
 Using Big Data for Predicting Freshman Retention 

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 1 

Using Big Data for Predicting Freshman 
Retention  

Completed Research Paper 

Sudha Ram 
University of Arizona, Management 

Information Systems 
Tucson, Arizona, United States 

sram@email.arizona.edu 
 

Yun Wang 
University of Arizona, Management 

Information Systems 
Tucson, Arizona, United States 

yunw@email.arizona.edu 
 

Faiz Currim 
University of Arizona, Management 

Information Systems 
Tucson, Arizona, United States 

currim@email.arizona.edu 

Sabah Currim 
University of Arizona, University 

Analytics & Institutional Research 
Tucson, Arizona, United States 

scurrim@email.arizona.edu 

Abstract 

Traditional research in student retention is survey-based, relying on data collected from 
questionnaires, which is not optimal for proactive prediction and real-time decision 
(student intervention) support. Machine learning approaches have their own limitations. 
Therefore, in this research, we propose a big data approach to formulating a predictive 
model. We used commonly available (student demographic and academic) data in 
academic institutions augmented by derived implicit social networks from students’ 
university smart card transactions. Furthermore, we applied a sequence learning method 
to infer students’ campus integration from their purchasing behaviors. Since student 
retention data is highly imbalanced, we built a new ensemble classifier to predict students 
at-risk of dropping out. For model evaluation, we use a real-world dataset of smart card 
transactions from a large educational institution. The experimental results show that the 
addition of campus integration and social behavior features refined using the ensemble 
method significantly improve prediction accuracy and recall. 

Keywords:  Data mining, Machine learning, Predictive modeling, Social Network Analysis 

Introduction 

Student retention is an important outcome measurement to assess institutional performance. Improving 
retention rates is necessary for financial stability, graduation rates and institution reputation in higher 
education (Scott et al. 2004). It is a problem other stakeholders are deeply interested in, for example it’s 
estimated that state governments appropriated almost $6.2 billion between 2003 and 2008 to colleges and 
universities to help pay for the education of students who did not return to school for a second year 
(Schneider 2010). However, despite extensive efforts devoted to student retention, retaining students is still 
one of the most challenging problems faced by universities. The key to this problem is to identify students 
at risk of dropping out at an early stage, so that the institution can provide timely intervention to help those 
students proceed with their degrees. Traditional survey-based research has developed and validated a 
variety of theoretical models including Tinto’s student integration model (Tinto 1975), Astin’s theory of 
involvement (Astin 1999) and Beans’ student attrition model (Bean 1982). These theoretical models have 
identified multiple factors related to student retention and explained how they interact with each other. 
However, these methods are not easily applied in real-world scenarios such as real-time student 
intervention due to the drawbacks faced by survey-based data collection. The limitations of a survey 
approach include a time consuming and expensive data collection process (for a large-scale survey), low 
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participation rate and self-reporting biases(Cabrera et al. 1993). As an alternative, researchers have 
developed theoretical models using institutional student datasets (ISD) that contain demographics, 
educational background, economic status and academic progress. Empirical results indicate that both data 
sources are comparable, and ISD was found to be valuable in conducting institution-specific retention 
research under the constraint of limited resources (Caison 2007). To overcome this constraint, data mining 
techniques are getting more attention from student retention researchers because of their capacity for 
robust learning from large volumes of data and the ability to recognize hidden relationships among 
variables. This quantitative approach provides a much-needed complement for accurate and timely 
prediction of student attrition (Delen 2011). 

Big data analytic methods have shown robust predictive power for multiple applications, yet, current 
research in student retention has not fully investigated their potential. Of particular interest to us is 
augmenting standard ISDs with resources that can infer student integration into campus life. From a 
feature exploration perspective, the traditional ISDs used in isolation are not sufficient to capture the 
dynamics of student behaviors on campus which leads to the loss of information about students’ social and 
campus integration (shown to be useful in predicting student retention). From a model-refinement 
perspective, the fact that drop-out students are the focus of prediction but have a much smaller sample size 
than retained students provides the opportunity of utilizing imbalanced classification techniques to 
improve the model sensitivity on the minority class. One recent study addressed this problem by using the 
synthetic minority over-sampling (SMOTE) method (Thammasiri et al. 2014). However, instead of using 
sampling methods alone, researchers have found that the integration of sampling methods with ensemble 
learning techniques can obtain better predictive performances (He and Garcia 2009). 

In this research, we first extend the traditional ISD by including students’ behavioral patterns from their 
university smart card transactions. More specifically, we include two new forms of insight from 
transactional data: 1) implicit social networks derived from transactions based on their location and 
timestamp information; 2) sequences of locations visited by each student on a daily basis. From the implicit 
social network, we define novel network attributes to infer students’ level of social integration. Using our 
previously developed sequence learning algorithm (Wang and Ram 2015) on the sequential data, we are 
able to obtain students’ level of regularity in campus activities which helps measure their level of integration 
(i.e., based on regular use of campus facilities). To our knowledge, this is the first time implicit network 
interactions are being extracted from smart card usage to infer students' social and campus integration. Our 
experimental results show that the extended features (i.e., ISD + social patterns inferred from smart card 
transactions) make positive improvements to predictions based on using ISD alone. Based on this extended 
dataset, we developed and compared prediction models using two different data balancing techniques, 
SMOTE and SplitBal (Sun et al. 2015) with a stacking ensemble method. Our research demonstrates how 
Information Systems design science research using big data and predictive analytics can be beneficial in 
solving long-term and challenging problems in fields such as student retention. 

The remainder of this paper is organized as follows: the Related Work section introduces previous work on 
student retention and data-balancing. The Methodology section describes the student dataset, our methods 
for feature extension, the prediction models and data balancing techniques applied in this research. The 
section Experimental Evaluation discusses the experimental setup and presents comparison results. The 
last section concludes the paper with future directions. 

Related Work 

Based on their basic underlying methodology, previous work on student retention can be categorized into 
behavioral vs. data-driven research. Research in both categories has identified significant factors that 
influence student retention but each category has certain limitations from a practical perspective.  

Behavioral Approaches 

Early efforts in student retention were mainly focused on building theoretical models. Fundamental 
theories that were developed are: Tinto’s student integration model (Tinto 1975), Astin’s theory of 
involvement (Astin 1999) and Bean’s student attrition model (Bean 1982). Tinto’s model was first built from 
the perspective of social integration which suggests that retained students are more socially integrated into 
the university. In this model, Tinto further distinguished social integration with academic integration where 



 Using Big Data for Predicting Freshman Retention 

 Thirty Sixth International Conference on Information Systems, Fort Worth 2015 3 

the social integration includes many aspects of students’ daily lives such as friendships, family support and 
feeling of satisfaction, and the academic integration contains the academic rules, norms and expectations. 
Later, Bean’s work provided an alternative explanation to student attrition where student’s decisions of 
departure are prompted by psychological beliefs which are further affected by students’ experience with 
different aspects of the institution such as institutional quality, faculty and friends. Similarly, Astin’s theory 
claims that students are most impacted by three types of involvement: with faculty, with academics and 
with peer groups. The greater the amounts of effort students invest in these involvements, the more likely 
they will persist. Although the three theories have different conceptual frameworks, the consensus is that 
student’s social integration and peer-relationship is an important indicator. 

As a result of the above theoretical foundations, researchers have conducted other studies to identify 
additional variables that can predict student retention. Institutional and goal commitment are found to be 
significant for student retention (Cabrera et al. 1993; Sparkman et al. 2012). Another common agreement 
is that a student’s past academic progress like high school GPA and standardized test scores are significant 
in most settings (Reason 2009). Financial factors such as loans, grants and scholarships are reported as 
useful indicators in several studies (Cabrera et al. 1993; Herzog 2005; Reason 2009). Other than these 
variables, a sense of belonging (Hoffman et al. 2002) and parents’ education levels (Cabrera et al. 1993; 
Caison 2007) are notable factors that are proven to be useful. Since most of these studies rely on surveys to 
collect data to measure the factors mentioned above, it is not easy for institution administrations to apply 
these findings in practice (i.e., regularly survey students to identify at-risk sub-populations), particularly 
because those most at-risk of dropping out may have a lower feeling of institutional integration which may 
contribute to a lower response rate. Moreover, surveying is not cost-effective because the number of at-risk 
students is small compared to the number that retain. Therefore, we need to look for more readily available 
alternative data sources that can achieve similar goals. 

Data-driven Approaches 

The recent popularity of using a data-driven approach to student retention is facilitated by two facts. First, 
the amount of data stored in university data warehouses has increased rapidly. Student attributes like past 
academic performance, financial status and many other factors are readily available for use (Yadav and Pal 
2012). From a big data perspective, we are able to complement ISDs with multiple secondary sources. 
Secondly, machine-based data analytics techniques are capable of discovering previously unknown 
relationships from large volumes of data. Also, this type of analytic technique is robust and adaptable to 
institution-specific settings (Caison 2007). 

Most data-driven studies have trained their models on ISDs. Common variables used from ISDs are: 
demographics, high school GPA, standardized test scores and financial indicators, most of which are 
significant variables identified by behavioral studies. However, not all of the important theoretical variables 
have been captured in data-driven studies. For instance, it is uncommon to use traditional ISD to infer 
student’s social integration and their peer relationships. Researchers have suggested using a hybrid 
approach comprising survey and ISD-mining techniques to address this issue (Sarker et al. 2014; 
Thammasiri et al. 2014). Instead of waiting for survey results that make prediction and intervention for at-
risk first-semester freshmen difficult, we argue that it is possible to analyze existing institutional resources 
to obtain comparable information. 

This brings us to another issue that impacts the quality of training features. There is a trade-off between 
how early a prediction can be made for freshmen and the quality (accuracy and recall) of the prediction. 
The ideal situation is to identify at-risk students as early as possible, so that there is enough time to 
intervene on these students to retain them. Considering the fact that over fifty-percent of the student 
attrition can be attributed to drop-outs during the first year of study (Delen 2011), a prediction model will 
be more valuable if it can identify drop-out students as early as possible. As a result, studies (Delen 2011; 
Thammasiri et al. 2014) that used first semester GPA and reported it as the most influential variable in 
predicting first-year retention, do not offer the university administration the ability to identify and 
intervene on those students who did not return for the second semester. For such cases, it is critical to model 
and predict students who may need help before the end of first semester. 

A goal of many data-driven studies is to find a classification algorithm that best predicts student retention. 
Researchers have tested and compared many families of classifiers including Naïve Bayes, Decision Trees, 
Neural Networks and Support Vector Machines (Delen 2011; Nandeshwar et al. 2011; Sarker et al. 2014; 
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Thammasiri et al. 2014). The main limitation of these classifiers is that they do not work effectively when 
the distribution of the dependent variable is imbalanced. A student retention dataset is naturally 
imbalanced, as in a typical university more students persist than drop out (e.g., about 80-85% of the 
population continues into the sophomore year). By default, classification algorithms assume approximately 
even-sized classes and tend to ignore the problem of minority classes (Sun et al. 2015). Past research has 
attempted to solve this problem using over-sampling (Lauría et al. 2012) and the SMOTE sampling 
technique (Thammasiri et al. 2014). Both techniques try to generate artificial samples for the minority class, 
and SMOTE is designed to overcome the over fitting issue of traditional oversampling. However, SMOTE 
has its own drawbacks including over-generalization and high variance (He and Garcia 2009).  

In this work, we focus on the first-semester retention problem among freshmen, which has been 
insufficiently studied and is a target population identified as most likely in need of interventions (Herzog 
2005). It is a difficult problem because university-level academic performance information is not yet 
available until after the first semester. In order to complement traditional ISD input features, we use 
university smart card transactions from which we extract and measure a variety of social network 
characteristics. Our previous research on students’ mobility behavior (Wang and Ram 2015) has shown that 
the implicit network derived from smart card transactions is a reliable indicator of their social relationship. 
We modified our sequence learning algorithm to evaluate the regularity with which students used campus 
activities. By using these two new features, we aim to infer the missed social and institutional integration 
information in current ISD-based studies. Regarding the problem of imbalanced data classes, we compare 
existing approaches with a state-of-the-art balancing technique (Sun et al. 2015) that also considers 
ensemble learning to boost performance. 

Methodology 

In this study, we consider the student retention prediction as a two-class prediction problem. As a 
supervised learning problem, the performance of a classifier relies on how effectively it can learn from the 
training set. One aspect that affects learning quality is the predictive power of the features. Another aspect 
is the amount of representative data. Imbalance due to rare instances will make the learning difficult. 
Therefore, we developed our model to address the issues of feature extraction and imbalanced learning. 

In this section, we introduce the variables obtained from an ISD. Then by comparing these with previous 
research findings, we identify the necessary features and design a new approach to extract features from 
smart card transactions, a data source that has not been considered before. Thereafter, we introduce our 
solution for imbalanced-class learning.  

ISD Data 

According to previous studies, freshmen are more prone to drop out, and identification of at-risk freshmen 
provides value for retention management (Herzog 2005; Thammasiri et al. 2014). In this study, we collected 
an anonymized ISD dataset for about 7000 freshmen corresponding to the academic year 2012 - 2013, from 
a large public university. Based on previous literature, we consider 21 variables that relate to different 
aspects of student demographics, sense of belonging, scholastic context, financial status, prior academic 
details and family background. We focused on full-time freshmen and cleaned the data by removing 
anomalies and samples with missing values. For example, we removed international students for whom 
SAT scores or high school GPAs were not available. The majority of the data points represented white 
domestic students under the age of 20, so we aggregated values for ethnicity, age ranges and citizenship 
into two categories each (represented by binary variables). Details of ISD variables are in Table 1.  

After data cleaning, we were left with about 6500 students, of which 479 (7.37%) drop-out after Fall and 
843 (12.98%) drop-out at the end of Spring. We distinguish the two drop-out groups, because some 
variables (e.g., ‘Fall GPA’, ‘Spring student loan’) are not available until the beginning the second semester. 
It is worth noting that first term GPA is found to be the most important predictor for first-year dropout 
rates (Delen 2011; Thammasiri et al. 2014); thus, predicting first semester drop-out students is harder than 
predicting those who drop-out after the second semester because of the lack of key information. 
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Table 1. ISD Variables 

Perspective Variables Definition Type 

Demographics Ethnic White = 1, Others = 0 Binary 

Age range ‘Less or equal to 20’ = 1, 
Others = 0 

Binary 

Gender Female = 1, Male = 0 Binary 

Citizenship US = 1, Others = 0 Binary 

In-state student In-state = 1, Others = 0 Binary 

Sense of belonging On-campus employment Employed = 1, Unemployed 
= 0 

Binary 

Living community Joined = 1, Not joined = 0 Binary 

Accommodation On-campus = 1, Others = 0 Binary 
Scholastic context  Major 0-25: Top 25 based on 

population, 26:Others 
Nominal 

College 0-16: 17 Colleges Nominal 
Honors student Yes= 1, No = 0 Binary 

Course units enrolled >= 12 to be full-time Number 

Financial status Fall student loan Yes= 1, No = 0 Binary 

Fall tuition waive Yes= 1, No = 0 Binary 

Prior academic 
details 

High school GPA Z-score normalized Number 

SAT comprehensive Z-score normalized Number 

Advanced program Enrolled = 1, Not enrolled = 
0 

Binary 

Family background First generation student Yes = 1, No = 0 Binary 

Pattern Extraction from Implicit Networks 

Nearly all the fundamental theories have emphasized the importance of social integration in student 
retention (Astin 1999; Bean 1982; Tinto 1975). However, students’ social relationships are usually not 
accessible through a standard ISD and usually inferred using questionnaires and surveys. To address this 
issue, we propose an approach to infer student peer relationships by exploring their smart card 
transactions. For our study, we use the university smart card transaction dataset containing approximately 
1.8million transactions made by freshmen. Each transaction provides information that includes location on 
campus (can be used to infer geographical information) and type of service (e.g., restaurant, printer 
services, parking, vending machine, etc.). For privacy, some of the information is masked (e.g., the ID is 
anonymized and spatiotemporal details are aggregated to a higher granularity). Formally we represent a 

smart card transaction as follows. Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} be the set of sampled students, Σ be the set of 

unique locations, then the smart card transactions can be denoted as a set of tuples 𝑇 = {< 𝑢𝑖 , 𝑣𝑗 , 𝑡𝑘 >

|where 𝑢𝑖 ∈ 𝑈, 𝑣𝑗 ∈ Σ and 𝑡𝑘 is a minute-level timestamp}. To infer students’ social integration, we generate 

implicit networks from smart card transactions. Then we define the metrics on our networks to reflect 
students’ dynamically changing relationships. 

Implicit Network of Students 

Although smart card data does not contain explicit information about student relationships, an observation 
is that some pairs of students make transactions at the same place and time with a considerable frequency. 
If we reason that students making purchase together may have a latent relationship, then based on this 
assumption, we can define directed implicit networks in which every node is a student and the edges 
connecting two nodes represent their latent relationship. A directed weighted edge indicates how important 
the successor is to the predecessor in terms of socialization. This latent relationship is asymmetric. For 
instance, suppose student B has only one friend, student A, on campus (A is the only student connected 
with B in a network), but A can have many friends (i.e., edges to other students in the network). 

Considering student social relationships may change over time, we generate networks on a biweekly basis. 
After removing weekends and holidays (when few transactions happen on campus), we generated 8 
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networks for each semester. Let the networks be denoted as 𝐷𝑝(𝑉𝑝 , 𝐸𝑝) for p = 1 to 16 where 𝑉𝑝 is the set of 

nodes (𝑉𝑝 ⊂ 𝑈) and 𝐸𝑝 is the set of edges in 𝐷𝑝. We then generate network 𝐷𝑝 by adding nodes to 𝑉𝑝 and 

adding edges to 𝐸𝑝. During the two-week time window of 𝐷𝑝, if two students  𝑢𝑖 , 𝑢𝑗 ∈ 𝑈 made transactions 

at the same location within a time interval 𝜏 at least 𝜋 times, we connect them together and add both nodes 
 𝑢𝑖 , 𝑢𝑗  to 𝑉𝑝 and directed edges 𝑒𝑖→𝑗 and 𝑒𝑗→𝑖 to 𝐸𝑝. Then the weight of directed edge 𝑒𝑖→𝑗  representing the 

strength of latent relationship is defined as: 

𝑤𝑖→𝑗 =
𝐶𝑖𝑗

𝑝

 ∑ 𝐶𝑖ℎ
𝑝ℎ∈𝑁

𝑖
𝑝

ℎ

  

where 𝑁𝑖
𝑝
is the set of neighbors of 𝑢𝑖  in 𝐷𝑝 and 𝐶𝑖𝑗

𝑝
 is the number of times 𝑢𝑖 , 𝑢𝑗 made transactions together 

during the two-week time window of 𝐷𝑝. 

The complexity of each implicit network is controlled by 𝜏 and 𝜋. Decreasing the value of 𝜏 or increasing the 
value of 𝜋 can reduce the bias caused by randomness but the tradeoff is that the network will become sparse. 
A sparse network might not be able to accurately infer student peer relationships. In this study we set 𝜏 as 
1 minute which was the most restrictive value possible with the transaction granularity available to us. Then 
we examined the decreasing rate of the number of edges by increasing the value of 𝜋. All the networks 
showed a stable decreasing rate when 𝜋 is larger than 3. Taking one of the networks as an example, Figure 
1 (a) indicates an ‘elbow’ point at 𝜋=3. On average, we observe a 96% drop rate when 𝜋 is increased from 1 
to 2 and a 43% drop rate when 𝜋  is increased from 3 to 4. This suggests that a number of random 
relationships are removed when 𝜋 is larger than 1. Hence, we set 𝜋 to 3 to preserve a balance between 
removing bias and network complexity. Under this parameter configuration, the 16 networks we generated 
have 2,200 connected nodes and 5,200 edges on average. The largest network is from the middle of the first 
semester and contains 2,400 nodes and 5,800 edges. The last (end of semester) network is the smallest one 
with 1,700 nodes and 3,100 edges. In order to further validate our networks, we compared the common 
location ratio (CLR) among students in the network with CLR among students not in the network, where 

the CLR of two students is defined as: 𝐶𝐿𝑅 =
|𝐿𝑖∩𝐿𝑗|

|𝐿𝑖∪𝐿𝑗|
 where 𝐿𝑖 and 𝐿𝑗 are the sets of locations that have been 

visited by  𝑢𝑖  and  𝑢𝑗  respectively. Figure 1 (b) shows that students in the network have more common 

locations than those not in the network. 

 

Figure 1. (a) Selecting π; (b) Common Location Ratio  

Network Features 

The purpose of generating networks from smart card transactions is to infer student social integration. We 
are interested in metrics that can approximate questions like “How many friends does a student have?”, 
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“What is the social activity level of a student?” or “Does a student have consistent interactions on campus?” 
To help us obtain these kinds of information from the networks, we defined 8 network features which can 
be grouped into 3 categories: A) node appearance metrics; B) degree metrics; C) edge metrics. All these 
features are measured for each individual on all the networks generated during a period of interest which 
can be an academic year, an entire semester or consecutive months during a semester. Assume the period 

of interest contains a set of networks {𝐷𝑗(𝑉𝑗 , 𝐸𝑗)| where 𝑚 ≤ 𝑗 ≤ 𝑛}, we provide formal definitions of network 

features in the remainder of this section. 

A. Node appearance metrics 

Recall that the networks are generated every two weeks, and the more often a student (node) appears in 
these networks, the higher his or her inferred social activity level. We define two metrics, i.e., the number 
of appearance periods (NAP) and the longest consecutive number of appearance periods (LCAP). For every 
student 𝑢𝑖 ∈ 𝑈, we compute NAP and LCAP as: 

𝑁𝐴𝑃( 𝑢𝑖) = ∑ 𝐴𝑖𝑗
𝑛
𝑗=𝑚   

𝐿𝐶𝐴𝑃( 𝑢𝑖) = (𝑞 − 𝑝 + 1) conditioned on 𝐴𝑟𝑔𝑚𝑎𝑥𝑝,𝑞(∏ 𝐴𝑖𝑗
𝑞
𝑗=𝑝 ∑ 𝐴𝑖𝑗

𝑞
𝑗=𝑝 )  

where 𝐴𝑖𝑗 = 1 if 𝑢𝑖 ∈ 𝑉𝑗 , otherwise 𝐴𝑖𝑗 = 0 and 𝑚 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛. We use NAP to capture the level of social 

activity on average and LCAP to measure the consistency of social activity. 

B. Degree metrics 

The degrees of a node in the network indicate the size of a student’s social circle which can be stable, growing 
or shrinking during the interest period. These different trends are useful for inferring students’ social 
integration. Given a node and its degrees in each of the period networks, we measure three degree related 
features: (1) average degree (AD); (2) standard deviation of degree (SDD); (3) the ratio of average degree 
(RAD) between the second half of networks (corresponding to first half of the semester) and the first half 
of networks. Similarly, for each student 𝑢𝑖 ∈ 𝑈, we compute AD, SDD and RAD as: 

𝐴𝐷( 𝑢𝑖) =
1

𝑛−𝑚+1
∑ 𝑑𝑖𝑗

𝑛
𝑗=𝑚   

𝑆𝐷𝐷( 𝑢𝑖) = √
1

𝑛−𝑚+1
∑ (𝑑𝑖𝑗 − 𝐴𝐷( 𝑢𝑖))2𝑛

𝑗=𝑚   

𝑅𝐴𝐷( 𝑢𝑖) = 
(⌊

𝑛−𝑚+1

2
⌋−𝑚+1) ∑ 𝑑𝑖𝑗

𝑛

𝑗=⌊
𝑛−𝑚+1

2
⌋+1

(𝑛−⌊
𝑛−𝑚+1

2
⌋+1) ∑ 𝑑𝑖𝑗

⌊
𝑛−𝑚+1

2
⌋

𝑗=𝑚

  

where 𝑑𝑖𝑗  is the out-degree of  𝑢𝑖 in 𝐷𝑗 . According to the definition, AD measures the size of a student’s social 

circle, SDD measures how stable it is. We believe drop-out students may have a shrinking social circle, and 
we use RAD to capture this pattern. 

C. Edge metrics 

As discussed above, edges in our implicit network reflect a latent relationship between students. The weight, 
𝑤𝑖→𝑗 of an outgoing edge indicates how important the successor is to the predecessor. The maximum weight 

of 1 indicates that the predecessor’s only transactions are with the successor (or alone). On the contrary, a 
relatively low outgoing weight suggests that although there is a latent relationship between predecessor and 
successor, the predecessor makes a significant number of transactions with students other than the 
successor. We are interested in measuring if a student in the network has strongly connected peers. 
Formally, let the edge 𝑒𝑖→𝑗  connecting 𝑢𝑖 and 𝑢𝑗 be a strong connection if it meets two criteria: (1) 𝑤𝑖→𝑗is 

larger than 0.3; (2)   𝑢𝑖  and  𝑢𝑗  made at least 5 transactions together during the biweekly period. The 

parameters to define a strong connection are heuristically determined, where 0.3 is the average weight in 
networks and ‘at least 5 transactions’ requires a pair of students to purchase together every two weekdays 
on average during the biweekly time window. 
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Based on this definition of strong connection, we further designed three edge related metrics: (1) proportion 
of strong out-going edges (PSOE); (2) Among strong out-going edges, the probability that the paired in-
coming edge is also strong (PSIE); (3) The probability of an edge in the first network 𝐷𝑛  being a ‘loyal’ edge 
(PLE), where we define an edge as ‘loyal’ if the two nodes are continuously connected in all networks 
from 𝐷𝑛  to 𝐷𝑚. We can compute the three metrics using the following equations: 

𝑃𝑆𝑂𝐸( 𝑢𝑖) =
1

𝑛−𝑚+1
∑

∑ 𝑆𝑖𝑘
𝑗𝑘∈𝑁

𝑖
𝑗

𝑘

|𝑁
𝑖 
𝑗

|

𝑛
𝑗=𝑚   
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where 𝑆𝑖𝑘
𝑗

= 1  if 𝑤𝑖→𝑘 > 0.3  and 𝐶𝑖𝑘
𝑗

> 5 , otherwise 𝑆𝑖𝑘
𝑗

= 0 ;  𝑃𝑖𝑘
𝑗

= 1  if 𝑤𝑖→𝑘 > 0.3 , 𝑤𝑘→𝑖 > 0.3and 𝐶𝑖𝑘
𝑗

> 5 , 

otherwise 𝑃𝑖𝑘
𝑗

= 0; 𝐿𝑖𝑘
𝑚 = 1  if  𝑒𝑖→𝑘 ∈ 𝐸𝑥  for ∀𝑥;  𝑚 < 𝑥 ≤ n , otherwise  𝐿𝑖𝑘

𝑚 = 0. Recall that 𝑁𝑖 
𝑗
is the set of 

neighbors of 𝑢𝑖  in 𝐷𝑗 , 𝐶𝑖𝑘
𝑗

 is the number of times 𝑢𝑖, 𝑢𝑘 made transactions together during the time window 

of 𝐷𝑗 , 𝑤𝑖→𝑘 is the weight of edge 𝑒𝑖→𝑘, and 𝐸𝑥 is the edge set of 𝐷𝑥. 

To evaluate how these implicit networks can help us identify at-risk students, we used the 8 networks from 
the Fall semester and calculated the network metrics for continuing students and drop-out students 
separately. In addition, we segmented students in each class based on their Fall GPA. Average statistics of 
network metrics for each sub-group are shown in Table 2. In general, continuing students have higher social 
activity levels than drop-out students. In particular, drop-out students with GPA above 3.0 are least sociable 
compared with other groups of students, considering they have lowest NAP, LCAP, AD and PLE. Our 
network metrics provide a new perspective for the universities to identify these academically qualified 
students whom they mostly wanted to retain. To reinforce our findings from network metrics, we also 
calculate the proportion of social smart card transactions among all transactions. The result indicates that 
students in the continuing group have an average of 16.17% social transactions. The same statistic of 
students in the drop-out group is only 0.7% (two sample t-test, p < 0.001). A social transaction is a 
transaction made by a student with a neighbor in the implicit networks. Recall that a student is connected 
to another student if he made at least 𝜋 transactions within a time window 𝜏 during a two-week period. 

Table 2. Average Network Metrics 

 GPA below 2.0 GPA between 2.0 to 3.0 GPA above 3.0 

+ - t-test + - t-test + - t-test 
NAP 0.49 2.33 9.30*** 0.60 2.33 6.58*** 0.23 1.87 6.52*** 

LCAP 0.58 2.69 9.90*** 0.67 2.71 7.26*** 0.28 2.174 7.04*** 

AD 0.25 1.06 4.96*** 0.26 0.84 3.66*** 0.08 0.58 3.97*** 

SDD 0.23 0.90 4.42*** 0.24 0.67 3.23** 0.09 0.43 3.36*** 

RAD 0.08 0.41 5.58*** 0.13 0.42 4.03*** 0.03 0.34 4.86*** 

PSOE 0.01 0.07 5.86*** 0.01 0.08 5.00*** 0.02 0.07 3.92*** 

PSIE 0.03 0.14 5.53*** 0.02 0.15 4.83*** 0.03 0.14 3.80*** 

PLE 0.01 0.02 2.00* 0 0.04 2.37* 0 0.09 2.35* 

* significant at p < 0.05; ** significant at p < 0.005; *** significant at p < 0.001 

‘+’ = drop-out students group; ‘-’ = continuing student group 
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Pattern Extraction from Spatial (Location) Sequences 

As discussed earlier, smart card transactions are represented as a set of tuples T = {< 𝑢𝑖 , 𝑣𝑗 , 𝑡𝑘 >

|where 𝑢𝑖 ∈ 𝑈, 𝑣𝑗 ∈ Σ and 𝑡𝑘 is a timestamp} in which the location set Σ represents various types of services 

provided on campus. Each smart card transaction is then an instance of a student interacting with the 
campus environment. Given the research finding that better integration into campus life leads to higher 
chance of retention, location information in the transaction data provides a unique source to extract 
patterns for retention prediction. For example, we can use the volume and frequency of smart card usage 
to infer students’ level of campus integration (in terms of use of campus facilities). Furthermore, if we 
extract locations from these tuples and order them in a sequence based on their timestamp, we can obtain 
a trajectory of students’ activities on campus. Previous research (Wang and Ram 2015) has found that these 
location sequences exhibit spatial and temporal patterns that can be used to predict students’ future 
locations. Such patterns are formed by different aspects of campus life such as class schedules, community 
activities and living conditions.  

As illustrated in Figure 2, consider a student who has a morning class on a specific weekday, so she buys a 
cup of coffee near the classroom location before going to the lecture. At noon, she goes to the food court for 
lunch. In the evening, she attends a study group in the library and uses the printer there. Thereafter she 
returns to the dorm and buys a snack from the vending machine. If this is a regular routine of this student, 
we can observe a recurrence sequence of locations as ‘coffee shop, restaurant, library printer, dorm vending 
machine’ in her historical records. A repeated pattern detected from location sequences can reveal an 
individual’s daily routine on campus. 

Returning to our original question, the purpose of investigating location sequences is to infer students’ 
campus integration. In this study, we assume that students who have a higher volume of smart card 
transactions and more predictable purchasing behaviors are better integrated into campus life. Next, we 
show the necessity of location clustering to make the sequential learning more reliable. Thereafter we 
introduce our metrics for measuring students’ level of regularity in their purchasing behavior. 

 

Figure 2. Campus life Routine 

 

Location Clustering 

As per our assumption, frequent sequential patterns can reveal campus life routines. However, the same 
routine may be exhibited as different patterns. Taking Figure 2 as an example, if the student chooses one 
restaurant from a set of three every time she goes to the food court, we may observe three frequent patterns 
that are the same except for the restaurant’s name. Similarly, based on the example, using either the vending 
machine or a printer may reveal the fact that the student is in a dorm. It is useful to combine these patterns 
into one, because we can add up their frequencies to get a single pattern with higher frequency which can 
strengthen our assumption that it is formed by a regular routine. 
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Our solution for combing these patterns is to cluster locations. Locations can be grouped together based on 
their spatial proximity and social similarities. We define locations as socially similar if they are frequently 
visited by the same students. To be more specific, we created an undirected graph where the nodes are 
unique locations. Formally, let 𝐺(Σ, 𝐸) be the location graph where location set Σ becomes the set of vertices. 
For every location  𝑙𝑖 ∈ Σ, we represent it as a vector  χ𝑖 = [𝑐1, 𝑐2, … 𝑐|𝑈|] where 𝑐𝑘  is the number of times 

student 𝑢𝑘 visited 𝑙𝑖. Therefore the dimension of χ𝑖 is equal to the cardinality of the sampled student set 𝑈. 
With this representation, we define the weight between connected nodes as: 

𝑤(𝑖, 𝑗) =
χ𝑖 ⋅ χ𝑗

||χ𝑗|| ||χ𝑗||
 if distance(𝑙𝑖 , 𝑙𝑗)  ≤  𝛿, otherwise 𝑤(𝑖, 𝑗) = 0 

where distance(𝑙𝑖 , 𝑙𝑗) is measured by computing the geographical distance between two location addresses 

and 𝛿 is the parameter we used to consider the spatial closeness between locations. In this study, we set 𝛿 
as 50 meters (within the size of a typical building). The equation indicates that, if two locations are far from 
each other, they will be disconnected in the graph. If they are close, we connect them and assign the edge 
weight as the cosine similarity between their vector representations. After connecting nodes and assigning 
weights, we used the Louvain method (Blondel et al. 2008), a multi-level aggregation algorithm for 
modularity optimization to cluster nodes in the graph. This method returned 78 clusters from a total of 271 
locations. Each cluster is represented as a unique ASCII code (it’s “ID”). Then we replaced the location’s 
name in the original sequence with the cluster ID they were assigned to. We call this new form of sequences 
as the “area sequences”. 

Metrics for Campus Integration 

Based on area sequences, we define two metrics to measure students’ regularity of daily life on campus. 
First, we used our previous (Wang and Ram 2015) location prediction model to measure how predictable a 
student’s next location is. This model is trained for each individual based on historical records. After 
training, the prediction is made on a daily basis. Given a sequence of visited areas on a certain day (can be 
none) and a future timestamp on the same day, the model will predict an area that the student most likely 
to visit at that time. While we don’t discuss the details of the model implementation in this section, we 
introduce how we use it to measure how regular or predictable a student’s routine is. 

Given a fixed time range, we segment each student’s transitions into 𝑛 stacked time chunks with the same 

time increment (e.g., week or month). Then we make  𝑛  predictions for every student. Let  𝑇𝑗
𝑖  be the 

transactions made by student 𝑢𝑖 in chunk 𝑗, since time chunks are stacked, 𝑇𝑗−1
𝑖  is contained in 𝑇𝑗

𝑖. In the 𝑗𝑡ℎ 

prediction, we use 𝑇𝑗−1
𝑖  to train the model and randomly pick up one transaction in 𝑇𝑗

𝑖 but not in 𝑇𝑗−1
𝑖  as a 

test case. Areas visited before the test case (if they exist) and the timestamp of the test case are model inputs. 
The area where this test transaction happens will be used to compare with the model output. For each 
student, the regularity level is then calculated as the percentage of accurate prediction among 𝑛 tests. 

Figure 3 shows a result of an experiment in which we used transactions in the Fall semester and segmented 
them into 5 time chunks. We compared the distribution of regularity level between continuing students and 
students who dropped out after first semester. The lowest level of “0” indicates that behavior for those 
students was not predicable. The continuing group has 29.77% of its population at this level and the drop-
out group has 46.52% at this level which is 17% higher (i.e., more regular or predictable). For all the other 
regularity levels, the continuing group has a larger population proportion than the drop-out group. Further, 
the average prediction accuracy for the drop-out group is 30.89% and is 40.60% for the continuing group. 
These statistics indicate that continuing students are more predictable than drop-out students. 
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Figure 3 Regularity of Daily Activities 

 

Our second metric is designed from a weekday activity perspective, since a lot of campus activities are 
schedule-based on weekdays, e.g., classes and community activities. If students are actively engaged in 
campus activities, their sequences of areas should be more likely to exhibit same patterns among 
corresponding weekdays. In contrast, using the same example in Figure 2, if a student stops attending the 
morning class or quits study groups, then we might be able to detect this by identifying a loss of pattern on 
that weekday. Based on this motivation, we define this new metric as the sequences of similarities between 
the same weekdays. For sequence comparison, we used the Ratcliff-Obershelp algorithm (Ratcliff and 
Metzener 1988) which matches characters by looking at the longest common subsequence and recursively 
compares unmatched parts in a same manner. The longest common subsequence can be interpreted as 
repetitive visit patterns. The reason for this choice is that it computes the ratio of matching characters to 
the total number of characters in the two sequences, so we can have a fuzzy detection. In this study, we only 
consider school days so holidays and weekends are ignored. Formally, we compute a score of weekday 
activity similarity (WAC) for each student during an 𝑛-week period as: 

𝑊𝐴𝐶(𝑢𝑖) =
1

5
∑

∑ 𝑠𝑖𝑚(𝑆𝑖𝑘
𝑗

, 𝑆𝑖𝑘
𝑗+1

)𝑛−1
𝑗=1

𝑛 − 1

5

𝑘=1

 

where 𝑆𝑖𝑘
𝑗

the sequence of areas of weekday 𝑘 in week 𝑗 of student 𝑢𝑖 and Monday to Friday is represented 

using 1 to 5. Using the entire dataset, the WAC of drop-out students is 37.01% and the WAC of continuing 
students is 41.96% (statistically significant, p < 0.001, using a two-sample t-test). 

Imbalanced Classification 

The problem of imbalanced binary data is quite common in the real-world and it is critical for classification 
performance for two reasons: 1) the minority class is usually misclassified without a proper data-balancing 
technique; 2) misclassifying a minority instance can cost more than misclassifying a majority instance (e.g., 
patient at-risk for a disease or a student at-risk for dropping out). In our data, about 20% of freshmen drop 
out after the first year and this ratio is reasonably consistent across many higher educational institutions 
(Tinto 2006). Of the 20%, about 7.4% drop out after the first semester itself (the focus of our study). 
Although imbalanced learning has long been a popular topic among machine learning scientists, advanced 
algorithms, especially recent state-of-the-art findings have not been utilized to help student retention 
studies. Therefore, we modified an advanced balancing technique for our classification problem. 
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Data balancing techniques can conceptually be categorized into those that reduce the majority sample size 
(under-sampling) or ones that increase minority sample size (over-sampling). Sophisticated solutions 
involve using heuristics like the similarities between samples to segment majority samples or create 
artificial minority samples. A strong method for the latter option is called synthetic minority oversampling 
technique (SMOTE). These heuristic methods are not perfect. For example, SMOTE is criticized for over-
generalization as artificially created minority samples may not be helpful in terms of distinguishing them 
from majority samples (He and Garcia 2009). 

A recent study on imbalanced classification proposed a novel and efficient solution, called SplitBal (Sun et 
al. 2015). It balances the data by randomly splitting the majority class into pieces so that each piece has 
roughly same size as the minority class. Unlike SMOTE which creates one balanced dataset, splitting creates 
several balanced datasets so that it can use ensemble-learning to improve performance. In the ensemble, 
each base classifier and the weight is the inverse of the distance between a test instance and the training 
data used by each ensemble. The heuristic behind this weighting is that if the test instance is similar to one 
of the split sets, the output from the ensemble classifier trained on that set is more reliable. 

The original research introducing the SplitBal method compared several rule-based ensemble strategies 
such as majority voting and selecting a single best. However, in our study, each ensemble classifier has a 
relatively small training set. To improve the robustness of ensemble learning, we added a meta-classifier as 
a stacking layer to learn the outputs from ensembles. The idea is that all training data is initially classified 
by all base classifiers, then the output of each base classifier is subsequently used as an input instance to 
train the meta-classifier. 

Experimental Evaluation 

In this section, we describe our experiments to evaluate our proposed model from the following aspects: 
1) the contribution of our network and spatial sequence features in improving prediction performance; 
2) the necessity of a data balancing technique; 3) the ability of our model to proactively identify students 
who drop-out by the start of the second semester. Before we delve into the results, we first briefly introduce 
our experimental settings. 

Experiment Settings 

Previous studies have reported that Support Vector Machine (SVM) (Thammasiri et al. 2014), Decision Tree 
(C4.5) (Lin 2012; Yadav and Pal 2012) and Naïve Bayesian (NB) (Zhang et al. 2010) are effective classifiers 
for predicting student retention. In this evaluation, we compared all the above classifier algorithms plus 
Random Forest (RF). The four algorithms were tested with different combination of features and data 
balancing techniques. All these tests were evaluated using 10-fold cross validation. Overall accuracy and 
area under the Receiver Operating Characteristic curve (AUROC) are used to measure the overall 
performance. Given the unbalanced nature of classes, we consider AUROC a better indicator than overall 
accuracy, as accuracy can be dominated by the negative class. As a binary classification problem, we also 
measured three evaluation metrics: precision, recall and F2-score for both positive and negative classes. 
Considering the purpose of this prediction model is to identify students at-risk for timely intervention, we 
define the drop-out students as the positive class and retained students as negative class. From the 
university perspective, classifier performance on the class of interest (drop-out / positive class) is more 
important. For the positive class, its precision and recall reflect the capability of the model to avoid Type I 
(providing intervention to a student not at risk of dropping out) and Type II errors (not identifying a student 
at risk of dropping-out). In the context of student retention, we argue that the cost of Type II errors for a 
university is higher than that of Type I errors. Therefore, we emphasize recall over precision and for the 
same reason, we calculate F2 instead of F1. To reduce the potential cost due to low positive class precision, 
we suggest that the results of our model can be used for preliminary intervention via email or telephone call 
instead of costly in-person intervention. 

To evaluate the contribution of network and spatial sequences features, we define four feature groups, 
denoted as: 1) ISD only [I] 2) ISD and network features [IN] 3) ISD and spatial sequences features [IS] 
4) ISD, network features and spatial sequences features [INS]. To demonstrate the necessity of data 
balancing, given a data mining algorithm and a feature group, we tested its prediction performance with 
three settings: 1) no data balancing technique applied [NOB]; 2) SMOTE; 3) SplitBal with Stacking 
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Ensemble [SSE]. Therefore, we tested each of the 4 data mining algorithms with 9 configurations (3 feature 
groups × 3 balancing options). Each model is labeled using an “Algorithm Features Balancing Technique” 
format. For example, “SVM_INS_NOB” represents a SVM model using all features with no balancing 
technique applied. 

Our model proactively predicts retention into the Spring semester using the first 12 weeks of smart card 
data (4 weeks before the end of the Fall semester). During this period, about 720,000 transactions are made 
by 6,500 freshmen. Variables generated after the 12th week of the Fall semester like Fall GPA, Spring student 
loan and Spring financial aid, network and spatial data were excluded, even though they would improve the 
performance of the model.  

Experiment Results and Discussion 

Given the settings in the previous section, comprehensive experimental results are described for 4 
algorithms with 9 configurations on the 4 evaluation metrics over two classes. The results are shown in 
Table 3 where Random Forest is the best among all the four not only on the F2-score, but also on all the 
other metrics except negative precision and positive recall. The results also indicate Naïve Bayesian is not 
as competitive as the other three. Among the four, SVM provides the best positive recall of 78.1% with 18.5% 
positive precision but Random Forest is more balanced with a positive recall of 73.8% and a positive 
precision of 21.2%. Their performance on  the negative class are much better with over 97% precision and 
70% recall rate so that their overall accuracy is  over 73%. This indicates that our models are not over-fitting 
aggressively to predict positive samples. 

Regarding the contribution of our new features, all the algorithms perform better with the extended feature 
set. Three algorithms (SVM, Random Forest, and C4.5) perform best with a full feature group of ISD, 
network features and spatial sequences features while Naïve Bayesian performs best with ISD plus network 
features. The result of the best data balancing technique configuration is consistent: all four gain the best 
performance using the SplitBal with Stacking Ensemble solution. 

Table 3. Results of Best Configuration based on F2-score 
Model Accuracy AUROC Precision Recall F2-score 

+ - + - + - 
SVM_ISN_SSE 0.732 0.785 0.185 0.977 0.781 0.723 0.475 0.767 

RF_ISN_SSE 0.778 0.821 0.212 0.974 0.738 0.781 0.493 0.813 

C4.5_ISN_SSE 0.712 0.773 0.163 0.969 0.706 0.712 0.424 0.752 

NB_ISN_SSE 0.571 0.698 0.120 0.966 0.752 0.557 0.366 0.608 

 

We demonstrate the effectiveness of our new feature and data balancing techniques by examining the 
results of all configurations of Random Forest. As illustrated in Table 4, without data balancing, the positive 
recall is extremely low (2.3% for I_NOB), which confirms that the minority class will be ignored without 
proper balancing technique. In particular, SSE is more effective than SMOTE in increasing minority recall 
rate. If we fix the data balancing configuration, and compare performance between feature groups, our 
network features provide obvious performance improvements for the positive class. For instance, if we 
compare I_NOB with IN_NOB, F2-score is increased from 0.o27 to 0.135. Similarly, F2-score is increased 
from 0.302 to 0.475 if we compare I_SSE with IN_SSE. The improvements from spatial sequences features 
are less significant than with network features. Under the best balancing settings, F2-score is increased from 
0.302 to 0.333 if we compare I_SSE with IS_SSE. Similar gains are observed for the positive group. Recall 
and AUROC performance increases slightly if we add only spatial sequence features. Using all three feature 
groups, we obtain the best performance in terms of AUROC, positive recall and F2-score. 

Lastly, we compare the performance between first term retention and first year retention predictions. As 
mentioned earlier, 6 networks (first 12 weeks of data) are used in first term retention prediction. Similarly, 
first year retention prediction is based on 14 networks (8 networks from Fall semester and 6 from Spring 
semester). In Table 5, we pick the best configuration for each task using Random Forest with a full feature 
group and SSE. The difference is that we added ‘Fall GPA’, ‘Spring student loan’ and ‘Sprint qualified tuition 
free’ to ISD. Adding these features almost double the precision of positive class identification (21.2% to 
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40%). This confirms the power of GPA in identifying students as risk. However the positive recall rate and 
F2-score are slightly better in the term prediction. We can interpret the result as: drop-out students are 
highly likely to have low social and campus integration. Nevertheless, a student with low social or campus 
integration may not necessarily drop-out. However, if we know this student also has a low academic 
performance, then the likelihood of dropping-out increased significantly. This finding indicates that our 
new features (network and spatial sequences) make the most contribution to improving recall and F2-score. 
An academic performance indicator that is available before the end of first semester can potentially improve 
our model precision for positive class. 

Table 4. Random Forest Performance 

Configuration Accuracy AUROC Precision Recall F2-score 
+ - + - + - 

I_NOB 0.912 0.57 0.087 0.927 0.023 0.984 0.027 0.972 

I_SMOTE 0.912 0.565 0.170 0.929 0.046 0.982 0.054 0.971 

I_SSE 0.680 0.643 0.115 0.947 0.506 0.694 0.302 0.733 

IN_NOB 0.920 0.727 0.365 0.934 0.117 0.984 0.135 0.973 

IN_SMOTE 0.926 0.710 0.464 0.933 0.106 0.990 0.126 0.978 

IN_SSE 0.785 0.804 0.210 0.971 0.696 0.792 0.475 0.822 

IS_NOB 0.918 0.574 0.209 0.929 0.038 0.975 0.045 0.987 

IS_SMOTE 0.922 0.660 0.355 0.931 0.077 0.977 0.091 0.989 

IS_SSE 0.694 0.686 0.121 0.962 0.595 0.701 0.333 0.741 

INS_NOB 0.923 0.742 0.490 0.938 0.125 0.989 0.147 0.978 

INS_SMOTE 0.929 0.728 0.578 0.936 0.142 0.992 0.167 0.980 

INS_SSE 0.778 0.821 0.212 0.974 0.738 0.781 0.493 0.813 

 

 

Table 5. Term vs. Year Prediction 

Task Accuracy AUROC Precision Recall F2-score 
+ - + - + - 

Term 0.778 0.821 0.212 0.974 0.738 0.781 0.493 0.813 

Year 0.72 0.773 0.4 0.909 0.721 0.72 0.622 0.751 

 

Conclusion and Future Work 

In this paper, we present a novel big data approach to predict student retention. Prior work focused on a 
behavioral approach to gauge student integration or used data-driven learning techniques on readily 
available ISDs. Both approaches have their advantages and limitations. In our approach, we leverage the 
availability of ISDs and supplement it with student integration features to facilitate higher quality and 
timely predictions. The most novel aspect of our model is that it uses smart card transactions to extract 
implicit interactions and spatial sequences on which we apply network analysis and sequence learning 
methods to extract features to infer students’ social and campus integration. We design network metrics to 
measure students’ campus social integration using implicit networks and examine the evolution of these 
networks over time. Through modeling students’ daily routine as spatial sequences, we are able to capture 
the regularity of their activity levels and use it to infer how well they are integrated into the university 
environment. These features fill gaps in previous research that solely consider ISDs to predict student 
retention. Our evaluations show that the new features are effective in significantly improving precision and 
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recall rates in identifying drop-out students. We also address the imbalanced-class learning issues for 
student retention prediction where the students at-risk are the minority class. Our experiments which 
compare multiple techniques with and without balancing demonstrate the necessity of data balancing. The 
balancing technique we applied in this study can be a competitive choice for researchers to consider. 
Furthermore, our approach enables us to make proactive predictions before knowing a student’s first term 
GPA. Most of the previous studies consider the freshmen retention problem as seen at the end of the first 
year, but our method provides its unique value in practice by identifying at-risk students early. This allows 
the university administration to identify at-risk students and implement interventions within the first 
semester itself. 

The experimental results confirm the importance of social and campus integration in student retention. 
Given the high recall rate of our proactive prediction, it provides actionable decision support for university 
administration to perform student interventions. The limitations of our current work is that in our efforts 
to improve the recall rate (i.e., minimize missing at-risk students) a trade-off was made that identifies some 
students at risk of dropping out (who in fact did not drop out). This may increase the cost of interventions 
(as the target population is larger). Potential future work directions are: 1) Test and validate our prediction 
model on multiple years of student data; 2) Refine the imbalanced classification algorithm. So far, we have 
not looked deep into the classification algorithms and corresponding data balancing techniques to 
specifically modify them for the student retention problem. Dedicated research on this topic will be helpful 
to improve prediction performances. 3) Include additional academic and student integration data into the 
model, e.g., currently we do not have within-semester student performance for courses they are enrolled in 
during the first semester (e.g., on assignments or mid-semester tests) as these are not typically available in 
an ISD. Further, the network analysis and sequence learning methods we used to extract features from 
smart card usage can also be used with other kinds of data involving students’ interactions and spatial 
information. Potential resources from which student data can be gleaned include course management 
systems, campus recreation facility utilization, and Wi-Fi and LAN usage data. Together, these can supply 
additional academic features and allow us to create networks with different semantics which provide more 
comprehensive aspects about students’ campus life. 
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