? If yes, 
describe how you would find the answer. Please be specific.” The solution to this task can be structured 
as follows: “First, retrieve all individuals of the NonEmployee concept. Second, select those that are linked 
via the hasPerson role with an individual of the InternalProject concept. Third, return the linked 
individuals of the InternalProject concept.” Note that there might be other ways to describe the retrieval 
from the diagram, though any proposed solution can easily be validated against the diagram. 

Role of Application Domain Knowledge 

Application domain knowledge is the user’s knowledge about the domain that is described in the diagram. 
If the task calls for implicit domain semantics that is not expressed in the diagram, then diagram users 
might bring their domain knowledge to bear in solving the task (Parsons and Cole 2005). However, under 
the assumption that a quality conceptual schema conveys all the relevant domain semantics, application 
domain knowledge will have little effect on diagram comprehension. The theoretical explanation is that 
comprehension tasks emphasize types of information that match closely to those in the diagram. This 
match of the types of information leads to cognitive fit, which facilities the mental processes and no 
transformation of the problem representation will be needed (Vessey 1991). Therefore, application 
domain knowledge is not essential to solving comprehension tasks, if the user thoroughly examines the 
diagram and interprets it correctly according to the syntax and semantics of the grammar used. 

We regard inference tasks as a type of comprehension tasks. We contend that the mental representation 
for solving inference tasks can be formulated within the DL formalism and thus requires no 
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transformation to the problem representation. The task representation begins with statements related to 
the diagram and then asks for the inferred statements. The problem representation, the OWL DL 
diagram, refers to the DL formalism based on a bijective mapping between the OWL labels of visual 
elements and the constructs of the underlying logic. Thus, the types of information emphasized in the 
inference task and in the diagram match, i.e., cognitive fit exists. This match provides strong motivation 
for the user to activate their general knowledge of DL reasoning and reproduce the steps of DL reasoning 
without bringing application domain knowledge to bear. Therefore, we posit the following hypothesis: 

H1: OWL DL diagram users with low application domain knowledge are equally accurate in 
inference tasks compared to those with high application domain knowledge. 

In case of schema-based problem-solving tasks, cognitive fit does not exist because the tasks emphasize 
other types of information than those in the diagram. Specifically, while the information emphasized in 
the problem representation are visual constructs with clearly defined formal semantics through the 
underlying logic, the information emphasized in the task does not match the OWL DL constructs and 
their formal semantics. Hence, the user must formulate a mental representation for task solution from 
two elements that emphasize different information, which makes the mental processes more intricate. 
Here, application domain knowledge might help in the processes for formulating the mental 
representation and ultimately improve task performance. Application domain knowledge will facilitate the 
transformation of different information types required for problem solving. This effect of application 
domain knowledge received empirical support for users of diagrams produced from two variants of the 
ERM grammar (Khatri et al. 2006). We posit that this effect also holds true for users of OWL DL diagrams 
and state the following hypothesis: 

H2: OWL DL diagram users with high application domain knowledge are more accurate in 
schema-based problem-solving tasks compared to those with low application domain 
knowledge. 

Method 

To test our hypotheses, we conducted a controlled laboratory experiment for which we report the 
experimental design and data collection in this section. 

Experimental Design 

Participants were given two OWL DL diagrams using which they had to perform inference and schema-
based problem-solving tasks. Both diagrams were syntactically equivalent except for the labels used to 
describe the application domain. The factor under investigation was application domain knowledge and 
had two levels, high vis-á-vis low. We used a repeated measures design, where each participant was 
exposed to both treatment conditions. This design allowed us to effectively control for individual 
differences such as knowledge of the modeling grammar. Participants were randomly assigned to either 
the group that first started with the diagram for the familiar domain or the group that started with the 
diagram for the unfamiliar domain. For each diagram, inference tasks were followed by the schema-based 
problem-solving tasks. We chose this order because the schema-based problem-solving tasks required the 
participants to examine the entire complex diagram; this examination can be facilitated by first solving 
less demanding tasks (Khatri et al. 2006). Within each task type, the tasks were presented in two different 
sequences (because of two groups, there were in total four different sequences of tasks). 

Participants 

The experiment was targeted at persons who have practical experience with the OWL DL grammar. The 
participants should have an understanding of the modeling constructs including their formal semantics 
and be able to retrieve domain semantics from diagrams. Therefore, the target population for the study 
was novice analysts in ISAD who received academic training in conceptual modeling and possess some 
experience with the OWL DL grammar. 

To determine the required sample size, we performed an a priori power analysis using the G*Power 3.1 
tool (Faul et al. 2007). In this analysis, we assumed a medium size effect of application domain knowledge 
on schema-based problem-solving performance and set d=0.60. We selected the Wilcoxon-signed ranked 



 Application Domain Knowledge in Using OWL DL Diagrams 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 8 

test (one-tailed). The analysis revealed that we must have at least 20 participants providing 40 
observations to achieve a sufficient statistical power (P=.8). Therefore, we recruited 26 students for the 
experiment (providing 52 observations). This sample size was large enough to detect medium size effects 
for our repeated measures design. 

Our participants were undergraduate IS students (24 males and 2 females) enrolled in a Knowledge 
Engineering course. Participation was voluntary but participants were awarded three extra credit points 
for the final exam (total of 60 points). Because this was a compulsory course in the sixth semester of 
study, the students were familiar with conceptual modeling and modeling grammars. The course provided 
an introduction to the OWL DL grammar through three classroom sessions of each 90 minutes in the 
weeks prior to the experiment as follows: The first session introduced DL in the form of axiomatic and 
visual grammar. In the second week’s session, students had to design an OWL DL diagram from a textual 
description and derive axioms from a given diagram. The third session was dedicated to the reasoning 
capabilities of OWL DL by discussing nine exemplar diagrams and, finally, inferring statements from a 
larger diagram, which was of similar size as the diagrams used in the experiment. In summary, the 
students’ background suggests that the participants can serve as surrogates for novice business analysts 
and modelers who are involved in the analysis phase of ISAD (based on the training provided in the class). 

Measurements 

Our experiment had two dependent variables for measuring inference performance and schema-based 
problem-solving performance. The inference tasks required to write down statements inferred from the 
diagram. We used “negative marking” for the inference tasks by penalizing the wrong answers. For 
instance, the correct solution to the first inference task (provided in Appendix B) comprises three 
statements, with each getting a score of one-third. If the answer contained two correct statements and one 
incorrect statement, then we would assign a score of only one-third to the answer. The assessment was 
straightforward by comparing the answer with the correct solution. In addition, we verified the 
correctness of the solutions that we used by (1) implementing each diagram with Protégé 4.3 editor 
(Protégé 2016), and (2) retrieving the inferred statements from its built-in DL reasoner. 

Responses to the schema-based problem-solving tasks were independently coded by four student 
assistants, who were familiar with interpreting conceptual schemas but were unaware of our hypotheses 
under investigation. The correct solution to each task included two elements, each of which received a 
score of one. Thus, the maximum score that can be achieved for each domain was six (for the three tasks). 

We ensured the validity of the coded data through the following procedure: First, we developed a coding 
manual, which included correct solutions and their coding as well as exemplars of incorrect solutions. For 
the familiar domain diagram, we provided an example coding instruction and discussed its use with the 
student assistants. The actual coding started for the first five answers to task 1 (familiar domain). Next, 
the four coders compared and discussed their ratings to resolve any inconsistency (no intervention by the 
researchers). Afterwards, the group discussed their results with one of the researchers who reviewed the 
group ratings. Then, the remaining 21 responses were coded, followed by the two rounds of discussion. 
This procedure was repeated for all of the six tasks (for the final two tasks, the coders were given all 26 
answers at once because of already high consistency). Considering that we used four independent coders, 
their raw agreement was high with 86.5% for the familiar domain and 85.9% for the unfamiliar domain. 
In very few cases, the discussion between the group of coders and the researcher led to a revision of the 
code assigned (this occurred for just 6 of the 2*6*26=312 responses). 

Materials 

The materials included four parts and a supplement. The first part captured the participants’ demographic 
background (materials provided in Appendix A). To determine how far along the students are in their 
degree program, we asked for their undergraduate credits and the grade in the Modeling course (which 
provides an introduction to ERM and the Business Process Model and Notation (BPMN) but not OWL 
DL). With respect to self-reported modeling knowledge, we adopted a three-item instrument from 
Mendling et al. (2010), and adjusted the items to the OWL DL grammar. While we had confidence in our 
selection of the familiar and unfamiliar domains (see below), we also assessed self-reported domain 
knowledge (through one item each). 
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The second part of our materials provided a tutorial on how to solve inference and schema-based 
problem-solving tasks. While both task types were known to our participants through attending the 
classroom sessions, we included this tutorial to refresh their knowledge. First, participants independently 
worked on the tutorial tasks. Then, the experimenter presented the correct solutions. Thus, the 
participants received feedback on their solution. The tutorial diagram represented a very familiar domain, 
namely IS program, which described concepts such as Course, Teacher, and Student. This diagram was 
smaller than those used in the treatment phase but made use of the same grammar constructs. We first 
asked the participants to perform three syntactic comprehension tasks, followed by two inference tasks, 
and, finally, one schema-based problem-solving task. 

The third and fourth part of our materials provided the diagrams and tasks (based on which treatment 
condition was administered first). The two diagrams were syntactically equivalent (number of elements, 
diagram layout) except for the domain labels used. We first developed the diagram representing an 
application domain of high familiarity (Figure 2). Because our participants were IS students, we chose 
project management as a familiar domain; it provides concepts such as project task, subtask, person, and 
qualification. The students’ background knowledge can interfere with the diagram semantics; hence, this 
domain was appropriate for our investigation. Then, we developed a diagram representing road surface 
laying (Figure 3). We chose this domain because we expected that IS students would be more familiar 
with project management than with road surface laying, which is a subject studied in civil engineering. 
The diagram was developed by the third author who has worked two and a half years in civil engineering 
research projects and closely collaborated with domain experts. The diagram represents knowledge 
described in a reference document published by the German Asphalt Pavement Association (2011). An 
alternative to choosing such a real domain would have been an abstract domain for which the diagram 
only includes “void” labels such as Alpha, Beta and so on. While this choice would have increased the 
contrast between the levels of our independent variable, it is unlikely in practice that diagram users will 
have absolutely no knowledge of the domains represented in the diagrams they use (Bera et al. 2014). 
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Figure 2. OWL DL diagram for the familiar domain 
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Figure 3. OWL DL diagram for the unfamiliar domain 

In developing the inference tasks (provided in Appendix B), we ensured that the inferred statements to be 
derived by the users were based on the formal semantics of constructs not included in the ERM grammar 
but specific to OWL DL. The correct solution to all tasks included 13 inferred statements per diagram, 
which were based on the following constructs: Role (2), concept inclusion (4), concept equivalence (2), 
concept negation (2), concept union (1), and concept intersection (2). The number of statements to be 
inferred per task ranged from one to three. While four tasks asked for inferred statements about a 
particular individual already contained in the diagram, two tasks began with some information about a 
new individual and then asked for the inferred statements (tasks 3 and 6). 

With respect to the schema-based problem-solving tasks (provided in Appendix C), we adopted the format 
of query formulation tasks used in prior research (Khatri et al. 2006). Each task required the user to 
analyze several elements of the diagram that were linked via roles and logical relationships, respectively. 
Participants were asked how to solve the problem by identifying the relevant elements and their links. 

The supplement provided during the experiment included the modeling grammar (Appendix D). 

Procedures 

The experiment was organized as a class room exercise. Participants were informed that the experiment 
would provide an assessment of their learning progress; the research objective and the treatment 
conditions exposed to were not disclosed. After two researchers explained the procedures and answered 
questions, participants were randomly assigned to either the familiar or unfamiliar domain group. Then, 
the first and second parts of the materials were distributed, which included the questions on the 
participants’ background and the tutorial, respectively. After all participants had completed and returned 
the materials, one instructor presented the correct solutions to the tutorial tasks. Then, the first treatment 
phase started and distributing the respective paper-based treatment materials. One seat was left empty 
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between every two participants, who were, in addition, assigned to different groups. The instructors made 
sure that there was no collaboration between participants. The participants were given ample time to 
work through the inference tasks followed by the schema-based problem-solving tasks. Once a participant 
had completed the tasks, an instructor collected the material and distributed the material for the second 
treatment condition. The time required for each treatment phase was recorded by the instructors, and 
considered as a control variable in the data analysis. 

Results 

This section reports the results by first examining the conformance of the data with the assumptions of 
statistical tests. Then, we present the results from testing our hypotheses. 

Data Screening 

Table 2 shows participants’ demographic data and controls. Participants’ study progress ranged between 
completion of the third semester and beginning of the sixth semester with a mean of fourth semester (one 
student did not report credits). All students had passed the Modeling course and reported fairly good 
grades (three students reported passing but not their grade). On average, participants rated their DL 
modeling knowledge as in the middle. They also indicated that they possess more knowledge of project 
management (familiar domain) than road surface laying (unfamiliar domain); a Wilcoxon signed-rank 
test showed that the difference was significant (Z=-4.198, p<.001). Our participants performed very well 
in the tutorial’s syntactic comprehenion tasks (relative score of 95%). The scores for the inference and 
schema-based problem-solving tasks were, as expected, lower (45% and 27%, respectively). Overall, the 
data suggests that our participants had knowledge of the grammar as required for our investigation. 

Table 2. Participants’ data and controls (N=26) 

Variable Scale Min Max M Mdn SD 

Age Years 20 34 22.38 22.00 2.52 

Undergraduate credits 0-180 90 160 142.76 147.00 16.88 

Grade in the Modeling course 1-51 1.3 3.3 2.36 2.30 0.58 

Self-reported knowledge: DL modeling  1-7 2.0 6.33 4.15 4.33 1.19 

Self-reported knowledge: Familiar domain 1-7 2 6 4.62 5.00 0.98 

Self-reported knowledge: Unfamiliar domain 1-7 1 6 2.35 2.00 1.36 

Tutorial: Syntactic comprehension 0-3 2 3 2.85 3.00 0.37 

Tutorial: Inference 0-2 0 2 0.90 0.80 0.64 

Tutorial: Schema-based problem-solving 0-3 0 3 0.81 0.00 1.20 

Time required: Familiar domain  Mins. 14 25 19.31 20.00 3.26 

Time required: Unfamiliar domain Mins. 15 25 20.38 20.50 3.21 

1 Inverse scale with lower values indicating higher levels of knowledge. 

With respect to the reliability of our multi-item instruments, we found sufficient levels of internal 
consistency as indicated by Cronbach’s alpha (.895 for self-reported modeling knowledge, .861 for 
inference performance/familiar domain, .775 for inference performance/unfamiliar domain). We 
examined all dependent variables for normal distribution and found deviations so that we decided to run 
non-parametric tests for our hypotheses testing. 

Prior to hypotheses testing, we inspected the correlations between our independent and dependent 
variables. First, there were no significant correlations between any self-reported variable (i.e., age, credits, 
grade, DL modeling knowledge, application domain knowledge) and inference performance. Second, 
there was only one significant correlation with schema-based problem-solving performance (between 
knowledge of the unfamiliar domain and performance in that domain with r=-.391). Third, there were no 
significant correlations between the time required and any of the performance variables. 
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Test of Hypotheses 

Table 3 provides the results of our hypotheses testing. With respect to inference performance (H1), we 
found no significant difference in using the OWL DL diagram for the familiar domain compared to using 
the diagram for the unfamiliar domain. Power analysis using the G*Power 3.1 tool revealed that in order 
for an effect of this marginal size (d=0.0284) to be detected (80% chance) as significant at the 5% level, a 
sample of 8,024 participants would be required. Thus, it is unlikely that our nonsignificant finding can be 
attributed to a limited sample size. With respect to schema-based problem-solving performance (H2), 
participants using the diagram for the familiar domain achieved higher scores than when using the 
diagram for the unfamiliar domain, and the size of this effect was medium. 

Table 3. Results 

Variable Scale 

Application Domain 
Test Results 

Familiar Unfamiliar 

M Mdn SD M Mdn SD Z p1 
Effect 
size2 

H1: Inference performance 0-6 3.38 3.58 2.09 3.41 3.67 1.82 -0.105 .916 n/a 

H2: Schema-based problem-
solving performance 

0-6 2.77 3.00 1.48 1.62 2.00 1.42 -3.068 .002 
Medium 

(0.43) 

1 Significant at p<.05 (Wilcoxon signed-rank test, asymptotic, 2-tailed). 

2 Effect size: absolute r; >0.1 Small, >0.3 Medium, >0.5 Large (Cohen 1988). 

Because of our repeated measures design, learning might have confounded the observed effects. 
Therefore, we additionally formed two groups of observations and compared their results. The first group 
contained all observations for the first experimental run (either familiar or unfamiliar domain), while the 
second group contained those for the second experimental run (again, either familiar or unfamiliar 
domain). Then, we ran Mann-Whitney U-tests for our dependent variables and the time required. The 
differences for both inference and schema-based problem-solving performance were nonsignificant. 
However, we found that participants spent less time in the second run compared to the first run. On 
average, the decrease was 5.08 minutes for the familiar domain and 4.77 minutes for the unfamiliar 
domain (p<.001). In summary, our results suggest that while learning led to faster task completion it did 
not affect task performance. 

Discussion 

We discuss the contributions, implications, and limitations of our research. 

Contributions to IS Literature 

Investigating the context in which conceptual schemas are created and used is an important part of 
conceptual modeling research (Wand and Weber 2002). Our research examined two contextual factors, 
the user’s application domain knowledge as an individual difference factor and schema understanding as 
a task factor. Specifically, the research question addressed was how application domain affects the 
performance of users of OWL DL diagrams in solving inference tasks and schema-based problem-solving 
tasks. Based on our empirical results, our research makes the following three specific contributions to IS 
research.  

First, our study contributes to the literature by investigating schemas that are highly-expressive because 
of the knowledge representation formalism that underlies the OWL DL grammar. The expressiveness of 
modeling grammars is a major subject of conceptual modeling research. Of particular importance is the 
notion of ontological expressiveness, which measures whether and how grammatical constructs map onto 
the constructs of a philosophical ontology (Wand and Weber 1993). Since ontology as a branch of 
philosophy provides theories about the structure and behavior of the world in general, they can be useful 
for evaluating grammars (e.g., Bera et al. 2014; Parsons 2011; Shanks et al. 2008). Prior IS research has 
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focused on ontological expressiveness, whereas inferential expressiveness due to description logics has 
yet received little attention. Because OWL DL and the grammars studied in prior research have different 
origins in logic, the contextual factors when using OWL DL diagrams should be investigated. 

Second, empirical research on the understandability of OWL DL diagrams is still scarce and has only 
considered alternative visualizations of grammar constructs (Fu et al. 2014; Garcia-Penalvo et al. 2012; 
Motta et al. 2011). Our study fills this gap in the literature by investigating two contextual factors through 
a rigorous empirical evaluation. We extend prior research that has used the theory of cognitive fit to 
explain and predict task performance for ERM diagrams in the presence of application domain knowledge 
(Khatri et al. 2006). Our study is the first empirical investigation of performing inference tasks. Prior 
research has studied only the common constructs in the ERM grammar (e.g., Khatri et al. 2006; Parsons 
2011; Poels et al. 2011) but not the constructs that enable DL-based inference tasks. We note that diagram 
users must be aware of the formal semantics of constructs used, and the inferred statements that are part 
of the domain semantics conveyed by a diagram. Understanding inferences is important when diagrams 
are used in the analysis phase where tool-based reasoners will not be available or their use is not 
appropriate. Our study provides evidence that cognitive fit between the information emphasized in the 
OWL DL diagram and the information required for solving inference tasks indeed exists. Cognitive fit is 
possible because of a bijective mapping between the OWL labels of visual elements and the constructs of 
the underlying logic, which were known to the participants of our experiment. We also find that 
application domain knowledge helps the user in schema-based problem-solving tasks because the 
problem representation in the OWL DL diagram and the representation required for solving the task do 
not match. We believe that these findings can be useful for ISAD project managers in deciding about the 
required expertise of project teams that use OWL DL diagrams. 

Third, our research helps clarify the notion of inferencing used in the conceptual modeling literature by 
referring to formal semantics and investigating a particular knowledge representation mechanism that is 
well understood in the knowledge engineering literature (Baader et al., 2010). Prior research assigned 
inferencing to very different tasks including the derivation of statements in one grammar from statement 
expressed in another grammar (Dunn and Gerard 2001) and inferential problem-solving tasks that 
require domain knowledge beyond what is available from the diagram (Bodart et al. 2001; Burton-Jones 
and Meso 2008; Gemino and Wand 2005). 

Implications 

Our study results have several implications for future research. For research streams investigating schema 
understanding, our study adds to the literature by introducing inference tasks as a new task type. We 
focused on two groups of OWL DL constructs that enable inferences, i.e., logical relationships between 
concepts (inclusion, equivalence, union, and intersection) as well as roles. OWL DL provides further 
constructs such as role restrictions and different types of roles, which also have formal semantics beyond 
that of ERM or UML class diagrams. Future research could investigate whether our empirical support for 
cognitive fit of inference tasks holds for all the constructs. While we defined inference tasks that required 
the user to interpret several constructs used in the diagram, our instrument for measuring inference 
performance was reliable. However, we did not hypothesize about specific constructs. 

Second, opportunities exist to further explain the cognitive processes for interpreting constructs defined 
in the OWL DL grammar. While we studied how users interpret diagrammatic representations 
conforming to an underlying knowledge representation mechanism, past research informs how humans 
perform logical deductions from formal statements (e.g., Rips 1983; Johnson-Laird and Byrne 1991). 
Similarly, description logics researchers have begun using theories of mental models to study how well 
readers interpret formal non-diagrammatic DL statements. For instance, in the experiment reported by 
Warren et al. (2014), participants were given a set of statements and a proposed inference. Then, the 
participants had to decide whether the proposed inference was valid or not. While this type of inference 
task is different from our definition, approaching the problem from different theoretical perspectives 
could extend our understanding of human information processing for highly expressive conceptual 
schemas. 

Third, other researchers could extend the design of our study with respect to the individual difference 
factor of conceptual modeling. We considered the user’s prior knowledge of the application domain and 
found that this knowledge affects schema-based problem-solving performance. This finding is important 
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because the effect observed is very similar to the role of application domain in schema-based problem-
solving using ERM diagrams (Khatri et al. 2006). Our results suggest that diagram users, who received 
training in the formal semantics of OWL DL, still bring domain knowledge to bear in solving query 
formulation tasks. It would be interesting to know whether users with little or no knowledge of the OWL 
DL grammar would also be able to solve such tasks due to their prior domain knowledge. In a similar vain, 
fellow researchers could use our definition of inference tasks to study how the user’s knowledge of and 
practical experience with the OWL DL grammar impacts their inference performance. While our 
participants received academic training on OWL DL, research could investigate how inference tasks are 
approached by participants with knowledge of the ER grammar but no knowledge of OWL DL. This 
design would mirror a setting found in practice where naïve users analyze OWL DL diagrams. 

Limitations 

The limitations of our study must be noted. First, limitations exist due to using students as surrogates for 
novice analysts that validate domain semantics conveyed by a diagram. Our students lacked the in-depth 
experience with OWL DL that professional analysts would possess. While we provided them training on 
the formal semantics of OWL, including the DL-specific assumptions (i.e., OWA and NUNA), this setting 
limits the external validity of our results. Second, while we had planned to use an existing schema that has 
been created and validated in prior research, our search in the OWL repositories listed on the W3C 
website was unsatisfactory. The schemas were either too specific with respect to the application domain, 
or lacked the use of the advanced modeling constructs required by our hypotheses, or had both 
deficiencies. Third, our tasks were limited in number and complexity, and we used only one diagram for 
each treatment condition. This setting is similar to prior studies on diagram comprehension (e.g., Agarwal 
et al. 1999; Khatri et al. 2006; Poels et al. 2011). Fourth, we chose a subset of the OWL DL specification, 
which provides more modeling constructs. The effects observed for the constructs used in our experiment 
cannot necessarily be generalized to all the advanced constructs. 

Conclusion 

OWL DL is a conceptual modeling grammar characterized by the larger set of modeling constructs to 
describe domain constraints, and the formal semantics of the constructs based on an underlying 
knowledge representation mechanism. These characteristics make it necessary to explore the factors that 
affect how users of OWL DL diagrams understand domain semantics. We find that the user’s application 
domain knowledge has no effect on inference performance but enhances schema-based problem-solving 
performance. We contribute to the conceptual modeling literature by conducting the first empirical study 
on task performance for the highly expressive OWL DL grammar, which adds description logics-based 
inference tasks. 

Acknowledgements 

The work of J. Leukel has been partially supported by the Federal Ministry of Education and Research, 
Germany, under grant 16KIS0083. The work of V. Sugumaran has been supported in part by a 2016 
School of Business Administration Spring/Summer Research Fellowship from Oakland University. 



 Application Domain Knowledge in Using OWL DL Diagrams 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 15 

Appendices: Experimental Materials 

Appendix A: Participant Data 

Demographics 

Age (years); Gender (male/female); Undergraduate credits (max. 180); Modeling course: attendance 
(yes/no), passed exam (yes/no), grade. 

Self-reported modeling knowledge (7-point scale from “strongly disagree” to “strongly agree”) 

• “Overall, I am very familiar with description logics.” 

• “I feel very confident in understanding knowledge bases created with description logics.“ 

• “I feel very competent in using description logics for conceptual modeling.“ 

Self-reported application domain knowledge (7-point scale from “very low” to “very high”) 

• “To what extent do you have knowledge of project management procedures?” 

• “To what extent do you have knowledge of road surface laying procedures?” 

Appendix B: Inference Tasks 

Note: To conserve space, we present only the inference tasks for the familiar domain. In the inference 
tasks for the unfamiliar domain, all terms printed in bold were replaced by the corresponding terms as 
shown in Figure 3. 

Task Solution 

List all statements about ProjectReview2014Q1 that 
can be inferred, if any. 

Instance of: Output, Input, Validation. 
(one-third per statement) 

List all statements about ISO9001Manual that can be 
inferred, if any. 

No instance of InternalTutorial. 

Let us assume that ProjectReview2014Q1 is connected 
via the requires role with SigmaPlus. List all statements 
about SigmaPlus that can be inferred, if any. 

Instance of: SpecialCertificate, Qualification; no 
instance of StandardCertificate. 
(one-third per statement) 

List all statements about LauraWilson that can be 
inferred, if any. 

Instance of: Specialist, AccountingSpecialist, Person. 
(one-third per statement) 

List all statements about RichardMyers that can be 
inferred, if any. 

Instance of Person; no instance of ExternalPerson. 
(one-half per statement) 

Let us assume that BUpdate2014 is connected via the 
assignedTo role with LauraWilson. List all statements 
about BUpdate2014 that can be inferred, if any. 

Instance of ProjectTask. 

Appendix C: Schema-Based Problem-Solving Tasks 

Familiar Domain 

Task Solution 
A human resources manager needs to 
review a completed project task. This 
review is based on the profile of persons 
involved in the task. 

1. Retrieve individuals of the “Person” concept linked via the 
“assignedTo” role with the “ProjectTask” concept. 

2. Retrieve information about each person such as degrees, 
qualifications, and types of persons. 

A business process analyst wants to know 
all the tasks to be carried out and the 
persons involved in a project. 

1. For each individual of the “ProjectTask” concept, retrieve the 
subtasks and validation tasks via the “consistsOf” and “includes” 
roles. 

2. Via the “assignedTo” role, retrieve individuals of the “Person” 
concept. 

A professional trainer asks for a report that 
identifies all the ISO manuals that have 
been used for tasks by holders of master‘s 
degrees.  

1. Retrieve individuals of the “Person” concept that are linked via the 
“holds” role with an individual of the “Master” concept. 

2. For these individuals, select via the roles “assignedTo” – 
“consistsOf” – “uses” the individuals of the “ISOManual” concept. 
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Unfamiliar Domain 

Task Solution 

A surveyor needs to write a specification as 
part of their street layer analysis. This 
specification is based on the physical 
composition of the surveyed object. 

1. Retrieve individuals of the “Asphalt” concept linked via the 
“madeOf” role with the “StreetLayer” concept. 

2. Retrieve information about each asphalt such as aggregates, 
bitumens, and types of asphalts. 

A civil engineer wants to know all the 
activities to be carried out and the 
materials involved in road surface laying. 

1. For each individual of the “StreetLayer” concept, retrieve the paving 
and compacting activities via the “builtyBy” and “finishedBy” roles. 

2. Via the “madeOf” role, retrieve individuals of the “Asphalt” concept. 
The Environmental Protection Agency 
wants to create a report that identifies all 
the trucks that have been exposed to 
polymer-modified bitumen. 

1. Retrieve individuals of the “Asphalt” concept that are linked via the 
“contains2” role with an individual of the “Polymer-modified 
Bitumen” concept. 

2. For these individuals, select via the roles “madeOf” – “builtBy” – 
“suppliedBy” the individuals of the “Truck” concept. 

Appendix D: Modeling Grammar 

Construct DL Syntax Visual Representation Definition 

Concept A 
A

 

Represents a set of individuals. 

Individual {i} 
i

 

Represents an individual. 

Role (A, B):r 
A B

r

 

Represents a relation (role) between two 
concepts. 

Concept 
assignment 

{i}:A 
i A

type

 

Assigns individual i to concept A (i is an 
instance of A). 

Role 
assignment 

({i}, {j}):r 
i j

r

 

Represents a relation between two 
individuals. 

Equivalent 
individuals 

{i} ≡ {j} 
ji

sameAs

 

Individuals i and j are equivalent. 

Distinct 
individuals 

{i} ⊑¬{j} 

ji
differentFrom

 

Individuals i and j are different from each 
other (distinct). 

Concept 
inclusion 

A ⊑B 
A B

subClassOf

 

Concept A is contained in concept B (or: B 
includes A). 

Concept 
equivalence 

A ≡ B 
A B

equivalentClass

 

Concepts A and B are equivalent. 

Concept 
negation 

¬B 
B

complementOf

 

Represents the negation of a concept. 

Concept union A ⊔B 

B

unionOf

A

 

Represents the union of two or more 
concepts. 

Concept 
intersection 

A ⊓B 

B

intersectionOf

A

 

Represents the intersection of two or more 
concepts. 

Minimum 
cardinality 

≥n r r ≥n

 

The minimum cardinality of r is n. 

Maximum 
cardinality 

≤n r r ≤n
 

The maximum cardinality of r is n. 

Exact 
cardinality 

=n r r =n

 

The exact cardinality of r is n. 
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