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Abstract 

By understanding the psychophysiological factors behind successful e-learning, we aim 
to identify new techniques that improve participant retention and engagement. Past 
work has explored the relationship between Electroencephalography (EEG) and 
learning constructs, such as Cognitive Load and Cognitive Absorption. We believe that 
the unique application of an e-learning environment warrants an extension of existing 
theories. Our goal is to develop and validate a model explaining the role of Cognitive 
Load on Knowledge Gained. This research provides the foundation to then apply this 
model to create a neuroadaptive learning system. We describe an experiment that uses 
noninvasive tools to validate this model and explore the viability of off-the-shelf EEG for 
data collection in e-learning experiments. Potential theoretical contributions are 
discussed and results from a technical pilot are provided.  

Keywords:  E-learning, Cognition/cognitive science, Flow, Human-computer interaction 
 

Introduction 

E-learning, also known as online learning, has emerged as having enormous potential for customized, on-
demand student education and professional development in organizations. A number of recent 
innovations, such as Massive Open Online Courses (MOOCs) have been noted for their ability to disrupt 
traditional education by providing scalable access to content created by leading educators (Christensen, et 
al., 2014). However, much of the initial enthusiasm behind the technology has given way to a degree of 
skepticism that is fostered in part by low course completion rates and poor student performance (Ho, et 
al., 2014). Cognitive retention, poor user engagement, a lack of social experience and poor user motivation 
have been suggested as potential causes of this failure (Chandrasekaran, et al., 2015; Greene, et al., 2015; 
Reich, 2014). Our goal is to identify and empirically validate a theory explaining social, immersive and 
engaging online learning behavior, which is essential to improving the online learning experience. 

Cognitive Absorption (CA) is a model that has been used to explain experiences that are deeply immersive 
and enjoyable, under which lasting learning can occur (Agarwal, et al., 2000). Cognitive absorption refers 
to the psychophysiological mechanisms underpinning successful e-learning experiences using simulations 
(Léger, et al., 2014; 2010). The CA model is grounded in the theory of psychological flow. When a user is 
in a state of flow, she has heightened attention and becomes so absorbed in the activity she loses track of 
time (Csikszentmihalyi, 1990). Users in a state of flow are engaged, intrinsically motivated and are 
therefore more likely to retain the e-learning material. It follows that we might also measure cognitive 
absorption using physiological indicators, such as heart rate or brain activity, as demonstrated by Léger, 
et al. (2014). 
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However, cognitive absorption appears to conflict with the theory of Cognitive Load (CL). Cognitive load 
holds that the acquisition learning outcomes are determined by comprehension difficulty, not enjoyment, 
and that learning performance is negatively affected by high mental workload (Sweller, 1994; Sweller, 
1988). If students are confronted with too much information, such as that presented in a realistic 
simulation, it follows that they would become overwhelmed, and less likely to achieve the learning 
outcomes. Cognitive absorption hinges on there being sufficiently complex and engaging stimuli. CA thus 
seems to meet resistance from the theory of cognitive load, which states that too much stimuli impedes 
learning. If CL impacts learning then it becomes important to explore the relationship between a user’s 
degree of technical expertise and physiological measures such as brain activity or browser behavior. These 
traits may be indicative of the degree of CL. Understanding this relationship will allow us to measure CL 
in real-time without relying on self-reported scales.  Such a methodology could be instrumental in 
improving e-learning delivery techniques. 

This paper has two goals. The first is to identify an appropriate theory explaining the neurocognitive 
mechanisms behind e-learning. This goal is achieved by surveying the literature on cognitive absorption 
and cognitive load, and identifying a theoretical ground for an e-learning model. The second goal is to 
identify hypotheses and related to measuring successful e-learning and to identify methods for testing 
these hypotheses using non-invasive tools applicable to online learning. If successful, our findings will 
help to identify the precise methods for measuring the appropriate degree of challenge in a MOOC e-
learning environment. In the following sections, we discuss the relevant literature concerning the 
apparent theoretical gap between cognitive absorption and cognitive load. We then propose a theoretical 
framework for validating a cognitive load based model explaining learning.  Finally, we discuss 
preliminary findings from a proof of concept pilot study conducted using electroencephalography (EEG). 

Theoretical Background 

Our objective in this section is to outline a theoretical framework for testing the impact of conceptual 
difficulty on the attainment of learning outcomes. It has been widely accepted that both cognitive 
absorption and cognitive load impact learning attainment and technology acceptance. In the following 
paragraphs, we explore the commonalities and differences between the two theories, arriving at 
hypotheses to test related to the impact of task difficulty in triggering cognitive absorption. 

Measuring Flow and Cognitive Absorption 

Originally proposed by Csikszentmihalyi in the early 1990’s, Flow has been an influential concept across 
Information Systems, Psychology and Learning disciplines. Cognitive Absorption (CA) is a construct used 
to describe a state of deep involvement with IT, with theoretical roots in the theory of Flow (Agarwal, et 
al., 2000). Research suggests that CA has a significant impact on IT users’ intention to use the target 
information system (Léger, et al., 2010; 2014; Saadé, et al., 2005;  Scott, et al., 2009). Simulations have 
been used to trigger cognitive absorption since at least the early 2000’s, and have been shown to have a 
dramatic  positive impact in the classroom learning environment (Lu, et al., 2014). By drawing users into 
an engaging e-learning expierience that triggers CA, it is theorized that users will see greater technology 
acceptance and a higher degree of competency. 

Flow was originally conceptualized by Csikszentmihalyi as a state under which individuals engage in an 
activity for its own sake; in other words, are intrinsically motivated to engage in the activity  
(Csikszentmihalyi, 1990). Flow activities are enjoyable and could include activities such as “play, art, 
pageantry, ritual and sports,” but also include the play of ideas, philosophy and the acquisition of new 
knowledge  (Csikszentmihalyi, 1990). In this respect, flow could be experienced in the conditions that 
makes learning possible. Flow could also be seen as a sufficient, but not necessary condition of learning 
under cognitive load theory. 

Past work on measuring flow in learning situations could be placed in two categories: conventional and 
psychophysiological. Conventional work on flow largely involves the use of psychometric scales to 
measure participant preceptions  (Jackson, et al., 2004; Ullén, et al., 2012). Related to simulation-based 
e-learning, some psychometric scales have been specifically developed to measure preceived flow in video 
games  (Soutter, et al., 2016; Van Looy, et al., 2012). Attempts have also been made to measure flow for 
the purposes of e-commerce and online marketing, however the construct was found to be too ellusive to 
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be useful  (Hoffman, et al., 2009). A major challenge with convential measures in the context of e-learning 
is that they cannot be used in real-time when a participant is cognitively absorbed. As Randolph et al. 
(2015) discuss, psychometric  tools must be used post-hoc, which limits their potential in the design of 
neuroadaptive systems which require real-time analysis.  

Psychophysiological work, by contrast, has yielded concrete measures based on participant’s 
physiological state. Significant relationships between a user’s perceived flow and heart patterns, blood 
pressure and heart rate variability have been established in both learning and social media environments  
(De Manzano, et al., 2010;  Mauri, et al., 2011). A yet more concrete relationship between 
electroencephalogram (EEG), electrodermal (EDA) activity, and the cognitive absorption construct has 
been recently discussed (Léger, et al., 2014). In this recent work, strong relationships are established 
between multiple exogenous variables and the perceived cognitive absorption in IT learners. These 
variables might likewise be applied to measure perceived cognitive load.   

The Psychophysiology of Cognitive Load 

Cognitive load has been measured a number of different ways since its envisioning by Sweller (1988). 
Much like with flow, measures have included both direct and indirect subjective measures (such as self-
reports), indirect objective measures (such as the attainment of learning outcomes) and notably direct 
objective measures such as eye and brain tracking (Brunken, et al., 2003; Grimes, et al., 2015). Of the 
direct objective measures, EEG has been established as an effective tool for measuring mental workload, 
including in the context of cognitive load theory specifically (Anderson, et al., 2011; Murata, 2005).  

Working memory is responsible for the processing and retrieval of task information. The Sweller model of 
CL involves the use of working memory in the acquisition of new knowledge (Sweller, 1994). Working 
memory is used to understand a concept, eventually abstracting the knowledge into a schema. More 
complex ideas can be acquired by further using working memory on abstracted concepts, and in this way, 
education is possible. However, given that working memory has limitations, too much strain on the 
working memory will inhibit abstraction, and in turn knowledge acquisition. We may further distinguish 
between intrinsic, extraneous and germane cognitive load (Sweller, 1998). Where intrinsic cognitive load 
describes the absolute difficulty of an activity, extraneous cognitive load describes the mental effort 
toward processing instruction. Germaine cognitive load, by contrast, describes the effort required to 
process schemas. From a pedagogical perspective, it is clearly desirable to be able to identify and limit 
extraneous cognitive load while increasing germane cognitive load.  

Experiments using EEG have already identified methods for measuring cognitive load broadly. Early work 
in this field identified methods for measuring the demandingness of a task using EEG alpha, beta and 
theta waves generated by EEG and applied this to an adaptive learning system (Pope et al., 1995). Berka et 
al. (2004) later demonstrated how EEG could be used to identify high vigilance cognitive states by 
measuring the sustained differences in EEG epochs over the duration of a task. Using a wireless EEG, 
Berka et al. (2004) applied this technique to measuring cognitive load experienced during war 
simulations. Grimes et al. (2008) further refined work in cognitive load by achieving up to 75% EEG 
measure accuracy at classifying working memory load using just two EEG channels at Fz and Pz. 

When related back to Sweller’s model for learning however, we realize that these measures might be best 
suited to measuring the intrinsic cognitive load of a task, as opposed the extraneous or germane cognitive 
load experienced when schema formation occurs. A useful cognitive load measure for e-learning would 
have to account for these later two types of cognitive load so that we could correctly classify the correct 
circumstances under which learning occurs. How might we make this distinction? 

Sweller (1998) describes extraneous cognitive load as the experience of frustration felt when concepts are 
demonstrated poorly. Extraneous cognitive load might be measured as the load experienced when 
frustrated, while germane load has no such frustration, similar to flow or cognitive absorption. However, 
where flow (and cognitive absorption) holds that individuals enter a state of enjoyment when task 
difficulty matches skill, germane cognitive load merely describes a state when frustration is absent. We 
believe that this concept of germane cognitive load better explains the phenomenology of learning. 
Though learning does not occur when the working memory is overloaded processing extraneous tasks, 
working memory is utilized in the formation of schemas. Germane cognitive load can thus be described as 
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involving working memory utilization, low frustration, high engagement, and is positively associated with 
knowledge retention. 

We thus hypothesize that the cognitive processes behind an online learning cognitive load model would be 
similar to those as cognitive absorption, but would differ on the role of pleasure and frustration. The 
relationship between frustration and memory load has been explored in the context of perceived ease of 
use by de Guinea et al. (2014), where it was found that when frustration is low, memory load has a 
positive effect on the perceived ease of use of a technology. Negative EEG alpha is typically thought to be 
generated when users are alert (Klimesch, 1999; Grimes 2008), while positive alpha is used by Léger et al. 
(2014) to measure the state of relaxation implicit in cognitive absorption. EEG alpha should therefore be 
explored to understand the impact of EEG alpha on germane cognitive load. Working memory, by 
contrast, as explored in neuroscience literature, establishes a relationship between working memory and 
EEG theta activity (Sauseng et al. 2005). We might therefore hypothesise that theta is positively 
correlated with online learning cognitivel load, while alpha and beta are negatively correlated. Germaine 
cognitive load might additionally be measured by a users’ perceived absence of frustration or distraction. 

Theoretical Model 

Building on the work of Léger et al. (2014) we seek to use electroencephalogram to measure the frequency 
of EEG alpha, EEG beta and EEG theta, and correlate it with the degree of perceived cognitive load. With 
successful EEG measurement, we are able to specify benchmark indices for appropriate learning 
difficulty. Using these indices, we can measure the impact of curricula on different populations. Of 
particular interest to us is the impact of IT and Business learning modules on students with technical 
backgrounds.  

The theoretical model used by Léger et al. (2014) outlines how psychophysiological factors are 
incorporated into the conceptual framework of the cognitive absorption construct—a model that is similar 
to ours. Hypotheses about the the impact of EEG, EDR, heart rate and heart rate variability were tested to 
understand the variance in cognitive absorption. Using these factors, the authors were able to establish 
the psychophysiological components of a CA model that predicts self-reported cognitive absorption. Along 
similar lines, we can test the relationship between EEG and germane cognitive load (GCL) for online 
learning, and determine whether it impacts the learning outcome. This brings us to our hypotheses and 
model. 

• H1A – There is a negative relationship between Frustration and GCL. 
• H1B – There is a positive relationship between Task Difficulty and GCL. 
• H1C – There is a negative relationship between Skill and GCL. 
• H1D – There is a negative relationship between Skill and Task Difficulty. 

 
We arrive at H1A from the description of germane cognitive load in Sweller (1998). H1B, H1C and H1D 
were relationships observed in Léger et al. (2014). 

 
• H2A – There is a negative relationship between activation of EEG alpha and GCL. 
• H2B – There is a negative relationship between activation of EEG beta and GCL. 
• H2C – There is a positive relationship between activation of EEG theta and GCL. 

 
H2A H2B and H2C are derived from Pope et al (1995) and Berka et al. (2004), which identified EEG theta 
as positively associated with task load while EEG alpha and beta as negatively associated.  
 

• H3 – There is a positive relationship between self-reported GCL and Knowledge Gained.  
 

H3 follows from Sweller (1998), who identifies germane cognitive load as facilitating learning. We are 
looking specifically at knowledge gained as our endogenous model. It represents the difference in 
knowledge held before and after the lesson. Figure 1 thus summarizes our theoretical model.  
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Figure 1 - Theoretical Model 

Research Methodology 

We will test these hypotheses by conducting an experiment using EEG to measure GCL during a learning 
task and by comparing between two groups of 50 subjects each with varying skill levels to manipulate the 
GCL. To ensure variance of the subject skill level, participants will be recruited from two separate 
populations of post-graduate students, MBA and Computer Science at a research intensive University. 
Upon arriving at the Information Interaction Laboratory, subjects will be fitted with a Muse headset—a 
non-invasive dry EEG designed to detect EEG alpha, EEG beta and EEG theta with electrodes on the 
mastoids and frontal lobe. Each subject will individually participate in two video lectures related to 
entrepreneurship. The two videos use the same teaching style but develop content at different paces. 

Before watching each video, participants will be asked to complete a brief survey concerning their 
perceived knowledge of the subject. Following each video, participants are asked to complete a self-
assessment questionnaire focused on their knowledge of the topic. Included in the post-questionnaire is a 
cognitive load instrument, consisting of a series of 27 Likert scale questions. Participants are also asked to 
complete a competency quiz concerning the video content, used to measure the training outcome.  Data 
collected from the pre and post surveys are aggregated and analyzed using Partial Least Squares.  

Psychophysiological Measurement using the Interaxon Muse 

The Muse device generates time series EEG data from electrodes located at various sections of the head. 
The electrodes correspond to FpZ, AF7, Af8, TP9 and TP10 locations by 10-20 international standards 
(Interaxon Inc., 2015). Muse contains the libMuse library for building Muse applications, with which 
researchers can access alpha, beta, delta, theta and gamma EEG signals. In addition, using libMuse 
applications can detect blink and jaw clench events. Time-series data from the Muse sessions can thus be 
recorded using the muse developer recording tools and saved to a local computer. Time-series from the 
web interface will be recorded in browser and sent to a web database, which can be aggregated and 
transformed into the frequency domain if desired. 

Prior studies using the Muse have found the efficacy of the device to be sound. In a joint study with 
McMaster University, researchers found the Muse’s detection pattern to be similar to the actiCHamp and 
g.Tec’s wet EEG system, and was used to create a machine learning algorithm that could use EEG data to 
predict lapses in user vigilance (Interaxon 2015; Armanfard et al 2016). 

With only four channels (plus a reference electrode at FPz), the device might have limited applications in 
neuroscience research. In the case of cognitive load in online learning however, his should not be a 
challenge. Grimes et. al. (2008) demonstrated the efficacy of measuring cognitive load with only two 
channels. The limited number of channels comes with the advantage of cost. The Muse device was 
selected for the proposed experiment because of its non-invasive wireless design, low cost and 
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compatibility with common developer tools. At $200 CAD, the device is commercially available and a 
magnitude less expensive than devices commonly employed in neuroscience laboratories. Unlike some of 
its competitors, Muse provides raw EEG data at no extra cost. By successfully demonstrating the ability 
measure cognitive load using the Muse, we might utilize the tool to conduct group experiments in a 
classroom, or to build neuroadaptive learning systems that can be affordably utilized in everyday 
environments. 

Training Outcome 

Participants will be evaluated using a multiple choice questionnaire that tests comprehension from the 
two modules. The results from these tests correspond to training outcomes. 

Results of the EEG Technical Pilot  

In order to test the efficacy of the Muse EEG and its usefulness in validating a cognitive load model, we 
conducted a technical pilot study. The experiment explored the use of EEG alpha and EEG beta to account 
for variance in self-reported flow. Given that the purpose of the technical pilot is to test the validity of our 
instruments and design, we opted to replicate prior work on CA, as opposed to our cognitive load model. 
We investigated n= 4 (2 male, 2 female) right-handed university students age range [23, 30] who were 
recruited from graduate management programs. The videos on MRI Safety and entrepreneurship were 
selected to watch, and were selected because of their pace and content differences.  The objective of this 
pilot is to validate the technical setup and procedure using Muse EEG. 

Research Instruments and Procedure 

Participants watched two videos while wearing the Muse EEG. Following each video, a simple flow survey 
was administered. The pilot study utilized two research instruments. The first was the Muse EEG, 
designed to collect EG Alpha at 8-13 Hz and EEG beta at 13-30 Hz at FpZ, Af7, TP9 and TP10. These 
sensors follow the 10-20 international standards, which are standard wave format signals 
characteristically collected in Neuroscience experiments. The second instrument was a psychometric 
questionnaire derived from Pearce et al. (2005). 

Results 

With only the small sample, our preliminary results suggest a relationship between session EEG data and 
variance in flow. We will discuss our results, while qualifying that the objective of this technical pilot was 
to test the efficacy of our instruments. Though we can observe differences between EEG alpha and EEG 
beta and participant responses to the questions, we can visualize the differences by focusing on a subset of 
our scale derived from Pearce et al. (2005). This simple scale measures Flow by focusing on two 
dimensions: self-described “challenge” and “skill”.  Figure 2 depicts the average (normalized) relative EEG 
alpha and EEG beta from the TP 9 and TP 10 electrodes and the Pearce Flow measure, calculated by 
aggregating participant responses to the “difficulty” and “skill level” questions. 
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Figure 2 Normalized EEG Readings in TP9 and TP10 by Self-Reported Flow 

These results are interesting. A score of 4 denotes an appropriate match between task difficulty and skill. 
The average EEG alpha was higher when the task was appropriate in challenge and skill dimensions, while 
EEG beta was lower when these dimensions were low. Though the device might be too noisy for detailed 
research in event-related potentials, the consistency suggests that the Muse might be suitable for research 
in social science which relies on the presence of the EEG alpha and beta waves. Given the device’s low 
cost, it may be adequate for the experimental development of neuroadaptive learning tools. 

Pilot Study Limitations 

The small sample size is certainly a limitation of our findings. Though the experiments produced a 
multidimensional dataset, the number of experimental instances inhibits thorough statistical analysis. 
Under these circumstances, statistical analysis or machine learning at best demonstrate the potential for 
analysis on a larger sample. In addition, the ability to reproduce results concerning cognitive absorption 
does not validate the degree of accuracy of the Muse EEG system, but it does demonstrate its efficacy. 
Given that thorough research has been conducted on the device comparing it to other EEG, we can 
proceed with deeper exploration in online learning. The second stage of this exploration could involve 
further validating the Muse EEG alpha and beta with the actiCap by having participants wear both devices 
simultaneously as they perform e-learning tasks. Future research will also include larger participant 
sample sizes as well as different e-learning content to evoke high and low levels of germane cognitive load 
in subjects. 

Discussion and Conclusion 

The main advantage of using the Muse EEG is that it is non-invasive and can connect to most computers 
using Bluetooth. Where other EEG technologies offer comprehensive electrode locations, they use messy 
saline solutions or gel. Though they produce high-quality data, they are prohibitive for use in conventional 
business computer laboratories or e-learning environments. Muse, by contrast, records data from most of 
the important scalp locations for our task at the presumed expense of data quality. The non-invasive 
nature of the Muse adds the advantage of being able to measure the impact of brain activity on e-learning 
in an environment similar to where the modules would normally be delivered. The tool’s low cost also 
opens the possibility of measuring the impact of group interaction or social modules, which would 
normally be prohibitive by the high cost of the standard research EEG. Validating the robustness of this 
tool is thus critical to future research endeavors.  

Business students and technical students think in very different ways, and have different exposure to 
technical or business content. Given the wide variance in skill between the groups, we expect our future 
experiments will allow insights into the role of cognitive load on learning outcomes to aid in the 
development of online learning benchmarks, which can be useful for determining whether a module is too 



Psychophysiological Measures of Cognitive Absorption and Cognitive Load  

 Thirty Sixth International Conference on Information Systems, Dublin 2016 8 

difficult or not sufficiently engaging. By exploring the differences in psychophysiological performance 
between the two groups, we can gain insight into the mechanisms indicative of experiencing optimal 
cognitive load and cognitive absorption. Moving forward, this experiment might be advanced to develop 
e-learning modules that utilize the model to build real-time adaptive learning systems that transform the 
instructional design through the use of EEG feedback.   
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