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Abstract: 

Mobile applications (also known as “apps”) have rapidly grown into a multibillion-dollar industry. Because they are 
available through devices that are “always on” and often with the user, users often adopt mobile apps “on the fly” as 
they need them. As a result, users often base their adoption and disclosure decisions only on the information provided 
through the mobile app delivery platform (e.g., the Apple App Store™ or Google Play™). The fact that using a mobile 
app often requires one to disclose an unprecedented combination of personal information (e.g., location data, 
preferences, contacts, calendars, browsing history, music library) means that one makes a complex risk/benefit 
tradeoff decision based on only the small amount of information that the mobile app delivery platform provides—and 
all in a short period of time. Hence, this process is much shorter and much riskier than traditional software adoption. 
Through two experiments involving 1,588 mobile app users, we manipulated three primary sources of information 
provided by a platform (app quality ratings, network size, and privacy assurances) to understand their effect on 
perceptions of privacy risks and benefits and, in turn, how they influence consumer adoption intentions and 
willingness to pay (WTP). We found that network size influenced not only perceived benefits but also the perceived 
risks of apps in the absence of perfect information. In addition, we found that integrating a third party privacy 
assurance system into the app platform had a significant influence on app adoption and information disclosure. We 
also found that a larger network size reduces LBS privacy risk perceptions, which confirms our information cascade 
hypothesis. We discuss the implications of these findings for research and practice. 

Keywords: Mobile Applications, Location-based Services, Network Effects, Privacy Assurance, Electronic 
Commerce, Information Cascades, Privacy Seals, Privacy Calculus, Information Privacy 
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1 Introduction 
Mobile applications (“apps”) have become pervasive (Gartner, 2015) and have changed our lives in many 
ways. Each mobile platform allows independent developers to produce apps that take advantage of 
mobile devices’ many technological capabilities, such as Internet access, music playback, email, 
calendars, contacts, games, cameras, and shopping. Perhaps most importantly, many apps derive part of 
their value from smartphones’ location-based service (LBS) capabilities, which allow for location-based 
personalization. Location data add a new facet to the risk–benefit tradeoff users make when deciding 
whether or not to disclose sensitive information—particularly when combined with other forms of personal 
information on a mobile device (Aloudat & Michael, 2011; Xu, 2010; Xu, Teo, Tan, & Agarwal, 2010). A 
study of 30 randomly selected, popular LBS apps indicates that 15 of these apps sent their users’ location 
data to remote advertisement servers (Enck et al., 2014). Three of these 15 apps sent data following 
legitimate requests from the user, and the other 12 apps sent data to servers even though they did not 
display ads. More recently, a field study revealed that the average consumer’s location data is collected 
without their knowledge 5,398 times every 14 days (Almuhimedi et al., 2015). In addition, both Apple iOS 
and Google Android mobile operating systems record and transmit location data without the knowledge or 
consent of device owners (Angwin & Valentino-Devries, 2011). 

Clearly, substantial privacy risk is with associated mobile apps and their use. However, this risk does not 
appear to be slowing users from adopting apps and disclosing their personal information when doing so. 
Since mobile apps require a relatively small (or no) financial outlay and can be downloaded immediately 
when needed, users often adopt mobile apps “on the fly” without gathering external validation from 
friends, family, or other third parties. As previously unknown companies also develop most apps, users 
have little information about brand credibility to base their perceptions on. As a result, users often have 
only the limited information that the platform provider provides when making adopting and disclosure 
decisions. Mobile app delivery platforms such as the Apple App Store and Google Play offer consumers a 
standardized platform for discovering and comparing mobile apps and typically include app descriptions 
and consumer reviews. App reviews provide consumers with information about an app’s potential quality 
and network size (based on the number of reviews), while app descriptions might include some form of 
privacy assurance, though they often do not. In our study, we examine each of these factors (quality, 
network size, and privacy assurance) separately to determine its influence on intention to adopt mobile 
apps, intention to disclose information, and willingness to pay. However, integrating these constructs in a 
mobile app delivery platform presents a unique scenario in which to investigate their combined effects and 
interactions. Therefore, we phrase our research question as: 

RQ: How does the information that mobile app delivery platforms provide affect the perceived 
privacy risks, benefits, and subsequent adoption of and disclosure to mobile applications? 

The literature contains compelling but incomplete research on the intersection between mobile 
technologies, the human-computer interface, and information privacy (Alter, 2010; Zhang, Li, Scialdone, & 
Carey, 2009). Researchers have examined privacy risk perceptions associated with LBS in case studies 
(Aloudat & Michael, 2011; Barkhuus & Dey, 2003; Petrova & Wang, 2011) and in surveys (Moorthy & Vu, 
2015; Tsai, Kelley, Cranor, & Sadeh, 2010). However, to guide mobile app platform providers and 
developers, we need to design, manipulate, and test the key features and characteristics of the mobile 
interface that affect consumer behavior (e.g., information disclosure). Therefore, we build on the emerging 
research (e.g., Keith, Babb, Lowry, Furner, & Abdullat, 2015; Steinbart, Keith, & Babb, 2016; Xu, 2010; Xu 
& Gupta, 2009; Xu, Teo, Tan, & Agarwal, 2012; Xu et al., 2010) aimed at this purpose. While scholarly 
interest in issues related to privacy and location-based services in the mobile context is increasing (Dahl, 
Delaune, & Steel, 2012; Freudiger, Shokri, & Hubaux, 2012; Ghinita, 2013; Liccardi, Abdul-Rahman, & 
Chen, 2016; Papadopoulou & Pelet, 2013; Shin, Ju, Chen, & Hu, 2012; Zhou, 2012), we extend and 
contribute to the subset of this literature that concentrates on privacy calculus (Dinev & Hart, 2006) as its 
guiding theoretical lens.  

In summary, we address three key research opportunities. First, the literature has yet to address the 
degree to which network effects and the resulting information cascades influence risk perceptions and app 
valuation. Second, we examine the effectiveness of privacy seals and written promises in the app 
context—a practice that is currently, and surprisingly, unstandardized and unused in app markets despite 
their common deployment in traditional e-commerce. Third, although the literature has considered the 
standard constructs of intent to adopt/intent to disclose information, the literature has yet to consider what 
consumers are willing to pay for apps.  
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To address our research question and the three aforementioned opportunities, we performed two 
laboratory experiments involving 1,588 mobile app consumers. These experiments manipulated the three 
primary pieces of information that may mobile app delivery platforms may offer: 1) quality ratings, 2) 
network size, and 3) privacy assurances. Our results demonstrate that consumers highly value platforms 
that incorporate third party privacy assurances. In addition, the network size that the platform implied (e.g., 
based on the number of app reviews) played a pivotal role not only in the perceived benefits of a mobile 
app but also on the perceived risks—a relationship that prior network research had not yet established. 

2 Background on Mobile Privacy 
In this research, we focus on how the mobile platform environment—including indicators of quality, 
network size, and any privacy assurances—determines a consumer’s perceived privacy risks associated 
with mobile apps with a specific focus on location data, which is a special subset of information privacy 
research (Xu, 2010; Xu et al., 2010). Thus, this research builds on the foundation of location privacy in 
information privacy research. Research generally defines privacy as the desire to control others’ access to 
and use of personal information (Dinev & Hart, 2006; Kim, 2008; Lukaszewski, Stone, & Johnson, 2016; 
Slyke, Shim, Johnson, & Jiang, 2006; Xu, 2010). Hence, this information-focused form of privacy is more 
accurately termed information privacy instead of the broader term privacy (Lowry, Cao, & Everard, 2011; 
Slyke et al., 2006; Xu et al., 2010). Information privacy refers to “the claim of individuals, groups, or 
institutions to determine for themselves when, how, and to what extent information about them is 
communicated to others” (Malhotra, Kim, & Agarwal, 2004, p. 337; Pavlou, 2011). Likewise, information-
privacy concerns “refer to an individual’s subjective views of fairness within the context of information 
privacy” (Malhotra et al., 2004, p. 337; Mohamed & Ahmad, 2012).  

The privacy paradox appears to extend to LBS. Although consumers claim to care about privacy (Aloudat 
& Michael, 2011; FTC, 2009; Keith, Thompson, Hale, Lowry, & Greer, 2013; Microsoft, 2013), they appear 
to be quite willing to disclose sensitive information over the latest LBS-enabled mobile devices (Kehr, 
Kowatsch, Wentzel, & Fleisch, 2015; Keith et al., 2013; Microsoft, 2013), which indicates that we do not 
yet fully understand the tradeoff between perceived benefits and risks in the minds of consumers. This 
contention is consistent with Williams, Dell, and Venable (2010), who demonstrate that, in a social 
networking context, users who disclose information generally have a low awareness of the associated 
risks, which suggests that social networking websites themselves need to create education campaigns to 
increase understanding of these risks. 

Location privacy is the right to limit the extent to which parties record and share information regarding 
one’s current and past location data with other parties (Krumm, 2009; Samuelson, 2008). Likewise, 
location data are data that identify the geographic location of phenomena on the Earth (DeSmith, 
Goodchild, & Longley, 2007; Krumm, 2009). Location privacy concerns are not new, but innovations in 
LBS have brought location privacy issues to bear in new and compelling ways. Thus, to understand these 
issues, this research focuses on privacy concerns specifically related to the mobile app context that 
prominently includes LBS, which we term LBS privacy and LBS privacy concerns. Importantly, recent 
research shows that looking at specific information privacy concerns—such as LBS privacy concerns—is 
more effective than looking at general information privacy concerns (Xu et al., 2010) because context-
specific issues influence perceptions of risk.   

2.1 Unique Aspects of LBS Apps that Cause High Vulnerability to Privacy Risks 

Several aspects of LBS apps make their users especially vulnerable to privacy risks as compared to 
desktop applications. For one, most consumers do not understand how one can potentially track location 
data or use it against them (FTC, 2009; Tsai et al., 2010).They are also generally confused as to who has 
access to their personal and location data (Aloudat & Michael, 2011; FTC, 2009), which makes such data 
easy to exploit. 

Additionally, standards and laws on LBS privacy disclosure are nebulous and less enforceable than in 
mainstream areas of information privacy, such as in healthcare or financial records. Several countries 
have recently passed laws that require customer consent for access to location data, but such consent 
provisions tend to be generic and weak in terms of protecting consumers. After users grant generic 
consent, an app can easily combine LBS with other personal information from a mobile device, which 
greatly compounds LBS privacy risks, of which many consumers are not fully aware. With such 
integration, the user is not simply an anonymous person with a known location; instead, the user is John 
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A. Doe, phone number 123-4567, email john@doe.com, located at position x, moving at speed y, often 
travels to z[1…∞], and so on. 

A further privacy concern inherent in LBS lies with the “always on” nature of these devices (Sheng, Nah, & 
Siau, 2008) due to their using flash memory (Sheng et al., 2008). Thus, regardless of operating system-
level controls, privacy assurances, and end-user vigilance, the mere presence of LBS threatens personal 
information privacy (Seriot, 2010). The growing trend for smartphone users to “jailbreak” their devices to 
circumvent platform-provider controls and features deemed too restricting also increases the risk that 
devices will be compromised. In particular, malware is a growing problem for smartphones (Seriot, 2010). 
Malware developers can obtain a plethora of data via Google searches, YouTube viewing history, social 
media transactions, keystrokes, phone numbers, photos, email addresses—all combined with current and 
past geographic location. One can exploit this information given the openly accessible tools inherent to 
mobile platform software development kits (SDKs) and application programming interfaces (APIs). Despite 
vigilant oversight in Apple’s app-screening process, Apple’s App Store has even distributed malware 
(Seriot, 2010). Due to its greater openness, the Android Market likely has even greater exploitation issues. 

3 Theory and Hypotheses 
By assessing the effects of the information provided to consumers through mobile app platforms, this 
study also addresses three theoretical gaps in the literature. Namely, in determining intent to adopt an 
app, we consider the impact of the app’s network size—particularly how network size influences network 
effects and information cascades—on perceived risks and benefits, intent to adopt, and willingness to pay 
(WTP). We do so by building on the theory of LBS app adaptation by examining it through the theoretical 
lens of privacy calculus (Culnan, 1993; Culnan & Armstrong, 1999; Dinev & Hart, 2006; James, 
Warkentin, & Collignon, 2015; Keith et al., 2013; Krasnova, Veltri, & Günther, 2012; Xu, 2010; Xu, Dinev, 
Smith, & Hart, 2008; Zhang, Li, Luo, & Warkentin, forthcoming), where the decision to adopt LBS-enabled 
mobile apps is based on a calculated tradeoff between the perceived risks of giving up location data and 
the expected benefits of the app. We further integrate privacy calculus with theory on network effects and 
information cascades by characterizing an app’s benefits in terms of the value derived from both the app’s 
non-network-based features (i.e., consumers’ quality ratings for the app) and the positive externalities 
associated with the app’s network size.  

Based on the current app-adoption process, we manipulate the three most relevant features of the mobile 
app platform (quality ratings, institutional privacy assurance, and network size), which influence users’ 
perceptions of the risks and benefits associated with mobile apps. We also estimate users’ adoption 
intentions and WTP for a given app. As pull-based (consumer-initiated) apps are much more common 
than push-based apps and because compensation for app use is still developing, we focus solely on non-
consumer-compensated, pull-based apps—that is, apps that a user chooses to pay for. By not considering 
compensation, we omit Xu et al.’s (2010) justice consideration. Finally, consistent with Xu et al. (2010), we 
focus on initial formations of perceived benefits and risk in the decision to adopt an LBS app. 

Figure 1 summarizes the theoretical model. When consumers make decisions on whether to pay for and 
adopt apps (and, thus, agree to disclose location data), they engage in a privacy calculus that weighs the 
risks (i.e., LBS privacy risk) against the benefits (i.e., usefulness and ease of use). One calculates these 
risks and benefits primarily through the factors of privacy assurance, network size, and app quality 
information, which are presently available to users pre-adoption in the app descriptions in app stores. As 
dependent variables, we use both intention to adopt (INT) and WTP for LBS apps. We borrowed INT from 
the technology acceptance model (TAM) literature (Davis, 1989). It represents users’ behavioral intentions 
to fully appropriate an app and, by doing so, disclose their location data. Conversely, WTP is an 
economics-based variable that provides greater insight into the level of adoption intention (Kim & Son, 
2009; Raghu, Sinha, Vinze, & Burton, 2009). WTP would traditionally measure the potential benefits of the 
app or the consumer’s maximized utility subject to budget constraints. 
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Figure 1. Operationalized Theoretical Model with Testable Hypotheses 

Last, we incorporate the information privacy concerns construct, which refers to concerns about the 
opportunistic, information-related threats of using the Internet in general and not regarding specific mobile 
apps. Research has also referred to information privacy concerns to as Internet privacy risk (Dinev & Hart, 
2006). Research has shown information privacy concerns to increase beliefs about specific risks and to 
reduce the intention to disclose personal information (Dinev & Hart, 2006; Lowry et al., 2011; Posey, 
Lowry, Roberts, & Ellis, 2010). As a result, we include it as a control variable in our model but do not 
formally hypothesize its relationships. 

3.1 Privacy Calculus Theory and Hypotheses 

Privacy calculus refers to the overall tradeoff of risk and benefit beliefs that lead to a user’s intention to 
provide personal information in return for transacting with a system that provides perceived benefits 
(Dinev & Hart, 2006). If a user perceives that the benefits outweigh the risks, then the user discloses 
personal information; otherwise, the user does not. Two qualitative case studies emphasize that LBS 
users are more willing to accept privacy risks if they find the LBS to be useful (Aloudat & Michael, 2011; 
Barkhuus & Dey, 2003), and, in the context of this study, we measure users’ decision to use LBS apps 
based not only on the apps’ perceived benefits but also on the risks associated with disclosing location 
data. 

Privacy calculus is especially applicable to the app context (Xu, 2010). Although Xu’s (2010) work 
provides an important contribution to the literature, Xu’s model’s context and hypotheses do not fully 
answer our research question. That is, Xu uses monetary-based compensation to determine the risks and 
benefits of a mobile coupon app, while we focus on general non-monetary benefits that likely reflect 
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network-based benefits (Maicas, Polo, & Sese, 2009). Thus, we specifically focus on non-monetary 
benefits and associated risks (see Sections 3.2 to 3.3). 

3.2 Perceived Benefits Regarding LBS Apps 

We predict that increased perceived LBS app benefits will increase a consumer’s INT and WTP for the 
app. Xu (2010) focuses on two unique benefits of using apps: 1) their ability to use location-positioning 
features (i.e., locatability) and 2) their ability to provide personalized experiences and information (i.e., 
personalization). Yet, one can derive many more benefits from these apps. We focus on how users 
perceive and expresses apps’ benefits. We leverage both TAM and trust theory for more general 
measures of perceived usefulness (PU) and perceived ease of use (PEOU). With this approach, which is 
similar to Bouwman and Wijingaert’s (2009) one, the consumer self-defines whether an app is useful and 
easy to use. Importantly, two recent case studies on LBS show that consumers naturally think about both 
PU1 and PEOU2 (and related constructs) as core quality considerations when adopting LBS, but no study 
to date has empirically tested these concepts with LBS apps. Consequently, if these relationships extend 
to adopting LBS apps, then the following relationships with hold: 

H1: PU increases a) INT and b) WTP for LBS apps. 

H2: PEOU increases a) INT and b) WTP for LBS apps. 

3.3 Perceived Risks Regarding LBS Apps 

Researchers in other fields have studied risk for decades, but Jarvenpaa and Tractinsky (1999) were the 
first to apply it to online exchanges. Consumers typically assume that transacting with a website is risky 
unless given reasons to believe otherwise (Malhotra et al., 2004). Perceived risk has a variety of 
dimensions, including privacy risk (Malhotra et al., 2004), which we primarily focus on. Perceived privacy 
risk refers to a user’s belief that the degree to which they disclose their personal information will have an 
associated loss (Featherman & Pavlou, 2003). Research has typically operationalized privacy risk as a 
unidimensional construct that measures the loss of control over personal information (Dinev & Hart, 2006; 
Xu, 2010). We use the construct LBS privacy risk because we are specifically interested in the effects of 
one’s losing control over one’s location data. Aloudat and Michael (2011, p. 39) define LBS privacy risk as 
“the individual belief of the potential loss and the adverse consequences of using the [LBS] and the 
probability that these consequences may occur if the service is used.” 

Research has demonstrated that perceived privacy risk has a negative impact on a user’s behavioral 
intentions to disclose information through e-commerce transactions (Dinev & Hart, 2006; Malhotra et al., 
2004). Likewise, we established previously that substantial LBS privacy risks are linked to negative INT in 
an LBS context (Aloudat & Michael, 2011; Xu, 2010). Replicating and extending this literature, we also 
propose that the more a consumer perceives an app to be risky, the less they will be willing to pay for the 
app because similar findings exist in the context of privacy in traditional online shopping (Tsai et al., 2010) 
and in laboratory experiments (Grossklags & Acquisti, 2007). 

H3: Perceived privacy risks decreases a) INT and b) WTP for LBS apps. 

                                                        
1 PU represents an individual’s “subjective assessment of the utility offered by the new IT in a specific … context” (Gefen et al., 
2003, p. 54). Utility typically refers to a system’s ability to help its users be more productive in their work and improve the quality of 
their performance, but users define utility’s ultimate nature. Consider the popular app RedLaser, which allows iPhone users to take 
pictures of the bar codes on any product and receive an immediate list of local retailers who offer that product sorted by lowest price 
with a map to each location. Providing RedLaser with one’s current location reduces search costs and lowers their total transaction 
costs. Certainly, the benefit of disclosing location data would help the user to be more productive and efficient, but likely even more 
important to the consumer’s utility is that such an app helps to save them money. In the case of LBS, PU is an indication that being 
able to customize the information to a consumer’s location helps users to experience utility—and, thus, usefulness—as they define it 
for their context (Aloudat & Michael, 2011). Studies also emphasize that LBS users are more willing to accept privacy risks the more 
useful they find an LBS to be (Aloudat & Michael, 2011; Barkhuus & Dey, 2003). Hence, PU is a critical perceived benefit for LBS 
apps. 
2 Similarly, greater PEOU of a mobile app reflects greater perceived benefits and value. PEOU is a measure of the cognitive effort 
required to use a technology (Venkatesh, Morris, Davis, & Davis, 2003). Thus, PEOU in an LBS context is the degree to which an 
LBS user perceives the LBS to be easy to use (Aloudat & Michael, 2011). Lower cognitive effort makes a technology more beneficial 
to a user by making it easier to use, easier to learn, more enjoyable, more efficient, and so on. Research has demonstrated that, if 
users act rationally as TRA predicts, they will be more inclined to use new IT with greater PEOU (Venkatesh et al., 2003). Two recent 
qualitative case studies on LBS also support these relationships (Aloudat & Michael, 2011; Barkhuus & Dey, 2003). 
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3.4 Antecedents of Perceived Benefits and Risks 

Because mobile apps typically have a low cost and because one can acquire them immediately, 
consumers may make their adoption and disclosure decisions based on only the information available 
through mobile app platform storefronts (i.e., that information in the mobile app’s description) such as the 
Apple App Store or Google Play. This information typically includes the average consumer ratings 
(number of stars), the number of ratings (indicator of network size), and, in some cases, a form of privacy 
assurance (which the platform often omits). Figure 2 depicts an example app description with hypothetical 
privacy seals and a written promise. We base the antecedents of perceived benefits and risks—each with 
their own supporting theory—on this operationalization to maximize this study’s practical implications. 

 
Figure 2. Mobile App Description with Hypothetical Manipulations 

3.5 Privacy Assurance 

Customer privacy assurance is critical to e-commerce given the pervasive nature of information privacy 
concerns online (Rifon, LaRose, & Choi, 2005; Yang, Hung, Sung, & Farn, 2006). We define privacy 
assurance in a way that integrates the concept of institutional privacy assurance, which refers to the 
mechanisms and interventions that LBS app providers take to assure users that they have taken steps to 
protect their personal information (Xu et al., 2008; Xu et al., 2010). Industries via self-regulation can form 
these mechanisms or governments can require them. Because Xue et al. (2010) found that knowledge of, 
and training in, government regulation is not irrelevant in pull-based app adoption (our context)3, we 
consider only industry self-regulation in our model. Such voluntary privacy assurance is based on the 

                                                        
3 Xu et al. (2010) also considered the effects of government regulation on perceived risks and benefits. They did so by explaining to 
their participants about Singapore’s privacy laws involving location data disclosure and presented them with a news article related to 
recent legislation and issues related to the matter. They explained these laws further in the context of LBS issues of the U.S. 
Communication Act of 1996, and they localized the language used in this act to their Singaporean context. While this is a useful 
method to examine how sudden, increased knowledge of legal LBS issues affects perceived risks and benefits, we omitted this 
treatment so that the participants would apply their current legal knowledge to the model (which would appear as generally perceived 
privacy risks) and not be primed by legal knowledge to which they are normally unaware. Most consumers are not fully aware of their 
rights and legal mechanisms involved with LBS; thus, we felt giving them this knowledge could unduly influence factors that were 
more important to our study. 
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concept of structural assurance, which typically refers to the use of privacy seals4 and privacy assurance 
statements5 to positively influence trusting beliefs and decrease risk beliefs in e-commerce transactions. 

However, establishing privacy assurance mechanisms for an LBS app does not guarantee that consumers 
will feel the app assures their privacy—it simply increases the likelihood that that will be the case (Xu et 
al., 2010). However, since consumers do not always notice or understand these seals (Lowry et al., 2012; 
Milne & Culnan, 2004; Moores, 2005), these seals are not always enough to overcome deeply seeded 
privacy concerns. Some studies have shown mixed results with these mechanisms (Hui, Teo, & Lee, 
2007; Pennington, Wilcox, & Grover, 2003), and others have even shown failure to decrease perceived 
risks (Kim, 2008; McKnight, Kacmar, & Choudhury, 2004; Metzger, 2006). Based on such evidence, in this 
study, we assume reasonable levels of perceived risk and consumers who will generally recognize privacy 
assurance mechanisms. 

H4. Institutional privacy assurance decreases perceived privacy risk for LBS apps. 

3.6 Perceived App Quality 

According to Katz and Shapiro (1994), a system’s overall value (i.e., perceived benefits) is based on both 
network-dependent value as well as non-network-dependent value. One derives a system’s non-network-
dependent value from the various features that add value regardless of network size (Kauffman, 
McAndrews, & Wang, 2000). We are interested in how, in general, apps’ non-network-dependent features 
affect consumers’ perceived benefits. Thus, we employ the system quality construct from DeLone and 
McLean’s (2003) well-established IT success model6 that research has widely established in various 
contexts (e.g., Hsu, Chang, Chu, & Lee, 2014; Islam, 2012; Lee & Chung, 2009; Rouibah, Lowry, & Al-
Mutairi, 2015; Wang & Liao, 2008).  

In a qualitative case study on LBS, respondents emphasized the need for system quality, which they 
discussed in terms of accuracy, timeliness, responsiveness, and reliability (Aloudat & Michael, 2011). 
Such factors directly influence PEOU and ultimately affect PU. In fact, respondents in the case study 
“emphasized that without quality and reliability the LBS…would be useless” (p. 50). Based on this 
foundation and similar findings about quality in studies of m-commerce, we hypothesize:  

H5: Higher perceptions of app quality increases the a) PU and b) PEOU of LBS apps. 

3.7 Theory and Hypotheses Related to Network Size 

Research has connected a system’s overall value to both its non-network-based benefits (e.g., system 
quality) and network size (Katona, Zubcsek, & Sarvary, 2011; Katz & Shapiro, 1985; Kauffman et al., 
2000). We expect this relationship to extend to apps. However, we argue that network size can also 
influence the perceived risks of disclosing location data because of the information cascades 
phenomenon. We discuss these two separate effects in Sections 3.7.1 and 3.7.2. 

                                                        
4 A privacy seal is an endorsement from a third party organization that attests that a Web vendor adheres to the organization’s 
privacy policy and a set of privacy standards (McKnight, Choudhury, & Kacmar, 2002). Use of such seals are an example of 
voluntary industry self-regulation (Xu, 2010). Common examples include TRUSTe, Versign, and BBB Online. 
5 A privacy assurance statement is a statement that a vendor voluntarily supplies that provides argumentation and claims that 
corresponding product/company assures the customer’s privacy (Kim & Benbasat, 2003). The wording of these statements varies by 
a country’s legal requirements but ideally describes the rights and laws involved with a consumer’s voluntary disclosure (Xu, 2010). 
6 Of the three subconstructs of DeLone and McLean’s (2003) conceptualization of IS quality (system quality, service quality, and 
information quality), we selected only system quality for this study because of its greater relevance to the LBS app context and 
because competing LBS apps differ primarily in terms of system quality. For example, multiple LBS apps plot the location of 
registered sex offenders. However, each of them draws from the same public database of information. Therefore, they provide very 
similar, or the same, information quality. In addition, because of the relatively small scope and cost of each LBS app, the service 
component of most apps is quite small compared to more comprehensive desktop-based software and e-commerce. Based on these 
assumptions, we assert that, of DeLone and McLean’s three quality subconstructs, system quality characterizes the greatest 
variance among LBS apps. As a result, and to focus our study’s scope, we employed only system quality, and we refer to it as “app 
quality” in the remainder of the paper for brevity. System quality refers to characteristics of an IS, such as the presence of “bugs”, the 
consistency of the interface, and, more recently, the quality of the navigational structure (McKnight et al., 2002; Vance, Elie-Dit-
Cosaque, & Straub, 2008). Research has found it particularly relevant in research on trust in e-commerce (McKnight et al., 2002) 
and, more recently, m-commerce (Lowry, Vance, Moody, Beckman, & Read, 2008; Vance et al., 2008). 
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3.7.1 Network Effects Increase Perceived Benefits 

From a network theory perspective, LBS app users trade their location data in return for access to the 
information provided by a large network base of users. To illustrate, consider the app MouseWait, which 
gives its users real-time updates about the wait times for each of the rides at the Disneyland theme park. 
Users record their wait times in lines, which the app uses as its source for rides’ current wait times. If few 
people use the app, the information it produces is likely to be inaccurate. However, as more people use 
the app, the wait times become increasingly accurate. Based on the network-based value of apps such as 
MouseWait, we argue that both the value of the app’s technology and the size of its network base of users 
will influence user perceptions about the app. The value of the app refers to the consumer’s valuation of 
an app’s non-network impacts (Kauffman et al., 2000). With MouseWait, the value derives from other less 
dynamic information, such as maps of the park and hours, and the technical quality of the app itself and 
the quality of its user interface. 

Although not every LBS app benefits from primary network effects, virtually every app can experience 
secondary benefits from network size. For example, the Urbanspoon app is unique and atypical, which 
makes it more difficult to learn due to the lack of crossover learning effects from desktop-based websites. 
Even though the interface might seem intuitive to advanced users, less technically savvy users would 
likely benefit from having a friend or family member teach them how to use it. As more consumers adopt 
Urbanspoon, there is a greater likelihood that future users will be able to get help learning to use the app 
from among their immediate social connections and through online support communities. This support 
would make using the app more understandable and provide more information on how to get more benefit 
from the app. Essentially, network size can reduce users’ learning costs, which play a major role in the 
overall transaction costs of a product or service. 

H6: Increased perceived network size of LBS apps increases a) PU and b) PEOU. 

3.7.2 Information Cascades Decrease Perceived Risks 

Network size affects users’ valuation of app benefits and risk perceptions. We posit that the information 
cascades that occur from large network size can help to decrease perceived risks. Information cascades 
occur “when it is optimal for an individual, having observed the actions of those ahead of him, to follow the 
behavior of the preceding individual without regard to his own information” (Bikhchandani, Hirshleifer, & 
Welch, 1992, p. 994). According to information cascade theory, the most fundamental cause of 
convergent behavior is that individuals face similar decision problems, which Bikhchandani, Hirshleifer, 
and Welch (1998) indicate as meaning that “people have similar information…[and] face similar action 
alternatives” (p. 152). These conditions also apply to LBS apps. Each app is relatively narrow in scope 
compared to larger desktop applications, and, thus, the corresponding purchase and adoption decisions 
tend to be less complex. Unlike organizational systems such as enterprise resource planning systems—
where adoption and purchasing often results from months of organizational decision processes that 
involve many people—individuals often make LBS app adoption decisions on the fly and based on only 
the sparse information provided in the app description, which one can also use to infer network size.  

Another attribute of information cascades is that network size alone does not determine a cascade (Cha, 
Benevenuto, Ahn, & Gummadi, 2012; Duan, Gu, & Whinston, 2009). Rather, Duan et al. (2009) explain, 
for example, that individuals in a decision making situation should be able to decipher not only the number 
of previous individuals who have made a particular decision (e.g., to purchase product A) but also the 
number of previous individuals who faced the same decision yet chose a different outcome (e.g., to 
purchase product B, C, D, or no product at all). This condition also applies in the mobile app context. 
When consumers search for an app, they receive a list of search results with information about the 
network size of each app. For example, searching for “fitness tracker” might return a list such as the one 
that Figure 3 visualizes. Although a consumer cannot view the number of prior consumers who decided 
against downloading any app at all, they can decipher the approximate percentage who decided to 
purchase other apps than the one they decide to purchase (assuming each app has a similar percentage 
of consumers who decide to provide reviews). That is, if consumers decide to purchase iMapMyFitness 
with 1,777 reviews, they will also know that iPedometer LITE received 1,630 reviews, Fitness Track 
received 15 reviews (inferring small network size), and so on, which makes the information cascades 
phenomenon relevant to the mobile app context. 
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Figure 3. Mobile App Description with Hypothetical Manipulations 

Clearly, the number of reviews does not perfectly reflect network size, but we argue that it is a useful 
perceived surrogate. Not all app consumers will provide a review. However, if choosing between two apps 
where one has 1,000 ratings and another has three ratings (as was often the case when we searched for 
apps to use for this study), a potential consumer can infer that the app with 1,000 ratings likely has a 
much larger network size. Consumers can use this information (i.e., the number of reviews) to form two 
perceptions—each with their own theoretical justification. First, as network theory supports, the number of 
reviews indicates a potential network externality benefit (Katz & Shapiro, 1985). Second, as the research 
on information cascades supports, the number of reviews indicates the credibility of the reviews 
themselves, which can help to dissuade perceived privacy risks (Bikhchandani et al., 1998). Although all 
apps will demonstrate the latter, not all will demonstrate the former. However, we did not want to exclude 
this important relationship from our study. Therefore, in our experimental design, we selected two apps 
with direct network effects and two without.  

Prior research has theorized about and examined information cascades. Walden and Brown (2009) 
examined the popular website download.com and discovered that the number of weekly downloads of a 
particular online software package was a primary indicator of new adoption decisions (Walden & Browne, 
2009). Similarly, Simonsohn and Ariehly (2004) found that the number of existing bids on eBay auctions 
increased the likelihood of future bids even if the high number of bids simply resulted from a low starting 
price. Although network size does not directly cause information cascades, it strengthens the cascade and 
adds to its momentum (Duan et al., 2009).  

In the LBS app context, we care about whether information cascades are manifested not in the direct 
relationship between observed prior behavior and new app adoption but between observed prior behavior 
and the perceived LBS privacy risks of potential adopters. In other words, does the presence of an 
observed large network base reduce one’s fear that an app provider will act unethically with one’s location 
data? Whereas this effect seems logical—and related research suggests it to be the case—no one has 
yet examined it empirically. For instance, the literature on online product reviews has demonstrated that 
the presence, quality, and source of reviews all increase trust in an online product (Ba & Pavlou, 2002; 
Pavlou & Dimoka, 2006). Yet, we do not know whether review characteristics have the same effect on risk 
perceptions or how the quantity of online reviews affects perception.  

Information cascades is also remarkable because of the  opportunities it creates for error to prevail when 
local experience comes into contention with prevailing sentiment toward the widespread adoption of an 
LBS app or service. Anderson and Holt (1997) describe situations in which error is compounded via a 
cascade despite other indications that the cascade’s direction is false or erroneous (e.g., the mimetic 
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effect of certain Internet and Web-driven phenomenon that quickly sweep through the general population 
and then prove to be false in some respect such as the KONY 2012 phenomenon) (Gregory, 2012). 
Similarly, Watts (2002) notes that, due to their precipitous nature, one cannot easily anticipate what 
initiates cascades in a network the size of the few notable online app stores because disruptive new 
cascades are infrequent due to network density and size. Thus, when cascades bring change, it is often 
swift and complete. In the interim, is the cascade has some inherent stability in its persuasive influence. 

Based on information cascades theory (Bikhchandani et al., 1998), as network size increases, potential 
users feel a greater sense of safety in numbers. Accordingly, potential users are more likely to perceive 
the decisions of prior adopters as assurance that an LBS provider will not behave opportunistically with 
user location data regardless of whether it is true.  

H7: Increased perceived network size of LBS apps decreases the perceived privacy risk 
associated with those apps. 

4 Methodology 

4.1 Design 

We used a 3 × 2 × 2 factorial experimental design of 12 different groups. The variables were privacy 
assurance (none vs. low vs. high), quality rating (low vs. high), and network size (small vs. large). Due to 
the many possible methods of manipulating privacy assurance, we performed two separate experiments 
(seven months apart) to assess whether users understood the importance of separating personal identity 
from location data. Based on the outcomes of the first experiment, we adjusted the wording of the privacy-
promise manipulation by adding more details. As the privacy-promise treatment was unique and new to 
this study, our reviewing the results from the first experiment led to our developing a more granular 
manipulation.  

4.2 Participants 

We used college students as participants because the largest demographic block of mobile Internet users 
are those between the ages of 18 and 29 (Rainie, 2010). We also note that using students as participants 
to evaluate mobile privacy is advantageous because, in the context of mobile commerce, they are not only 
more likely to be early adopters but also more apt to pick up on signals regarding privacy risks at the point 
of app distribution (Pedersen, 2005). Moreover, Rogers (2010) suggests that innovation diffusion is 
partially predicated on the degree to which a social system and its channels of communication help to 
spread the innovation. Given the youth bias in innovation diffusion for mobile apps and smartphones, the 
interface by which apps parties distribute apps constitutes a social channel that youth are more likely to 
frequent. For these reasons and more, researchers have efficaciously used students in privacy studies 
that involve mobile information disclosure (e.g., Kehr et al., 2015; Keith et al., 2013; Lowry et al., 2011). 

We recruited participants from three large public universities located in Virginia, Texas, and Arizona. 
Among those universities, 1,588 (509 for experiment 1 and 1,079 for experiment 2) undergraduate and 
graduate students from their respective business colleges successfully completed the experiment, which 
took place outside of regular class time. We offered participants both extra credit and a chance to win one 
of several $50 gift cards. The 1,588 participants represent a 55 percent response rate from those who we 
solicited to complete the experiment. All three universities provided institutional review-board approval 
prior to our collecting data, and we followed standard human-subject protocols. Table 1 summarizes the 
participants’ demographic data for experiments 1 and 2. 

Table 1. Demographic Statistics for Both Experiments 

Demographics Experiment 1 Experiment 2 

Mobile purchases (last year) 7.10 x̅ 
(22.907 σ) 

7.08 x̅ 
(17.63 σ) 

Age 21.81 x̅ 
(5.18 σ) 

20.13 x̅ 
(5.58 σ) 

Smartphone users 52.1% 78.8% 

Apple iPhone users 18.5% 24.8% 
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Table 1. Demographic Statistics for Both Experiments 

Gender (male/female) 55.0% / 45.0% 53.0% / 47.0% 

4.3 Tools, Task, and Procedures 

We conducted a scenario-based experiment using an Apple iPhone. Based on a pilot test of 58 
participants (26 for experiment 1 and 32 for experiment 2), we selected four different real apps from the 
iPhone App Store for each experiment. The apps chosen reflected a variety of salient uses for LBS apps: 
1) one gave real-time updates on traffic congestion along roads and highways, 2) one allowed users to 
map their fitness routes, 3) one allowed users to locate friends and family members on a map, and 4) one 
mapped and located registered sex offenders in the user’s area. These apps do not represent 
manipulations of independent variables but rather offer a range of contexts to reduce any variance 
attributed to uncaptured, context-dependent variables. Conversely, we chose two of them (the fitness and 
locator apps) specifically because they offered a primary network-based value to their users7. In each 
context, we selected apps with the fewest reviews of its type to reduce potential participant bias from 
having prior knowledge. This scenarios approach has been effectively used in the location privacy 
literature (Xu et al., 2010). Both experiments involved the same five steps, which Appendix B summarizes 
along with the detailed scenarios. Most participants spent between 15 and 25 minutes with the apps. 

4.4 Manipulations of Independent Variables 

We manipulated quality, institutional privacy assurance, and network size in the experimental design. We 
manipulated quality by using Adobe Photoshop to make one version of the app have (out of a total five 
stars) one star (low quality) and another version have four-and-a-half stars (high quality). The stars 
represent an overall rating received from prior users. We manipulated network size by editing the total 
number of reviews (again, for justification on this surrogate, see support for H7). Small network sizes for 
the four contexts received less than 10 reviews, whereas large network sizes received over 10,000 
reviews. As the app store contains many apps, we deemed those that provide the highest potential for 
network effects and information cascades to be those with 10,000 reviews or more (see Figure 4). 

To maximize the study’s practical implications, we manipulated privacy in different ways in experiments 1 
and 2. In experiment 1, we manipulated the description to include one of the following treatments: 1) no 
mention of privacy assurance (no assurance), 2) a Better Business Bureau (BBB) privacy seal only (low 
assurance), or 3) a BBB seal, VeriSign seal, and written statement (high assurance). In experiment 2, the 
description included either 1) no mention of privacy assurance (no assurance), 2) a written promise stating 
that the user’s location and personal identity would be stored but not shared (low assurance), or 3) a 
written promise stating that the location would be stored but not shared and that their personal 
identification would not be stored at any time. We conducted this manipulation to understand how the user 
regarded the threat of having their personal identification tied to their location data. 

  
Figure 4. Example of Quality and Network-size Manipulations 

                                                        
7 Users of app 2 can upload their favorite fitness routes so that they can be shared with others, and app 3 will only locate friends and 
family members using the same app. Apps 1 and 4 still offer indirect, network-based value in that, as more people adopt these apps, 
the uncertainty and potential learning curves of future users will be increasingly reduced. 
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4.5 Measures 

Appendix A provides all measurement detail. Here, we summarize our measures. We based PU, PEOU, 
and INT all on well-validated instruments from existing TAM research (Davis, 1989; Venkatesh et al., 
2003). We minimally changed them to reflect the four contexts we describe above.  

We drew the privacy concerns construct from prior validated instruments (Dinev & Hart, 2006). We 
measured perceived privacy risk with items created in a similar manner to those created in prior research 
(Xu, 2010) but focused primarily on location privacy—this study’s context. To measure WTP, we used the 
stated-choice method, which many marketing studies have used (Cameron & James, 1987; Homburg, 
Koschate, & Hoyer, 2005; Krishna, 1991). Thus, participants were asked: “How much would you be willing 
to pay for [mobile app name]?”8. We also included several controls (including age and gender) based on 
prior studies. We included a control for the mobile app context and asked participants if they currently 
used a smartphone or other mobile device (e.g., iPod touch). We also asked them to indicate the number 
of transactions they had made in the last year over a mobile device (indicating their m-commerce 
experience) and how many times, to their knowledge, their personal information had been misused as the 
result of any e-commerce transaction (indicating their privacy risk experience). 

5 Data Analysis and Results 
Using the latest techniques, we conducted extensive pre-analysis to establish whether the measures were 
formative and/or reflective. We then determined factorial validity of the reflective measures through 
convergent and discriminant validity to establish that multicollinearity was not a problem with any of the 
measures. We also pre-analyzed the data to establish strong reliabilities and to check for common 
methods bias. Appendix B shows all of these analyses in detail. The results of the factorial validity 
procedures, checks for multicollinearity, reliability checks, and tests for common method bias show that 
the models met or exceeded the rigorous validation standards for partial least squares (PLS) structural 
equation modeling analysis (Gefen & Straub, 2005; Lowry & Gaskin, 2014; Pavlou, Liang, & Xue, 2007; 
Straub, Boudreau, & Gefen, 2004). 

5.1 Manipulation Checks 

Before completing our analyses, we first conducted a series of manipulation checks to see if subjects 
noticed and remembered intended manipulations, which involved a series of four one-item checks that we 
asked the user after the experiment: 1) “How many stars out of five did this app receive on average from 
prior users?”; 2) “How many ratings did this app receive?”, 3) “Was there a privacy statement?”, 4) “Was 
there a BBB seal?”. Results indicate that over 80 percent of all participants answered all questions 
correctly, which compares well to similar studies. 

To establish the intended effects of the manipulations, we captured latent measures of each participant’s 
perceptions of quality, network size, and privacy assurance (see Appendix B). In both experiments, 
participants perceived significant differences between each manipulation with one exception: participants 
perceived the privacy assurances manipulation in experiment 1, which included only a BBB seal (low 
assurance), as no better than no assurance at all. However, in both experiments, participants perceived 
the inclusion of the VeriSign seal and a written privacy statement as significantly more assuring. 

5.2 Results of Hypotheses Testing 

Following our validation steps, we analyzed the path model with the PLS-SEM technique using Smart PLS 
2.0.M3. We chose PLS because it is an effective technique for early theory development (Chin, Marcolin, 
& Newsted, 2003; Lowry & Gaskin, 2014) and it does not depend on normal distributions and interval 
scales (Fornell & Bookstein, 1982), which makes it better suited for WTP and the control variables. To test 
the structural model, we used the manipulation check scores for quality and network size were because 
they reflected the participants’ perceptions as affected by the treatments—similar to what Komiak and 

                                                        
8 One minor difference between experiments 1 and 2 is that, in the first experiment, we measured WTP using an open text-box 
control, which allowed the participant to specify any value. Experiment 2 used a drop-down box with the values 0.00, 0.99, 1.99, 
2.99, 3.99, 4.99, 5.99, 6.99, 7.99, and more than 7.99. We based these values on the current average price of iPhone apps (i.e., 
$3.87) (Kincaid, 2010). 
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Benbasat (2006) did. We standardized all measurement items and used Chin et al.’s (2003) product-
indicator approach to measure the exploratory interaction effects. 

Figure 5 summarizes the tests of the theoretical paths in the model for each experiment. 

 

 
Figure 5. Results of PLS Analysis 

The paths between two constructs, along with their direction and significance, indicate the path 
coefficients or betas (βs). We calculated the significance of the path estimates using a bootstrap 
technique with 500 resamples. Tables 2 and 3 summarize the measurement model statistics of the two 
studies. Table 4 summarizes the full testing results. We also explored using five covariates and report 
their significant relationships. For simplicity, Figure 5 does not include the control variable representing the 
four mobile app contexts. However, for experiment 1, the mobile app context had no significant direct 
effects on any variable but did have a significant interaction effect with network size on location privacy 
risk (β = −0.21, p < 0.01). In this experiment, context also moderated the effect of location privacy risk on 
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WTP (β = −0.19, p < 0.01). In experiment 2, mobile app context moderated the effect of network size on 
location privacy risk (β = −0.18, p < 0.001). 

 

Table 2. Measurement Model Statistics for Experiment 1 

Construct Mean SD 1 2 3 4 5 6 7 
Willingness-to-pay (1) $4.89 $8.62        

Intent to adopt (2) 4.01 1.58 .232       

Perceived usefulness (3) 4.59 1.39 .200 .534      

Perceived ease of use (4) 5.14 1.28 .103 .346 .613     

LBS privacy risk (5) 3.93 1.48 −.152 −.463 −.495 −.344    

Network effect (6) 4.39 1.58 .124 .399 .468 .343 −.428   

Quality (7) 4.93 1.34 .144 .444 .680 .692 −.425 .440  

Privacy concern (8) 5.80 1.38 −.070 −.066 .113 .255 .026 .008 .190 

 

Table 3. Measurement Model Statistics for Experiment 2 

Construct Mean SD 1 2 3 4 5 6 7 
Willingness-to-pay (1) $1.39 $1.55        

Intent to adopt (2) 4.01 1.65 .355       

Perceived usefulness (3) 5.00 1.35 .296 .535      

Perceived ease of use (4) 5.49 1.20 .153 .301 .594     

LBS privacy risk (5) 4.07 1.54 −.272 −.547 −.426 −.344    

Network effect (6) 4.32 1.76 .189 .340 .311 .346 −.428   

Quality (7) 5.03 1.36 .298 .488 .680 .692 −.425 .440  

Privacy concern (8) 5.97 1.23 −.004 −.044 .113 .255 .026 .008 .190 

 

Table 4. Final Model Testing Results 

Tested paths Β t-value Supports 
model? β t-value Supports 

model? 
Hypotheses Experiment 1 Experiment 2 

H1a: Perceived usefulness → 
Intention to adopt/disclose 0.348 5.700*** Yes 0.360 10.432*** Yes 

H1b: Perceived usefulness → 
Willingness-to-pay 0.117 1.974* Yes 0.122 3.075** Yes 

H2a: Perceived ease of use → 
Intention to adopt/disclose −0.027 0.502 No −0.059 1.107 No 

H2b: Perceived ease of use → 
Willingness-to-pay 0.014 0.253 No 0.006 0.158 No 

H3a: Perceived privacy risks → 
Intention to adopt/disclose −0.272 5.637*** Yes −0.356 10.568*** Yes 

H3a: Perceived privacy risks → 
Willingness-to-pay −0.627 2.925** Yes −0.113 3.400*** Yes 

H4: Institutional privacy assurance → 
Perceived privacy risks −0.292 7.433*** Yes −0.332 5.889*** Yes 

H5a: Perceived application quality → 
Perceived usefulness 0.576 9.726*** Yes 0.675 31.138*** Yes 
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Table 4. Final Model Testing Results 

H5b: Perceived application quality → 
Perceived ease of use 0.500 16.792*** Yes 0.374 10.408*** Yes 

H6a: Network size → Perceived 
usefulness 0.193 5.173*** Yes 0.085 3.432*** Yes 

H6b: Network size → Perceived 
ease of use −0.037 1.144 No 0.025 0.915 No 

H7: Network size → Perceived 
privacy risks −0.330 7.860*** Yes −0.223 4.361*** Yes 

Covariates       

Age → WTP 0.067 3.918*** (n /a) −0.050 1.729† (n /a) 

Smartphone user → WTP −0.115 2.828** (n /a) −0.092 3.280*** (n /a) 

Smartphone user →Intent to adopt / 
disclose (n / a) (n /a) (n /a) −0.041 1.700† (n /a) 

Mobile purchases → Intent to adopt / 
disclose 0.076 2.358** (n /a) 0.041 1.713† (n /a) 

Prior misuse → WTP (n / a) (n /a) (n /a) 0.074 2.629** (n /a) 

Prior misuse → Intent to adopt / 
disclose 0.132 2.280* (n /a) 0.054 2.200* (n /a) 

General privacy concern → 
perceived privacy risks (n / a) (n /a) (n /a) 0.074 2.285* (n /a) 

Notes: *** p < 0.001, ** p < 0.01, *p < 0.05, †p < 0.10, n/s = not significant; we removed the relationships of non-significant control 
variables (including app context) from the model and refer to them as N/A in this table. 

5.3 Post Hoc Analysis 

We performed several exploratory post-hoc tests of interaction effects on endogenous constructs. We 
examined several interaction effects proposed in prior IT acceptance research to see how factors such as 
experience, age, and gender influenced adoption intentions. In particular, participants’ levels of prior 
information misuse (β = 0.25, p < 0.05) and whether or not they were smartphone users (β = −0.20, p < 
0.05) moderated the effect of perceived LBS privacy risk on WTP. In addition, age moderated the effect of 
perceived LBS privacy risk on INT (β = 0.62, p < 0.05); PU moderated the effect of perceived LBS privacy 
risk on WTP (β = −0.31, p < 0.05), indicating that users may be willing to trade a certain amount of LBS 
privacy risk for greater benefits. We then analyzed the direct effect of increasing privacy assurance on 
WTP. Both experiment 1 (F = 4.20, p < 0.05) and experiment 2 (F = 5.30, p < 0.05) revealed significant 
positive effects. Also as part of a post-hoc analysis, we examined the direct effects of institutional privacy 
assurance, network size, and quality ratings on WTP and INT. Institutional privacy assurances directly 
impacted WTP (β = 0.13, p < 0.01) but not INT. Network size directly impacted INT (β = 0.26, p < 0.001) 
but not WTP. Last, quality significantly influenced INT (β = 0.08, p < 0.05) but not WTP. 

6 Discussion 
Using a privacy calculus model integrated with theory on network effects, we investigated the effects of 
quality, network size, and institutional privacy assurance on users’ adoption intentions and WTP for apps 
that employ LBS. We found support for most of our hypotheses concerning the adoption and WTP 
variables. Location privacy risk did significantly reduce both WTP (H3b) and the intention to adopt (H3b). 
In addition, PU increased both WTP (H1b) and the intention to adopt (H1a). However, after accounting for 
the impact of location privacy risk and PU, PEOU showed no significant effects (H2a and H2b). 

As expected, institutional privacy assurances did reduce users’ perceptions of LBS privacy risk (H4). In 
addition, network size also reduced LBS privacy risk perceptions, which confirms our information cascade 
hypothesis (H7). Participants clearly understood the added effect of large network size on an LBS app’s 
usefulness (H6a), but they did not believe (or perhaps did not understand) that large network sizes would 
make an LBS app easier to use (H6b). Finally, perceived LBS app quality had a significant impact on both 
PU (H5a) and PEOU (H5b). 
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Moreover, the two data sets (which we captured seven months apart) have several interesting and 
significant differences. First, the rates of smartphone and iPhone users increased sharply and were well 
above industry estimates at the time of the original experiment (Kincaid, 2010). The average age of 
participants was below 22 in both studies but over a year and a half lower in experiment 2. Both of these 
statistics signal that smartphone use is greater in younger demographics; thus, the sample was biased 
toward younger participants. As might be expected with a younger sample, the participants in experiment 
2 had experienced less information misuse. However, most striking was that average WTP was only 
US$1.39 in experiment 2 compared to $4.89 in experiment 1. Due to the sharp increase in smartphone 
users, participants in experiment 2 were more likely to be aware of fair and accurate prices for the apps 
because of their increased adoption. As the subjects in experiment 2 were slightly younger on average, 
their lower WTP could also be the result of lower purchasing power. 

We did not find support for a relationship between PEOU and intention to adopt nor between PEOU and 
willingness to pay. These results are surprising because research has demonstrated the relationship 
between PEOU and positive behavioral outcomes across multiple computing contexts (Davis, 1989; 
Gefen, Karahanna, & Straub, 2003; Lowry, Gaskin, Twyman, Hammer, & Roberts, 2013; Vance, Elie-Dit-
Cosaque, & Straub, 2008; Venkatesh et al., 2003). As such, some characteristics of mobile apps may 
mitigate the effect that PEOU has on behavioral outcomes. Alternatively, the standardized interface 
established by mobile app platforms such as Apple iOS may create an environment that maximizes ease 
of use for all apps. If most apps have a near identical ease of use, PEOU would then become less 
important in adoption and WTP decisions. Also, we need to consider the physical form factor of the 
devices as well. Many mobile devices are of a size where the UI experience is more uniform than not. 

6.1 Implications for Research and Theory 

This study supports the privacy calculus assumption that system adoption decisions are a tradeoff 
between privacy risks and the benefits of using/adopting a given technology (Dinev & Hart, 2006). 
Specifically, based on our PLS results, LBS privacy and PU seemed to have similar, albeit competing, 
influences on adoption intentions. These results also confirm the role that institutional privacy assurances 
play in reducing perceived risk (Xu, 2010). However, unique to this study, we demonstrate that network 
effects influence both sides of the privacy calculus equation: network size enhances the perceived value 
of apps through both direct and indirect network effects and network size reduces apprehension due to 
LBS privacy risk. With limited information, a large number of positive reviews for an app encourages 
further adoption.  

We also found that network size significantly interacts with privacy signals such as seals and statements 
of privacy assurance. While most studies on information cascades typically employ economic models of 
system adoption (e.g., Duan et al., 2009; Walden & Browne, 2009), we confirm, through behavioral 
experimentation, that a large network size, coupled with limited information, produces the “herd behavior” 
inherent in information cascades (Bikhchandani et al., 1998). For platform owners, this presents an 
opportunity to provide additional governance and standardization so that potentially useful apps that are 
not widely used can claim assurances beyond network effects and information cascades. 

This study also demonstrates that technology users are willing to pay for privacy—a notion that has 
received mixed and controversial support and relatively limited attention. It is possible that the failures of 
some prior research to find the effects of perceived privacy risk on technology valuation result from poor 
assurances or manipulations. It is also possible that the new risks associated with location data are not 
simply minor variations from past privacy risks but something more unique, which requires additional 
research and theory development. 

We can also deduce from our findings that the mobile application platform itself can potentially exert great 
and authoritative influence on privacy risk perceptions. While risk will remain a tradeoff, satisficing is 
easier when privacy assurances trickle down from the higher authority of the platform owner who controls 
all of the key information points that ultimately influence risk perception. In the cases of Google and Apple, 
their sphere of control influences app developers, the app-acquisition experience, device manufacturers, 
and communications network providers. These platforms can enforce standards for information privacy 
assurance, but it is not clear that the imperative to do so exists. On one hand, mobile users care about 
privacy and will increasingly expect information and controls that enable informed decision making about 
mobile app adoption. On the other hand, app developers, third party content providers, and platform 
owners may all wish to use users’ information as a means of monetizing mobile platforms. Given that 
users do not expect to pay more than a dollar or two for most apps and given that the effort and resources 
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to provide apps to the ecosystem is high, providers will seek some means of profit. Personal data, 
particularly in the use of LBS, is a rich source of information from which one can make a profit. Some 
users may not care if someone uses their personal information if it brings some utility, discount, or profit. 
Thus, our results provide some input for platform owners to consider in developing their strategies to 
provide information and controls regarding information privacy in the use of mobile apps. 

Because our study shows that the effect of network size produces strong results, platform owners can 
play a strong role in managing network size impressions by displaying numbers of reviewers, numbers of 
adopters, and so on. However, much as was the case with Web browsers in their infancy, platform owners 
are competing by differentiating features rather than by embracing standards. Moreover, platforms are 
often tightly coupled with network providers to the degree that an individual may not uniquely experience 
the platform. 

6.2 Implications for Practice 

Our results have many implications for practice, so we now elaborate on actions and strategies that 
platform holders could adopt to regulate the app industry. The results of our studies show that: 1) 
measures and mechanisms that provide privacy assurance are critical for app vendors who have not built 
a large network of users, which is the case for many mobile app developers in the emerging LBS market; 
2) even in a large network, a low-rated (and, thus, perceived as low-quality) app must compensate with 
strong privacy assurance mechanisms; 3) strong ratings and/or a large network may give a false sense of 
privacy assurance, and 4) a market for privacy assurances in the mobile app market exists. In addition, 
the second experiment revealed that consumers perceive a greater threat when an app combines their 
location data with their personal identities. One can argue that location data, because it can be archived 
as part of a permanent record about an individual, will constitute part of a mobile app user’s online 
reputation and image (Microsoft, 2013). Accordingly, when generating privacy assurance statements, app 
producers should strongly consider specifying how their product will keep this information separate and 
safe. Users, app developers, information aggregators and disseminators, and device manufacturers 
should jointly create privacy assurance mechanisms that effectively increase transparency about privacy 
risks. By understanding how privacy assurance, network size, and quality interact, developers can tune 
their businesses’ goals to match those that would also benefit their apps. 

It is probable that, these results notwithstanding, LBS users will have to take personal responsibility for 
protecting their privacy. Technical solutions that might facilitate users’ personal responsibility could 
resemble the certificate authority (CA) and public key infrastructure (PKI) systems in place to ensure data 
integrity using paid third parties. As CA typically issues a digital certificate to verify an owner’s identity, a 
similar third party could verify that location data (or other such private data) has also been signed in a 
manner consistent with PKI. Until such a complementary industry emerges, mobile app developers must 
find their own means of assuring privacy. Given the typically quick decision cycle under which individuals 
purchase most apps, an app developer has only a few tools with which to assure LBS privacy. Although a 
third party assurance system may help, we found that a short written privacy statement prominently 
displayed in the app description is a more effective assurance than privacy seals. Mobile platform owners 
can help this assurance by making such a system a natural, standardized, and governed aspect of the 
mobile ecosystem into which users and app developers can opt. Users who are more risk tolerant or 
simply do not care about information privacy in mobile LBS apps and transactions can simply ignore the 
system. 

It is possible, however, that the expense of third party assurance mechanisms, as described above, might 
not outperform a simple set of assurances realized through standardizing and normalizing mobile 
platforms or simply through the power of branding (e.g., Lowry et al., 2012; Lowry et al., 2008). As long as 
Research in Motion, Microsoft, Nokia, Google, and Apple (who each control different mobile platforms) do 
not fundamentally cooperate on standards related to privacy assurance in their mobile ecosystems, many 
measures will continue to have a piecemeal effect. We can see a similar situation in the PC platform. 
Recent versions of Microsoft Windows operating systems certainly establish normative mechanisms that 
are less confusing around firewall filters for Internet traffic, whereas firewall software was (and, in some 
cases, remains) the purview of third party solutions. Thus, newer versions of Microsoft Windows ship with 
an integrated firewall. Thus, the default mode of operation in Microsoft Windows would be to enable the 
firewall or the system would strongly suggest its use. This tight integration provides norms and 
expectations in personal computing. Although firewalls are not failure proof (much as privacy controls and 
assurances are not failure proof), the normative presence of firewalls has adjusted behavior by creating 
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non-ambiguous expectations in users. Although mobile platforms are opening new forms of information 
access and communication, it is likely that shifting the burden of privacy assurance mechanisms to the 
platform is the best means of shaping privacy assurance perceptions. 

Last, note that mobile app companies may not desire third party privacy assurances. Even if consumers 
are willing to pay more for an assured app, the provider may lose precious revenue from advertising 
partners. As a result, consumers’ greater WTP for privacy assurance may not recoup information sharing 
losses. If so, then app providers will prefer to have all apps ignore third party assurances or other 
governance mechanisms so that customers cannot distinguish between apps that do or do not share 
consumer information. 

6.3 Limitations and Future Research Opportunities 

This study has several limitations. First, the measures focus only on the initial formation of trust and 
privacy impressions—we do not know how this model works with continued app use over time. Risk 
perceptions could possibly shift based on the actual performance of the app and any associated privacy 
incidents. One area for future research is longitudinal studies that follow app use over time.  

Second, another concern lies in this study’s uniform (and binary) presentation of benefits in exchange for 
privacy, which we simply controlled for. In a manner consistent with contingency theory, the satisficing on 
constraints that users undertake as they consider privacy risks and trust exists on a wider and more 
nuanced scale than we afforded in this study. Thus, future research may examine a more nuanced 
exploration of benefits. Similarly, there are other covariates, such as experience or mobile computing self-
efficacy, that we did not include but that research has demonstrated to be salient in IT adoption decisions. 
Future research should examine such factors. 

Third, another limitation relates to the WTP measure and its associated construct. The results indicate that 
non-iPhone users (or even iPhone users who rarely, or never, pay for apps) do not understand the WTP 
measure well. We are not certain that pricing and value have stabilized in this market, which has possibly 
distorted the WTP measure and, thus, resulted in its low variance in experiment 1 (13.2 percent). The 
results show an improvement in experiment 2 (18.3 percent), which compares well to a related study. We 
believe that these results arise due to a combination of factors that one cannot fully separate and, hence, 
that it constitutes a limitation. First, as our descriptive statistics indicate, smartphone adoption dramatically 
increased in the seven months between the first and second experiments. Naturally, as users become 
more aware of app pricing schemes, they will have less certainty in their WTP choices. Further, as our 
treatment presented a hypothetical scenario in which users did not have to spend real money, it is 
uncertain that subjects experienced a vested basis for valuation. However, this limitation is a common 
problem with stated-choice measurements. To remedy this limitiation, future studies could present narrow 
pricing bands based on a market review of existing apps. 

Extending this work to make it more generalizable is also important; likewise, others need to challenge 
and extend this work in contexts where it may not generalize. For example, research has already shown 
that there can be big cultural differences between Chinese and American mobile technology users that 
affect risk and privacy perceptions (Lowry et al., 2011). Meaningful cultural differences can also appear in 
collaborative interactions (Zhang & Lowry, 2008), and these differences can affect trust/risk perceptions 
(Lowry, Zhang, Zhou, & Fu, 2010), which may also extend to social mobile networks. However, we do not 
adequately understand the influence of these factors. Moreover, we cannot expect factors such as privacy 
concerns to hold in other mobile contexts. For example, in a healthcare mobile text setting involving young 
African Americans, Carter, Corneille, Hall-Byers, Clark, and Younge (2015) found that risk beliefs and 
privacy concerns were not important factors but technology diffusion factors were. 

7 Conclusion 
In summary, we found LBS privacy to be a primary concern for LBS adoption, which is increasing and 
evolving. These findings should motivate both mobile app developers and platform providers to explore 
new means of assuring LBS privacy in the app marketplace. This need is especially poignant given 
developments in the mobile app space, where it is increasingly evident that users are not in total control of 
their location privacy. Indeed, cases in which iPhone users have discovered that the entirety of their 
location data is stored and easily accessible on their device exist (Johnson, 2011). In particular, mobile 
app developers will most successfully address LBS privacy when platform providers provide clear 
structure, guidance, and norms regarding how both users and developers can expect the platform to 
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handle LBS privacy assurances and controls. This research also presents a unique perspective on the 
relationship between network effects and privacy calculus theory. We believe that platform providers can 
take advantage of these findings by working together to establish platform-level norms for LBS privacy 
control. These results should also help to encourage researchers to develop this research stream and 
keep research at the forefront of practice to not only “observe and report” but also “lead and guide” 
development related to LBS apps. 
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Appendix A: Detailed Measurement Items 

 Construct Item 
code Lead questions and item scales When 

gathered Citation 

Privacy 
concern 

PC1 
PC2 
PC3 

1. Companies should take more steps to make sure that 
unauthorized people cannot access personal 
information on their computers. 

2. Companies should not use personal information for 
any purpose unless such use has been authorized by 
the individuals who provided the information. 

3. When companies ask me for my personal information, 
I sometimes think twice before providing it. 

Pre-
experiment 

(Malhotra et 
al., 2004) 

Perceived 
app quality 

QU1 
QU2 
QU3 
QU4 

1. I think the [app name] mobile application would likely 
be technically reliable. 

2. I think the [app name] mobile application would be 
simple to navigate. 

3. I think the [app name] mobile application would make 
it easy to find the traffic updates I would be interested 
in. 

4. Overall, I think the [app name] mobile application 
would likely work very well. 

Post-
experiment 

Based on 
McKnight, 
Choudhury, & 
Kacmar 
(2002) 

Perceived 
location 

privacy risk 

LPR1 
LPR2 
LPR3 
LPR4 

1. I think [app name] would protect its customers’ 
location information. 

2. I think [app name] would not share or sell my location 
information. 

3. I don’t think [app name] would use my location 
information for unethical purposes. 

4. I don’t think [app name] would use my location 
information for any reason other than making their 
application more useful. 

Post-
experiment 

New for this 
study, but 
based on 
Malhotra et 
al. (2004) 

Perceived 
network size 

NE1 
NE2 

1. The [app name] mobile application is used by many 
other people. 

2. Many other people have experience with [app name]. 

Post-
experiment 

New for this 
study, but 
based on 
relevant 
theory (Katz 
& Shapiro, 
1985, 1994) 

Perceived 
usefulness 

PU1 
PU2 
PU3 

1. The INRIX Traffic! mobile application would help me 
find traffic congestion updates more quickly. 

2. The INRIX Traffic! mobile application would improve 
the quality of my traveling. 

3. The INRIX Traffic! mobile application would make my 
traveling/commuting more productive. 

 
1. The iMapMyFitness mobile application would help me 

map and record my walking/running/biking routes 
more quickly. 

2. The iMapMyFitness mobile application would improve 
the quality of my fitness training. 

3. The iMapMyFitness mobile application would make 
my exercise routine more productive. 

 
1. The Sex Offenders Search mobile application would 

help me locate and map sex offenders in my area 
more quickly. 

2. The Sex Offenders Search mobile application would 
improve the quality of my safety precautions. 

3. The Sex Offenders Search mobile application would 
make my safety precautions more productive. 

 
1. The GPS Tracking mobile application would help me 

find my friends and family members more quickly. 
2. The GPS Tracking mobile application would improve 

the quality of my location searches of friends and 
family. 

Post-
experiment 

Based on 
Venkatesh et 
al. (2003), but 
modified to 
reflect the 
four LBS app 
contexts 
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3. The GPS Tracking mobile application would make 
locating my friends and family members more 
productive. 

Perceived 
ease of use 

PEOU1 
PEOU2 
PEOU3 

1. I would find it easy to get [app name] to do what I 
want it to do. 

2. I would find the [app name] mobile application easy to 
use. 

3. The [app name] mobile application would easy to 
learn. 

Post-
experiment 

(Venkatesh et 
al., 2003) 

Intention to 
adopt / 

disclose 

INT1 
INT2 

1. I predict I would use [app name] the next time I need 
such a mobile application. 

2. I plan to use [app name] the next time I need such an 
application. 

Post-
experiment 

(Venkatesh et 
al., 2003) 
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Appendix B: Validity and Analysis Support 

Manipulation Checks 

As further manipulation checks to establish the intended theoretical effects of our manipulations, we 
captured participant’s perceptions of quality and network size using Likert-type items with a seven-point 
scale drawn from validated instruments (Burnham, Frels, & Mahajan, 2003; McKnight et al., 2002; Vance 
et al., 2008). We used these perceptual measures as checks to see if the quality and network size 
manipulations were valid by comparing the mean of the measurement items for each variable between 
groups. Participants perceived large network sizes as larger than the small network sizes in both 
experiment 1 (x̅ = 4.88 > 3.89, one-way ANOVA, F(1, 508) = 60.88, p < 0.001) and experiment 2 (x̅ = 5.22 
> 3.29, one-way ANOVA, F(1, 1078) = 528.48, p < 0.001). Participants perceived higher quality-rated 
apps as higher quality than the low quality-rated apps in both experiment 1 (x̅ = 5.35 > 4.61, one-way 
ANOVA, F(1, 508) = 57.94, p < 0.001) and experiment 2 (x̅ = 5.47 > 4.61, one-way ANOVA, F(1, 1078) = 
160.90, p < 0.001). 

In experiment 1, we manipulated privacy to include either no mention of privacy assurance (no 
assurance), a Better Business Bureau (BBB) privacy seal only (low assurance), or a BBB seal, VeriSign 
seal, and verbal privacy assurance (high assurance). We used the measures for perceived location 
privacy risk, described below, as a validation check for these manipulations, and it appears that 
participants did not perceive any value of a BBB seal alone (x̅ = 3.88 (low assurance) > 3.85 (no 
assurance), t(506) = 0.219, p = 0.413). However, participants did perceive a difference between the verbal 
privacy promise with seals over the seal alone (x̅ = 4.44 (high assurance) > 3.88 (low assurance), t(506) = 
3.96, p < 0.001). 

In experiment 2, the description included either 1) no mention of privacy assurance (no assurance), 2) a 
written promise stating that the user’s location and personal identity would be stored but not shared (low 
assurance), or 3) a written promise stating that the location would be stored but not shared and that their 
personal identification would not be stored at any time. The difference between no privacy assurance and 
low privacy assurance was significant (x̅ = 3.72 (low assurance) > 3.55 (no assurance), t(1076) = 1.77, p < 
0.05) as was the difference between low and high privacy assurance (x̅ = 4.58 (high assurance) > 3.72 
(low assurance), t(1076) = 8.59, p < 0.001). Based on the latter result, participants did appear to 
comprehend the added risk of disclosing their identification along with the location data to some extent. 

Determining the Nature of Our Measures 

A key step before assessing factorial validity, which has recently come to light in IS research (Cenfetelli & 
Bassellier, 2009; Petter, Straub, & Rai, 2007), is to determine which constructs are formative and which 
are reflective (Diamantopoulos & Winklhofer, 2001). Should researchers make a default assumption that 
all constructs are reflective, they risk invalidating the results of the factorial validity tests. A high 
percentage of the recent research in MISQ and ISR misspecifies constructs as reflective when they are 
actually formative, which leads to problems in empirical results and theoretical interpretations, including 
the potential increase in both type I and type II errors. A key sign that one is dealing with a formative 
measure is that a construct’s items are not interchangeable as they are in reflective measures. We used 
the latest standards as the basis for determining whether we had formative and/or reflective constructs 
(e.g., Cenfetelli & Bassellier, 2009). In our data collection, we determined all of our measures to be 
reflective, which the previous validation in the literature of our measures supports. 

Establishing Factorial Validity 

We then conducted the latest factorial validity checks for reflective measures. To establish the factorial 
validity of our reflective indicators, we followed Gefen and Straub’s (2005) procedures that Lowry and 
Gaskin (2014) further explain and develop. To establish factorial validity, we examined convergent validity 
and discriminant validity of the reflective constructs.  

Establishing Convergent Validity 

We used two approaches to establish convergent validity. First, we examined the outer model loadings. 
Following (Gefen & Straub, 2005), one can establish convergent validity when the t-values of the outer 
model loadings are significant. Our t-values were all significant as Table B1 shows with the exception of 
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PC3—one of the privacy concern items. However, we still included this item in our analysis since it is part 
of a previously validated instrument (Dinev & Hart, 2006).  

As a second check, we correlated the latent variable scores against the indicators as a form of factor 
loadings and examined the indicator loadings and cross-loadings to establish convergent validity. Though 
researchers have typically used this approach to establish discriminant validity (Gefen & Straub, 2005), 
convergent validity and discriminant validity are inter-dependent and help establish each other (Straub, 
Boudreau, & Gefen, 2004). Convergent validity is also established when each loading for a latent variable 
is substantially higher than those for other latent variables (Kock, 2010) (see Table B2 for Experiment 1 
and Table B3 for Experiment 2).  

We conclude that our data in both experiments exhibited strong convergent validity. 

Establishing Discriminant Validity 

We also used two approaches to establish discriminant validity as Gefen and Straub (2005) describe and 
Lowry and Gaskin (2014) demonstrate. First, just like with convergent validity, we examined the factor 
loadings but this this time to ensure significant overlap did not exist between the constructs (again see 
Table B2 and Table B3).  

Second, we used the approach of examining the square roots of the AVEs described in (Gefen & Straub, 
2005). The basic standard followed here is that the square root of the AVE for any given construct (latent 
variable) should be higher than any of the correlations involving the construct (Fornell & Larcker, 1981; 
Staples, Hulland, & Higgins, 1999) (see Table B4 and Table B5). We show the numbers in the diagonal 
for constructs (bolded and underlined). All subconstructs showed strong discriminant validity. 

We conclude that our data in both experiments exhibited strong discriminant validity. 

Establishing Lack of Multicollinearity 

SEM methodologists have more recently stressed the potential deleterious effects of multicollinearity and 
thus the importance of establishing that it is not a significant factor in SEM data (Cenfetelli & Bassellier, 
2009). Thus, we assessed the possibility of multicollinearity among all the indicators in the model. 
Research has traditionally viewed variance inflation factors (VIFs) less than 10 as justification for a 
model’s lack of multicollinearity with 5.0 being ideal for reflective constructs (Cenfetelli & Bassellier, 2009; 
Diamantopoulos & Siguaw, 2006; Petter et al., 2007). All of the VIFs for the reflective constructs were 
below this threshold (see Table B6). Thus, we conclude that multicollinearity likely had little to no influence 
on our models. 

Establishing Reliabilities 

In terms of the reliability of the reflective constructs, we applied the two most conservative criteria: both 
the composite reliability and the Cronbach alpha coefficients should be ≥ 0.7 (Fornell & Larcker, 1981; 
Kock, 2010; Nunnally & Bernstein, 1994). Table B7 summarizes these values, which indicate strong 
reliabilities. Overall, we conclude that our data exhibited strong reliabilities. 

Checking for Common Methods Bias 

Once we validated our model for factorial validity and reliabilities, we then checked for common methods 
bias. We collected all data using a similar-looking online survey, but we still needed to test for common 
methods bias to establish that it was not a likely factor in our data collection. To do so, we used two 
approaches. 

First, we simply examined a correlation matrix of the constructs (see measurement model statistics in 
main paper, Table 2 and Table 3) and determine if any of the correlations were above 0.90, which is 
strong evidence that common methods bias exists (Pavlou et al., 2007). All correlations were below this 
threshold.  

Second, and a more rigorous approach to testing common method bias, we conducted the latest, most 
extensive form of testing for mono-method bias for PLS, which Liang, Saraf, Hu, and Xue (2007) 
established. Podsakoff, MacKenzie, Lee, and Podsakoff (2003) developed this test, which Liang et al. 
(2007) adapted for PLS. It is particularly powerful because research has established that it overcomes the 
classic issues of assessing common method bias (Liang et al., 2007; Podsakoff et al., 2003). The 
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technique measures the influence of a common latent method factor on each individual indicator in the 
model versus the influence of each indicator’s corresponding construct.  

To perform this technique in PLS, one models constructs of the theoretical model and their relationships 
as is normally conducted with two major additions. First, one creates a single-indicator construct for each 
indicator in the measurement model. One then links each subconstruct to each of the single-indicator 
constructs that comprise the subconstruct, which effectively makes each subconstruct in the model a 
second-order reflective construct. Second, one creates a construct representing the method. This 
construct reflectively comprises all indicators of the instrument. One then links the method construct (the 
latent method factor) to each single-item construct.  

Table B7 (experiment 1) and Table B8 (experiment 2) capture the detailed analyses of this procedure. For 
Experiment 1, the average substantive factor loading (λs) was 0.900 and the average variance explained 
of the substantive factor loading (λs2) was 81.8 percent. In stark contrast, and as desired, the average 
method factor loading (λm) was 0.002 and the average variance explained of the method factor loading 
(λm2) was 0.7 percent. The ratio of substantive variance to method variance was about 117:1. Experiment 
2 followed the same stark pattern: the average substantive factor loading (λs) was 0.896 and the average 
variance explained of the substantive factor loading (λs2) was 80.9 percent. The average method factor 
loading (λm) was 0.001 and the average variance explained of the method factor loading (λm2) was 0.4 
percent. The ratio of substantive variance to method variance was about 202:1. Given that our data 
passed both tests of common method bias—far exceeding expected thresholds—we conclude that there 
is little reason to believe that the data in either study exhibited negative effects from common method bias.  

Table B1. Outer Model Weights to Establish Convergent Validity 

 Experiment 1 Experiment 2 

Construct Item Outer weight Item Outer weight 

Intention to adopt / 
disclose 

INT1 0.518*** INT1 0.542*** 

INT2 0.517*** INT2 0.495*** 

Perceived usefulness 

PU1 0.404*** PU1 0.369*** 

PU2 0.407*** PU2 0.363*** 

PU3 0.371*** PU3 0.359*** 

Perceived ease of use 

PEOU1 0.333*** PEOU1 0.344*** 

PEOU2 0.388*** PEOU2 0.379*** 

PEOU3 0.364*** PEOU3 0.370*** 

Perceived location 
privacy risk 

LPR1 0.310*** LPR1 0.280*** 

LPR2 0. 259*** LPR2 0.262*** 

LPR3 0. 266*** LPR3 0.270*** 

LPR4 0. 275*** LPR4 0.281*** 

Perceived network size 
NE1 0. 559*** NE1 0.548*** 

NE2 0. 493*** NE2 0.500*** 

Perceived app quality 

QU1 0. 267*** QU1 0.273*** 

QU2 0. 280*** QU2 0.286*** 

QU3 0. 302*** QU3 0.300*** 

QU4 0. 286*** QU4 0.289*** 

Privacy concern 

PC1 0.310* PC1 0.317* 

PC2 0.602* PC2 0.640** 

PC3 0.185 n/s PC3 0.181 n/s 

Notes: *p < 0.05, **p < 0.01, ***p < 0.001, n/s = not significant 
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Table B2. Reflective Item Loadings and Cross-loadings (Experiment 1) 
Indicators INT PU PEOU LPR NE QU PC 

INT1 0.97 0.53 0.36 -0.44 0.38 0.44 -0.05 
INT2 0.97 0.51 0.31 -0.46 0.39 0.41 -0.08 
PU1 0.39 0.82 0.61 -0.33 0.40 0.66 0.22 
PU2 0.48 0.91 0.54 -0.46 0.41 0.58 0.09 
PU3 0.49 0.82 0.40 -0.47 0.38 0.48 -0.03 

PEOU1 0.23 0.56 0.91 -0.25 0.28 0.62 0.26 
PEOU2 0.38 0.61 0.93 -0.38 0.34 0.66 0.24 
PEOU3 0.34 0.54 0.92 -0.32 0.33 0.63 0.24 
LPR1 -0.47 -0.45 -0.28 0.90 -0.42 -0.41 0.05 
LPR2 -0.36 -0.42 -0.25 0.90 -0.38 -0.33 0.03 
LPR3 -0.40 -0.45 -0.36 0.90 -0.36 -0.40 0.01 
LPR4 -0.42 -0.47 -0.35 0.90 -0.37 -0.39 -0.00 
NE1 0.38 0.47 0.35 -0.43 0.96 0.45 0.01 
NE2 0.38 0.42 0.30 -0.38 0.94 0.38 0.00 
QU1 0.42 0.60 0.54 -0.46 0.45 0.87 0.11 
QU2 0.31 0.54 0.65 -0.29 0.34 0.88 0.23 
QU3 0.38 0.63 0.66 -0.32 0.34 0.89 0.21 
QU4 0.46 0.63 0.58 -0.43 0.44 0.89 0.12 
PC1 -0.04 0.10 0.28 0.02 0.03 0.18 0.90 
PC2 -0.08 0.10 0.22 0.03 -0.01 0.17 0.97 
PC3 -0.02 0.11 0.20 0.01 0.03 0.16 0.75 

 
Table B3. Reflective Item Loadings and Cross-loadings (Experiment 2) 

Indicators INT PU PEOU LPR NE QU PC 
INT1 0.97 0.54 0.31 -0.55 0.33 0.49 -0.03 
INT2 0.96 0.49 0.27 -0.50 0.32 0.45 -0.06 
PU1 0.43 0.89 0.61 -0.37 0.28 0.69 0.19 
PU2 0.53 0.94 0.51 -0.41 0.30 0.60 0.12 
PU3 0.52 0.93 0.52 -0.40 0.27 0.59 0.12 

PEOU1 0.24 0.54 0.89 -0.21 0.19 0.54 0.29 
PEOU2 0.30 0.56 0.92 -0.29 0.25 0.57 0.21 
PEOU3 0.28 0.53 0.93 -0.25 0.28 0.57 0.25 
LPR1 -0.52 -0.40 -0.27 0.90 -0.26 -0.43 0.04 
LPR2 -0.48 -0.37 -0.24 0.92 -0.24 -0.38 0.05 
LPR3 -0.50 -0.39 -0.25 0.92 -0.25 -0.36 0.06 
LPR4 -0.51 -0.40 -0.25 0.92 -0.27 -0.36 0.07 
NE1 0.35 0.49 0.23 -0.28 0.96 0.36 0.03 
NE2 0.30 0.32 0.24 -0.25 0.95 0.27 0.06 
QU1 0.49 0.61 0.46 -0.44 0.32 0.86 0.09 
QU2 0.31 0.53 0.60 -0.28 0.26 0.84 0.21 
QU3 0.39 0.63 0.55 -0.32 0.26 0.89 0.19 
QU4 0.51 0.63 0.50 -0.43 0.33 0.90 0.09 
PC1 -0.06 0.14 0.25 0.07 0.05 0.15 0.95 
PC2 -0.02 0.13 0.23 0.04 0.02 0.14 0.86 
PC3 -0.02 0.14 0.22 0.01 0.02 0.16 0.66 
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Table B4. Latent Construct Correlations Experiment 1 

Construct INT PU PEOU LPR NE QU PC 
INT 0.966       
PU 0.534 0.846      

PEOU 0.346 0.613 0.922     
LPR -0.463 -0.495 -0.344 0.901    
NE 0.399 0.468 0.343 -0.428 0.950   
QU 0.444 0.680 0.692 -0.425 0.440 0.881  
PC -0.066 0.113 0.255 0.026 0.008 0.190 0.877 

 

Table B5. Latent Construct Correlations Experiment 2 
Construct INT PU PEOU LPR NE QU PC 

INT 0.964       
PU 0.535 0.917      

PEOU 0.301 0.594 0.914     
LPR -0.547 -0.426 -0.344 0.916    
NE 0.340 0.311 0.346 -0.428 0.955   
QU 0.488 0.680 0.692 -0.425 0.440 0.871  
PC -0.044 0.113 0.255 0.026 0.008 0.190 0.832 

 
Table B6. Variable Inflation Factor Scores 

Experiment 1 Experiment 2 
Construct VIF Construct VIF 

INT 1.384 INT 1.762 
PU 2.174 PU 2.415 

PEOU 2.227 PEOU 1.867 
LPR 1.486 LPR 1.487 
NE 1.329 NE 1.218 
QU 2.402 QU 2.435 
PC 1.066 PC 1.099 

 
Table B7. Reliability Results for Reflective Constructs 

 Experiment 1 Experiment 2 

Constructs No. of 
items 

Cronbach’s 
alpha (α) 

Composite 
reliability 

No. of 
items 

Cronbach’s 
alpha (α) 

Composite 
reliability 

Intent to adopt 2 0.929 0.966 2 0.925 0.964 

Perceived usefulness 3 0.800 0.883 3 0.906 0.941 

Perceived ease of use 3 0.911 0.944 3 0.902 0.939 

Location privacy risk 4 0.923 0.945 4 0.936 0.954 

Network effect 2 0.892 0.948 2 0.903 0.954 

Quality 4 0.904 0.933 4 0.894 0.926 

Privacy concern 3 0.861 0.909 3 0.798 0.868 

 

 

 



Transactions on Human-Computer Interaction 121 

 

Volume 8   Issue 3  
 

 

 

 

 
Table B8. Common Methods Bias Analysis for Experiment 1 

Construct Indicator 
Substantive 

factor loading 
(λs) 

Substantive factor 
variance explained 

(λs2) 

Method factor 
loading (λm) 

Method factor 
variance explained 

(λm2) 

Intent to adopt INT1 0.954*** 91.0% 0.018 0.0% 
INT2 0.978*** 95.6% -0.018 0.0% 

Perceived 
usefulness 

PU1 0.626*** 39.2% 0.200** 4.0% 
PU2 0.964*** 92.9% -0.061* 0.4% 
PU3 0.933*** 87.0% -0.124* 1.5% 

Perceived ease 
of use 

PEOU1 1.011*** 102.2% -0.116** 1.3% 
PEOU2 0.828*** 68.6% 0.120** 1.4% 
PEOU3 0.927*** 85.9% -0.004 0.0% 

Location privacy 
risk 

LPR1 0.859*** 73.8% -0.043 0.2% 
LPR2 0.970*** 94.1% 0.094** 0.9% 
LPR3 0.894*** 79.9% -0.019 0.0% 
LPR4 0.880*** 77.4% -0.032 0.1% 

Network effect NE1 0.921*** 84.8% 0.047* 0.2% 
NE2 0.979*** 95.8% -0.047* 0.2% 

Quality 

QU1 0.813*** 66.1% 0.070 0.5% 
QU2 1.009*** 101.8% -0.152*** 2.3% 
QU3 0.894*** 79.9% 0.013 0.0% 
QU4 0.810*** 65.6% 0.095* 0.9% 

Privacy concern 
PC1 0.903*** 81.5% 0.016 0.0% 
PC2 0.928*** 86.1% -0.021 0.0% 
PC3 0.823*** 67.7% 0.005 0.0% 

Average  0.9000.818 81.8% 0.002 0.7% 
Notes: *** p < 0.001, ** p < 0.01, * p < 0.05 

 
Table B9. Common Methods Bias Analysis for Experiment 2 

Construct Indicator 
Substantive 

factor 
loading (λs) 

Substantive factor 
variance explained 

(λs2) 

Method factor 
loading (λm) 

Method factor 
variance explained 

(λm2) 

Intent to adopt INT1 0.937*** 87.8% 0.043*** 0.2% 
INT2 0.992*** 98.4% -0.043*** 0.2% 

Perceived 
usefulness 

PU1 0.691*** 47.7% 0.222*** 4.9% 
PU2 1.029*** 105.9% -0.104*** 1.1% 
PU3 1.021*** 104.2% -0.106*** 1.1% 

Perceived ease 
of use 

PEOU1 0.916*** 83.9% -0.023 0.1% 
PEOU2 0.890*** 79.2% 0.038 0.1% 
PEOU3 0.937*** 87.8% -0.016 0.0% 

Location privacy 
risk 

LPR1 0.870*** 75.7% -0.051** 0.3% 
LPR2 0.939*** 88.2% 0.027 0.1% 
LPR3 0.934*** 87.2% 0.018 0.0% 
LPR4 0.921*** 84.8% 0.004 0.0% 

Network effect NE1 0.938*** 88.0% 0.034*** 0.1% 
NE2 0.971*** 94.3% -0.034*** 0.1% 

Quality 

QU1 0.858*** 73.6% 0.005 0.0% 
QU2 0.838*** 70.2% -0.010 0.0% 
QU3 0.794*** 63.0% -0.019 0.0% 
QU4 0.809*** 65.4% 0.023 0.1% 

Privacy concern 
PC1 0.878*** 77.1% -0.004 0.0% 
PC2 0.884*** 78.1% -0.012 0.0% 
PC3 0.767*** 58.8% 0.019 0.0% 

 
Average   

0.896 
 

80.9% 
 

0.001 
 

0.4% 
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Notes: *** p < 0.001, ** p < 0.01, * p < 0.05 

 

Experimental Steps and Scenarios 

Experimental Steps 

Step 1 

Each participant navigated to the website where the experimental simulation was hosted. After reading an 
IRB cover letter, we gave them a short pretest to measure their privacy concern. 

Step 2 

Next, the Web application randomly assigned them to one of 48 different simulations (12 group 
manipulations x 4 contexts) so that each participant viewed a simulation of one particular context. To do 
so, we wrote an algorithm that measured the current number participants in each of the 48 groups, sorted 
those groups by the count of completed surveys, and then randomly assigned the next user to one of the 
groups with the lowest count. This process assured both random and equal assignment to treatments. 

Step 3 

Next, we gave participants a hypothetical scenario related to one of the four previously described 
applications. The idea was to set up a realistic context for an app that a typical consumer might want to 
use and to provide a descriptive context for why that might be the case (e.g., receive better traffic 
information to help with commute from work). The hypothetical scenarios also helped set up the 
respective LBS privacy issues associated with the given application (We provide these specific scenarios 
in the table that follows step 5). 

Step 4 

After checking a required box to confirm that they read and understood their scenario, we gave 
participants a series of 9-12 screen shots (depending on the context) that simulated the process of 
searching the Apple App Store for an app that met their needs, downloading and installing the app, 
opening the app, and using it once for its intended purpose. The screen shots allowed the user to use 
their mouse to click the actual buttons on the iPhone images to complete the simulation. These screen 
shots were based on actual iPhone images but modified to reflect differences in privacy assurance, quality 
ratings, and network size (see manipulations in the table that follows step 5). 

Step 5 

After they completed the simulation, we gave participants a post-test survey that included our measures 
and manipulation checks.  
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Documentation on Scenarios 

Page 1 
 
We took the 
screenshots to the 
right from the Web-
based simulation 
and represent the 
four scenarios (1 
per participant) 
adminsitered after 
participants 
completed all pre-
experiment survey 
questions and 
before we 
administered the 
post-experiment 
survey questions. 
 
The screen shots 
below vary 
depending on which 
of the four 
scenarios the 
participant was 
randomly (and 
systematically) 
assigned to. 

Sex offender scenario 

 
Traffic congestion scenario 

 
Friend locator scenario 

 
Fitness tracker scenario 
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Documentation on Scenarios 

Page 2 
 
The following series 
of screen shots is 
for the sex offender 
locator app only. 
The other four 
scenarios followed 
a nearly identical 
set of 9 to 10 steps 
but used the screen 
shots relevant to 
each app. 
 
Also, notice that 
each required 
mouse click is 
highlighted in red. 
The participants 
could click the 
actual buttons to 
navigate through 
the simulation, 
which further 
enhanced the 
realism. 

 

Page 3 
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Documentation on Scenarios 

Page 4 

 

Page 5 
This is the step 
which highlights the 
experimental 
manipulations. 
Notice that the 
simulation draws 
their attention to the 
three variables 
(quality rating, 
network size, and 
privacy assurance) 
equally. 
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Documentation on Scenarios 

Page 6 

 

Page 7 
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Documentation on Scenarios 

Page 8 

 

Page 9 
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Documentation on Scenarios 

Page 10 

 

Page 11 
Manipulation 
checks 

 

Post-test After answering the manipulation check questions and clicking the “Continue ->” button above, 
the participates were administered each of the post-test questions listed in the Appendix 1 
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