
25TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2016 POLAND)

93

Incremental Integration of Microservices in Cloud Applications

Miguel Zúñiga-Prieto miguel.zunigap@ucuenca.edu.ec
University of Cuenca
Cuenca, Ecuador

Emilio Insfran einsfran@dsic.upv.es
Universitat Politècnica de València
Valencia, Spain

Silvia Abrahao sabrahao@dsic.upv.es
Universitat Politècnica de València
Valencia, Spain

Carlos Cano-Genoves carcage1@inf.upv.es
Universitat Politècnica de València
Valencia, Spain

Abstract
Microservices have recently appeared as a new architectural style that is native to the cloud. The
high availability and agility of the cloud demands organizations to migrate or design
microservices, promoting the building of applications as a suite of small and cohesive services
(microservices) that are independently developed, deployed and scaled. Current cloud
development approaches do not support the incremental integration needed for microservice
platforms, and the agility of getting new functionalities out to customers is consequently
affected by the lack of support for the integration design and automation of the development
and deployment tasks. This paper presents an approach for the incremental integration of
microservices that will allow developers to specify and design microservice integration, and
provide mechanisms with which to automatically obtain the implementation code for business
logic and interoperation among microservices along with deployment and architectural
reconfiguration scripts specific to the cloud environment in which the microservice will be
deployed.
Keywords: Microservices, incremental, integration, cloud, cloud architectures

1. Introduction
The need to maintain high customer satisfaction by delivering new or customized products and
services signifies that development paradigms are changing to the Continuous Integration (CI)
and Continuous Deployment (CD) of software functionality, in which companies offering
internet-based services should be capable of providing customers with software functionality
on a daily basis [9]. The microservice architectural style has therefore emerged to facilitate
CI/CD by affecting the way in which software development teams are structured, source code
is organized and continuously built/packed, and software products are continuously deployed
[8]. This architectural style proposes the development of a single application as a suite of small
and cohesive sets of microservices built around business capabilities, and independently
developed, deployed and scaled, thus allowing them to scale their applications, gain agility and
get new functionalities out to customers faster [10], [17].

The flexibility in resource management (e.g. processing, memory, message queues)
provided by cloud environments is motivating organizations to consider them as their system
deployment environment, in which different Infrastructure as a Service (IaaS) or Platform as a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISD2016 POLAND

94

Service (PaaS) environments are chosen depending on the Service Level Agreement (SLA) or
other requirements. Cloud environments are a well suited option as regards deploying
microservices [14], [2], since they allow companies to gain agility and reduce complexity not
only when deploying and scaling microservices, but also by acquiring resources provisioned
according to specific microservice needs. However, applications that will be deployed in cloud
environments (cloud applications) must be developed using cloud-specific standards, thus
preventing developers from creating software that can be deployed on multiple clouds, which
is known as vendor lock-in [6]. The incremental nature of the microservice-based applications
development additionally leads to a situation in which the application’s architecture evolves
each time a microservice is integrated into it. Building microservices for deployment in cloud
environments therefore requires managing architectural changes (architectural reconfiguration)
and minimizing application disruptions while the integration takes place.

Current cloud development approaches do not support microservice
development/migration and only a few technical reports on this can be found (e.g., [2], [16],
[19]). Approaches that support the development of cloud applications are related to this work
(e.g., [11], [12], [1]); however, proposals confronting the incremental development and its
architectural implications are still lacking. Furthermore, in terms of architectural
reconfiguration, as far as we know, there are no proposals that support a systematic reasoning
about the architectural impact of the integration of services included in a given software
increment into the current application architecture. In previous works [23],[25], we introduced
a general process definition for the DIARy method which follows an incremental and MDD
approach that supports the incremental integration of cloud service applications and their
dynamic architecture reconfiguration triggered by the integration of new software increments
(hereafter referred to as increments); to support the specification and generation of some
software artifacts for service architecture reconfiguration. In this paper, we extend the DIARy
process by defining new activities and tasks to satisfy microservices principles and support the
incremental integration of microservices. We also provide the tool support needed to automate
these tasks by defining the metamodels, which define the microservice integration logic, as well
as the transformation chains, which automate the generation of software artifacts that
implement the integration logic (orchestration among microservices), and scripts for
architectural reconfiguration.

The remainder of this paper is structured as follows. Section 2 contains a description of the
background and discusses related works. Section 3 presents an overview of the method
proposed. Section 4 illustrates the use of our approach in a case study. Finally, Section 5
presents our conclusions and future work.

2. Background and Related Work
The microservice architectural style is a lightweight subset of the Service Oriented Architecture
(SOA), in which: “the main difference between SOA and microservices is that the latter should
be self-sufficient and deployable independently of each other while SOA tends to be
implemented as a monolith” [21]. This architectural style is gaining acceptance as regards
overcoming the shortcomings of a monolithic architecture in which, rather than having the
application logic within one deployable unit, applications are decomposed into services, each
of which is deployable on a different platform, runs its own process, and communicate by means
of lightweight mechanisms. The main principles of microservices are [10]:
1. Componentization via Services: Software is broken up into multiple services that are

independently replaceable and upgradeable and communicate by means of inter-process
communication facilities using an explicit component-published-interface.

2. Organized Around Business Capabilities: Microservices are implemented around business
areas, in which services include a user-interface, storage, and any external collaborations.

3. Products not Projects: Development teams own a product throughout its entire lifetime,
taking full responsibility for the software in production.

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

95

4. Smart Endpoints and Dumb Pipes: Business logic, related business rules, and data reside
in the services themselves rather than in a centralized middleware. Simple messaging or a
lightweight messaging bus is used to provide communication among microservices.

5. Decentralized Governance: Standardization on a single technology platform is avoided; the
right technological stack for a job should be used, and each microservice manages its own
decisions regarding tools, languages, and data storage.

6. Decentralized Data Management: Decisions concerning both the conceptual model of the
world and data storage will differ between microservices.

7. Infrastructure Automation: Automatic means to integrate and deploy in new environments.
8. Evolutionary Design: Services are independently replaced and upgraded, which is achieved

by using service decomposition as a tool so as to enable application developers to control
changes in software applications at the pace of business changes.
Decentralized Governance and Decentralized Data Management microservice principles

suggest avoiding standardization in a single technology; however, certain development
challenges (e.g., the vendor lock-in) need to be addressed in order to produce services that are
feasible for deployment in different cloud environments. Furthermore, the Infrastructure
Automation microservice principle suggests having an automatic means of integration and
deployment in new environments. However, despite the fact that development teams building
microservices use CI/CD techniques and tools[10], these techniques require the inclusion of
reliable software artifacts (e.g., implementation code, deployment scripts, configuration scripts)
in their automated building processes or deployment pipelines. Software artifacts should
therefore be error free in order to ensure that the CI/CD’s automated test functionalities do not
prevent the integration or deployment process. Finally, CI/CD requires the making of
architectural decisions [21], and in a context in which the application architecture evolves with
each microservice integration, mechanisms that support the specification of architectural
decisions and manage architectural changes without preventing the execution of applications
are therefore required.

Model-Driven Development (MDD) is an approach used to develop software systems in
which developers build an application by refining models at different levels of abstractions, and
then obtain implementation artifacts by means of model transformations. We believe that an
MDD approach provides good support as regards managing microservice integration and the
consequent architectural evolution of the application. This approach will allows developers to:
i) capture technology-independent microservice integration specification and deployment
information, thus making design artifacts reusable and enabling developers to overcome the
vendor lock-in issue; ii) propagate microservice integration specification to
implementation/deployment/reconfiguration artifacts, thus enabling developers to obtain error
free artifacts; and iii) automate building, packaging, deployment and the architectural
reconfiguration process.

Related Work
Developing applications by using the microservice architectural style is a relatively new
approach, and only a few related technical reports can be found (e.g., [2], [16], [19]). These
works describe design decisions made or strategies employed in order to either satisfy
microservice principles, or make use of CI/CD tools and techniques; however, they do not
propose design, implementation or integration methods. Moreover, those works do not propose
mechanisms with which to help obtain error free artifacts to be included into CI/CD pipelines.

Microservices are cloud-native architectures, and the MDD approaches that support the
development of cloud applications are therefore related to this work (e.g., [12], [11], [1], [20]).
These approaches apply MDD principles in order to tackle the vendor lock-in problem when
developing or migrating cloud applications. With regard to approaches that propose
mechanisms with which to document design decisions in cloud environments we can highlight
CAML [3], MULTICLAPP [13] and CloudML [4]. These works define UML profiles or other
modeling languages used to describe deployment topologies, applications as a composition of
software artifacts to be deployed across multiple clouds, or resources that a given application

ISD2016 POLAND

96

may require from existing clouds. However, although “getting integration right is the single
most important aspect of the technology associated with microservices” [17], these proposals
do not provide mechanisms with which to specify architectural decisions regarding integration
and the impact of integrating increments in the current cloud application architecture. Finally,
with regard to approaches for dynamic reconfiguration, works such as SeaClouds [5] or
MODAClouds [1] propose mechanisms that can be used to achieve architectural
reconfiguration either by replacing orchestration or as result of the re-deployment of
components. These proposals do not allow the specification of the architectural changes
produced during integration nor do they take into account implementation alternatives that
facilitate scalability and the re-deployment of services in different clouds.

3. A Method for the Incremental Integration of Microservices
This method allows cloud applications to be constructed as a composition of microservices, in
which each microservice design is included in an incremental increment integration process
that allows developers to specify how microservices will be integrated into a cloud application.
Developers use the increment integration specification to generate software artifacts, such as
skeletons of microservice logic, interaction protocol and scripts with which to build, deploy and
architecturally reconfigure the current cloud application, all of which are generated according
to each microservice technology specification. In order to define this method, we analyzed how
our previous work satisfies the principles of the microservice architectural style; we then used
the lessons learned to extend the DIARy-process [23],[25]. The Microservice Incremental
Integration Method, which is made up of the Microservices Incremental Integration Process
(also referred to as the Integration Process), the adapted DIARy-specification-profile [24] and
transformation chains, is explained as follows. Fig.1 shows the Integration Process, whose
main activities are explained in the next sections:

Fig.1. The Microservice Incremental Integration Process

Increment Integration Specification

This activity aims to allow developers to specify how to integrate an increment into the current
application (Application Architecture Model) by specifying both the integration logic and the
architectural impact of integration without taking into consideration the specifics of any cloud
environment. In this activity, developers take a microservice (Microservice Architecture
Model) as input, include it as part of an increment, follow Increment Integration Specification
Guidelines, and make integration design decisions based on SLA terms (whose definition,
specification and representation is outside of this work scope). Since this is an iterative activity,
it provides developers with the possibility of specifying the integration of increments composed
of several microservices. The DIARy-Specification-profile (see [24] for more details about its
usage) helps developers create the Extended Increment Architecture Model which describes the
increment specification integration by documenting the increment’s architecture, the
integration’s logic and the architectural impact of integration. This model complies with the
Extended Increment Architecture Model metamodel, which is explained below.

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

97

The Extended Increment Architecture Model metamodel

The Service oriented architecture Modeling Language (SoaML) [18] is an OMG specification
that was specifically designed for the modeling of service-oriented architectures. SoaML
leverages the Model Driven Architecture (MDA) and provides a UML profile and a metamodel
that extends the UML metamodel. The DIARy-specification-profile extends the SoaML profile,
resulting in an ADL that facilitates the increment integration specification. In order to facilitate
software artifact generation, this work extends SoaML and UML metamodels in order to define
the Extended Increment Architecture Model metamodel (see Fig.2). Owing to space limitations,
Fig.2 includes only those meta-classes that define the main concepts used to describe
integration logic and architectural impact, in which meta-classes belonging to the UML
metamodel are depicted with an icon next to the meta-class name, whereas meta-classes that
extend the SoaML/UML notations are depicted with a background color.

Fig.2. Extract of Increment Architecture Model meta-model

A Participant represents: i) a microservice to be integrated, ii) a microservice/component
already existing in the current Application Architecture Model with which the microservice(s)
to be integrated will interoperate, and iii) a microservice/component to be created in order to
consume microservice services or provide it with services.

The Services Architecture of the participant is modeled as SoaML Services Architecture
diagrams and specifies how parts of a microservice work together to play the owning
microservice role(s). This diagram includes the microservice’s inner architectural elements and
its interoperation requirements.

An Extended Increment Architecture extends a UML Collaboration, thus allowing the
increment integration specification by describing both the integration logic and the architectural
impact of integration. Its inner parts (ParticipantUse, RoleBindings, and ServiceContractUse)
describe an architecture: the increment’s architecture. Each ParticipantUse is a reference to a
Participant involved in the integration. Each ServiceContractUse is a reference to a
ServiceContract that describes interoperation among Participants. RoleBindings, and
ServiceContractUses define the integration logic, whereas tagging
ExtendedIncrementArchitecture inner parts with architecturalImpact values defines the
architectural impact of integration.

A ServiceContract extends a UML Collaboration. When modeling the Services
Architecture of the participant, its semantic remains the same as that defined by SoaML. When
modeling the integration (ExtendedIncrementArchitecture), it describes specific roles that
Participants will play. Roles have a name and an Interface type that specify operations and
events, which comprise the interoperation Interactions among Participants after integration.

A ParticipantUse is a Participant involved in a specific integration, where the delayLevel
attribute makes it possible to specifying whether the Participant requires immediate processing
of requests or whether they could be delayed by using cloud environment services (e.g.,
message queues). The elasticityLevel attribute allows the specification of requirements
concerning the level of the Participant scaling needs.

The ServiceContractUse extends the UML CollaborationUse and explicitly specifies the

ISD2016 POLAND

98

use of the interoperation described in a Service Contract.
A RoleBinding binds each of the Roles of a ServiceContract to a Participant, both of which

are referenced in an ExtendedIncrementArchitecture.
The attribute architecturalImpact allows developers to specify the architectural change

(Add, Modify, and Delete) that an architectural element (i.e., ParticipantUse, RoleBinding,
ServiceContractUse) will produce on the current ApplicationArchitectureModel.

Integration Specification

In order to specify increment integration, developers take the input Microservice Architecture
Model and create a Participant that becomes its owner, and the Microservice Architecture
Model input then becomes the Services Architecture of the Participant created. As stated
previously, the Services Architecture of the participant not only describes the inner architectural
elements of the microservice, but also its interoperation requirements, which describe the
outside roles that external Participants must play in order to interact with the microservice
along with interaction among those roles by means of the outside ServiceContracts also
described.

Once the Participant representing the microservice to be integrated has been created,
developers specify integration logic by creating an ExtendedIncrementArchitecture element,
and then create its inner parts: i) a ParticipantUse that references the already created
Participant; ii) ParticipantUses that reference Participants belongings to the current
Application Architecture Model that will play the outside roles, and with which the
microservice(s) to be integrated will interoperate; iii) ServiceContractUses that specify
interoperation among Participants by referencing the aforementioned outsideServiceContracts;
iv) RoleBindings that bind each of the roles defined in an outsideServiceContract to the
ParticipantUse that will play the role.

Developers specify the architectural impact of integration by tagging
ExtendedIncrementArchitecture inner parts with architecturalImpact values that describe how
they collaborate to reconfigure the Application Architecture Model (e.g., by adding
RoleBindings, adding Participants, removing Participants). Finally, developers specify
information about the management of changes in workload required by each ParticipantUse
and ServiceContractUse by specifying elasticityLevel and delayLevel values.

By creating Extended Increment Architecture Models, which extend UML and SoaML,
developers satisfy Componentization via Services and Organized Around Business Capabilities
principles. Furthermore, having Microservice Architecture Models as input allow developers to
take full responsibility for the software in production, which facilitates incremental integration
and satisfies the Evolutionary Design and Products not Projects principles. Designing
microservice integration in advance simultaneously gives different development teams working
on different microservices the independence to design, implement and deploy microservices.

Increment Implementation

This activity aims to support the integration process by generating platform-specific cloud
artifacts (software artifacts to be deployed on a cloud platform), includes the following steps:

Check Increment Compatibility

Developers participate in verifying whether the ExtendedIncrementArchitectureModel is
compatible with the current ApplicationArchitectureModel. If discrepancies exist between the
Participant’s interfaces (e.g., different names for methods and services, different message
ordering), they design a ServiceContract that overrides outside ServiceContracts and apply
model-to-text (M2T) transformations that generate skeletons of Cloud Adaptors (see Fig.1).

Specify the Packaging and Deployment Structure

In this step, developers apply model-to-model (M2M) transformations to translate the Extended
Increment Architecture Model into a model that describes the cloud artifacts needed to
implement its inner parts (DIARyArchitecturalElement), the Increment Cloud Artifacts Model

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

99

(see Fig.1). This model organizes cloud artifacts into projects that can be packed/built/deployed
independently in different cloud environments in accordance with decisions made during the
development process (e.g. technology, microservice workload management decisions). This
model promotes the decoupling of software artifacts that implement interaction protocol from
those that implement microservice design, thus satisfying the Smart Endpoints and Dumb Pipes
microservice principles. The Increment Cloud Artifacts Model complies with the Cloud
Artifacts Model meta-model (see Fig.3).

Fig.3. Extract of Cloud Artifacts Model meta-model

The Cloud Artifacts Model meta-model

The way in which microservices are deployed has an influence on satisfying SLA terms or other
nonfunctional requirements [7] (e.g., agility to deploy, modifiability, monitoring, cost of
provisioning). We use Projects to manage the building, packaging and deployment options.
M2M transformation rules map Interaction Projects onto Service Contracts (see Fig.2)
architectural elements, and generate descriptions of cloud artifacts that allow developers to
implement interoperation among microservices as a separate service. An Interaction Project
includes the following cloud artifacts: Interaction Service Hosted Services that implement
interoperation interaction protocols, Interface definitions, and Servicedata (message Types or
data Types). M2M transformation rules map inner parts of Service Contracts architectural
elements onto these cloud artifacts.

ImplementationProjects, in the case of Participants that provide services, are mapped onto
Service Architectures of the participant architectural elements (see Fig.2). These
Implementation Projects include descriptions of Artifacts, such as FrontEndService Hosted
Services that implement microservice business logic, Interface implementations of interfaces
defined in related Service Contracts, or backend HostedServices that use cloud environment
services (e.g., message queues). In the case of Participants that consume services,
Implementation Projects are mapped onto related ServiceContracts in order to describe
ClientObjectArtifacts that implement related Interfaces and initiate the service execution by
invoking InteractionServices or Adaptors that correct incompatibilities between interfaces. For
detailed mappings see [23].

Deployment Projects and Interaction/Implementation Projects facilitate the packaging of
Artifacts into a deployable package. Microservices whose related projects are included in a
Deployment Project will be implemented with the same technology and deployed in the same
cloud environment, whereas Artifacts included in an Interaction/Implementation project will be
packed together in the same deployment artifact and deployed in the same cloud environment
resource (e.g., virtual machine), thus sharing cloud environment resources. Including

ISD2016 POLAND

100

microservice related Artifacts in an exclusive or shared Interaction/Implementation Project
allows developers to manage workload changes and running costs.

DynamicConfiguration classes describe configuration Settings (e.g., Provisioning
Configurations) that could change at runtime. Settings and Invoked/Exposed EndPoints
information will therefore be stored outside the deployable package. Thus enabling them to be
updated without requiring the redeployment of the entire package, a best practice in the CD
[15].

In order to Specify the Packaging and Deployment Structure, we provide an Eclipse plug-
in which executes M2M transformations carried out using the Atlas Transformation Language
(ATL) to generate Increment Cloud Artifacts Models from Extended Increment Architecture
Models. Input/Output models are implemented as ecore models in the Eclipse Modeling
Framework (EMF). Transformations generate descriptions of the cloud Artifacts required to
implement architectural elements and define the packaging/deployment structure by assigning
Artifacts to different Interaction/Implementation/Deployment Projects according to the
architecturalImpact, delayLevel and elasticityLevel values. Fig.4 (lines 3, 6, 10) shows an
example of the transformation rule applied to assign the Artifacts corresponding to Participants
(e.g, microservices) that require a high elasticityLevel into an exclusive ImplementationProject
(e.g., an exclusive virtual machine) that is assigned to a DeploymentProject (e.g., cloud
platform).

Fig.4. Extract of M2M for generating the Increment Cloud Artifact Model

Generate Implementation Code
In this step, cloud developers make decisions regarding implementation and deployment
technologies that best fit the individual requirements of each microservice included in an
increment, and then complete the previously generated Increment Cloud Artifacts Model by
specifying: i) the technology in which each artifact included in a DeploymentProject will be
implemented and deployed; ii) provisioning, deployment, and inter-service communication
information for each Implementation/InteractionProject, along with microservice configuration
information for each HostedService, by creating or updating classes of the
DynamicConfiguration, Setting type (e.g., number of service instances, memory, credentials),
or EndPoint (e.g., SOAP/REST service style, message format, protocols); iii) the
representation of each Artifact (e.g., source code language); iv) the location of artifacts to be
generated.

Next developers execute M2T transformations that use this model and the Extended
Increment Architecture Model as input in order to generate the cloud artifact implementations,
which are organized into a directory structure according to the Location specified for each
Project. The cloud artifacts generated implement (see Fig.1): i) an Interaction Protocol, ii)
software Cloud Adaptors, iii) Cloud Artifacts that implement microservice logic, APIs that
microservices expose, and as many configuration files as DynamicConfigurationEnvironments
(e.g., development, production), iv) Building Scripts/Packaging Scripts to create deployable
packages, according to the DeploymentProjects’ structure. Finally, cloud developers complete
the cloud artifacts generated and execute packaging/and building scripts to obtain deployable
packages.

01. rule ParticipantUse2Implementation { -- Create a Implementation project (and related elements) per ParticipantUse
02. from
03. ParticipantInput : eiam!ParticipantUse(
04. ParticipantInput.elasticityLevel = 4) -- Filter elements whose elasticityLevel = high (4)
05. to
06. implementation : cam!ImplementationProject(-- Crate an Implementation Project
07. name <- ParticipantInput.name, -- Assign the Participant name to the Project name
08. belongsToParticipant <- ParticipantInput.participantType,
09. artifacts <- front, -- Create an Artifact FrontEndService
10. deployment <- thisModule.resolveTemp(-- Assign Implementation Project to Participant’s Deployment project
11. ParticipantInput.participantType, 'DeploymentProject')),
12. front : cam!FrontEndService(-- Create a FrontEndService element
13. serviceProject <- implementation),
14. configimplement : cam!DynamicConfiguration(-- Create a DynamicConfiguration element

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

101

Deployment & Architectural Reconfiguration

In this activity developers select the adaptation patterns best suited to integrating the
increment’s architecture into the current application architecture and execute M2T
transformations that generate cloud artifacts that operationalize the adaptation patterns
according to Extended Increment Architecture Model and the Increment Cloud Artifacts Model.
The cloud artifacts generated are (see Fig.1): i) Deployment Scripts with which to deploy (and
provision) previously generated packages along with the corresponding configuration files, and
ii) scripts with which to reconfigure the application architecture, which use architectural impact
specification to dynamically update EndPoints information stored in the microservice
configuration files. Finally, the Extended Increment Architecture Model and the Increment
Cloud Artifacts Model are used as the input for the M2M transformations that update both the
current Application Architecture Model and the Application Cloud Artifacts Model by
integrating the corresponding architectural elements and cloud artifact descriptions (see Fig.1).

The Increment Implementation and Deploy & Architectural Reconfiguration activities
allow developers to satisfy the Decentralized governance and Infrastructure Automation
microservice principles by providing models that abstract implementation and deployment
decisions from technological aspects, and tools that enable developers to obtain software
artifacts that can be used as part of CI/CD pipelines.

4. Case Study
In order to illustrate the use of our approach, in this section we present an excerpt of a case
study (adapted and extended from [3]). A manufacturing company wishes to improve the
technological support given to its dealers, and is considering updating its already existing
manufacturer microservice by including new functionalities with which to allow dealers to
place production orders and obtain the products ordered by means of a shipping service. Fig.
5a shows an extract of the current Application Architecture Model which will be involved after
integrating the Manufacturer’s microservice update.

The development team involved in this new requirement used SoaML to model the
architectural design of the new manufacturer microservice functionalities and produce the
Microservice Architecture Model (Fig. 5b), described as a Services Architecture, whose inner
parts (e.g., ServiceContracts, Interfaces, Roles) are not shown owing to space restrictions. The
Microservice Architecture Model includes microservice architectural elements that describe
microservice logic and architectural elements that describe microservice interoperation
requirements (depicted with a background color in Fig. 5b). Note that the Participants that are
expected to interoperate with the manufacturer microservice (other components/microservices
that consume manufacturer microservice’s services or provide it with services) are indicated
by the ParticipantUses with dashed outlines (i.e., :Dealer and :Shipper), whereas that internal
microservice components are normal ParticipantUses.

Fig. 6a shows the Extended Increment Architecture Model resulting from the Increment
Integration Specification activity, in which the Microservice Architecture Model (Fig. 5b)
becomes the Service Architecture of the participant Manufacturer, which is referenced by the
manufacturer ParticipanUse architectural element. The Microservice interoperation
requirements described in the Microservice Architecture Model (depicted with a background
color in Fig. 5b), was referenced in the Extended Increment Architecture Model, thus becoming
the microserivice integration logic (depicted with a background color in Fig. 6a).

ISD2016 POLAND

102

a)

b)

Fig. 5.Extracts of: a) Application Architecture Model, b) Microservice Architecture Model

Developers proceed to specify the Participants that will play the roles defined in the
integration logic. The Participant Manufacturer already exists in the Current Architecture
Model, and the manufacturer ParticipantUse is therefore tagged with architecturalImpact =
Modify. The Dealer and Shipper Participants do not exist in the Current Architecture Mode
and must therefore be created, which is specified by tagging the ParticipantUses with
architecturalImpact = Add. Finally, the requirements for workload change management are
specified; in this case study, the new Manufacturer functionalities require a High
ElasticityLevel that differs from the current requirements (see Fig. 5a).

Fig. 6. Main transformation chains a) Extended Increment Architecture Model, b) Increment Cloud

Artifacts Model, c) generated cloud artifacts and updating of current application models

During the Increment Implementation activity there were no inconsistencies among
Participants’s interfaces, and the interaction protocols described in the interaction logic were
not therefore changed. The Increment Artifacts Model (Fig. 6b) was generated by applying
M2M transformations of the Eclipse plug-in provided with this method, and it was then
completed. As the M2T transformations that generate Implementation Code (Fig. 6c) are not
yet finished, we therefore implemented the cloud artifacts required manually, built the
application, packed it and deployed it in the Microsoft Azure cloud environment.

During the Deployment & Architectural Reconfiguration, we use the open source Eclipse

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

103

extension Acceleo M2T generator in order to obtain Reconfiguration Scripts (see Fig. 6c). We
generated XML Document Transform (XDT) files used in Visual Studio to modify service
configuration files while the deployment takes place. Fig.7 (lines 12, 13, 14) shows an example
of the transformation rule applied to modify configuration information related to bindings
among services in accordance with architectural impact specification.

Fig.7. Extract of M2T used to generate Reconfiguration Scripts

Finally, the M2M transformations that update current application models (see Fig. 6c) are
in the process of being built; however Fig. 8 shows how the Application Model Architecture is
expected to look after integration.

Fig. 8. Current Application Model Architecture after integration

5. Conclusions and Future Work
We presented a general view of a method for the incremental integration of microservices into
cloud applications. In this method, developers specify how to integrate a microservice into the
current application by describing both the integration logic and the architectural impact of
integration without taking into consideration the specifics of any cloud environment. They then
use both the microservice design and the integration specification to generate: i) skeletons of
the microservice implementation code and the integration logic implementation code, ii) scripts
to build and package the related microservice software artifacts, iii) scripts to deploy the
microservices, and iv) scripts to manage the current application’s architectural reconfiguration
produced by the integration. Particular emphasis has been placed on explaining how the method
manages to keep the microservice design independent from the integration specification, thus
allowing different development teams to work on different microservices and giving them the
independence to design, implement and deploy microservices according to the
implementation/deployment technological requirements of each microservice. Providing
developers with tools that automate integration and deployment operations help developers in
eliminating discontinuities between development and deployment through CI/CD support
which is required in order to deliver new functionalities to customers in an agile manner.

We have shown the feasibility of our proposal by applying it to a case study. We are
currently working on implementing transformation chains; however, our approach does not take
into account the automation of infrastructure changes. We are considering the use of the
DevOps approach in order to improve the collaboration between development and operations,
thus allowing new software releases to be made available much faster [22]. In this context, as
further work we plan to adapt the method presented in this work in order to satisfy DevOps
practices which promote the automation of the process of software delivery and infrastructure

01. [template public generateElement(aCloudArtifactsModel : CloudArtifactsModel)]
02. [for(InteractionProjects:InteractionProject | projects->select(oclIsTypeOf(InteractionProject)))]
03. [file (InteractionProjects.name.concat('/ServiceDefinicion.csdef'), false)]
04.
05. <?xml version="1.0" encoding="utf-8"?>
06. <ServiceConfiguration serviceName="[InteractionProjects.name/]" xmlns=“…" xmlns:xdt="http://.../XML-Document-Transform" >
07.
08. [for(IK:Invoked | InteractionProjects.interactionService.endpoints->select(oclIsTypeOf(Invoked)))]
09. <WebRole name="[InteractionProjects.name/]">
10. <ConfigurationSettings xdt:Transform="InsertIfMissing">
11.
12. [comment parseXDT executes a mapping between artifactImpact and XDT values /]
13. <Setting name="[IK.name.concat('_EndPoint')/]" [parseXDT(IK.artifactImpact)/]/>
14. <Setting name="[IK.name.concat('_Binding')/]" [parseXDT(IK. artifactImpact)/]/>

ISD2016 POLAND

104

changes. Additionally, even though microservices related artifacts are generated according to
architectural impact of microservices’ versions, we plan to provide mechanisms to manage
incremental consistency, avoiding to lose changes introduced in the implementation code after
generation (e.g., changes in interface implementations). Finally, we also plan to design
experiments with which to validate the effectiveness of our approach in practice.

Acknowledgements
This research is supported by the Value@Cloud project (MINECO TIN2013-46300-R),
DIUC_XIV_2016_038 project, and the Microsoft Azure Research Awards.

References
1. Ardagna, D., Nitto, E. Di, Milano, P., Petcu, D., Sheridan, C., Ballagny, C., Andria, F.

D., and Matthews, P., 2012, “MODAClouds: A Model-Driven Approach for the Design
and Execution of Applications on Multiple Clouds,” pp. 50–56.

2. Balalaie, A., Heydarnoori, A., and Jamshidi, P., 2015, “Migrating to Cloud-Native
Architectures Using Microservices: An Experience Report,” pp. 1–15.

3. Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., and Kappel, G., 2014, “UML-
based Cloud Application Modeling with Libraries, Profiles, and Templates,” in In Proc.
Workshop on CloudMDE, pp. 56–65.

4. Brandtzæg, E., Mosser, S., and Mohagheghi, P., 2012, “Towards CloudML, a Model-
based Approach to Provision Resources in the Clouds,” in 8th European Conference
on Modelling Foundations and Applications (ECMFA), pp. 18–27.

5. Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J., Pimentel, E., and D’Andria,
F., 2014, “SeaClouds: A European Project on Seamless Management of Multi-Cloud
Applications,” ACM SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp. 1–4.

6. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., and Molina, J.,
2009, “Controlling Data in the Cloud: Outsourcing Computation without Outsourcing
Control,” Proc. 2009 ACM Work. Cloud Comput. Secur., pp. 85–90.

7. Costa, B., Pires, P. F., Delicato, F. C., and Merson, P., 2014, “Evaluating REST
Architectures-Approach, Tooling and Guidelines,” J. Syst. Softw., vol. 112, pp. 156–
180.

8. Familiar, B., Microservices, IoT, and Azure: : Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions., 2015, Apress.

9. Feitelson, D. G., Frachtenberg, E., and Beck, K. L., 2013, “Development and
Deployment at Facebook,” IEEE Internet Comput., vol. 4, pp. 8–17.

10. Fowler, M. and Lewis, J., 2014, “Microservices: A Definition of this New Architectural
Term.” [Online]. Available: http://martinfowler.com/articles/microservices.html.
[Accessed: 01-Feb-2016].

11. Frey, S. and Hasselbring, W., 2011, “The CloudMIG Approach: Model-Based
Migration of Software Systems to Cloud-Optimized Apps.,” Int. J. Adv. Softw., vol. 4,
no. 3, pp. 342–353.

12. Guillén, J., Miranda, J., Murillo, J. M., and Canal, C., 2013, “Developing Migratable
Multicloud Applications based on MDE and Adaptation Techniques,” Proc. Second
Nord. Symp. Cloud Comput. Internet Technol. - Nord. ’13, pp. 30–37.

13. Guillén, J., Miranda, J., Murillo, J. M., and Canal, C., 2013, “A UML Profile for
Modeling Multicloud Applicat.,” in Service-Oriented and Cloud Computing, pp. 180–
187.

14. Hillah, L. M., Maesano, A., Rosa, F. De, Maesano, L., and Fontanelli, R., 2015,
“Service Functional Test Automation,” in 10th Workshop System Testing and
Validation.

15. Humble, J. and Farley, D.Reliable Software Releases through Build, Test, and
Deployment Automation. 2010, Addison-Wesley Professional.

ZÚÑIGA ET AL. INCREMENTAL INTEGRATION OF ...

105

16. Krylovskiy, A., Jahn, M., and Patti, E., 2015, “Designing a Smart City Internet of
Things Platform with Microservice Architecture,”3rd Int. Conf. Futur. Internet Things
Cloud, pp. 25–30.

17. Newman, S. Building Microservices. 2015, O’Reilly Media, Inc.
18. Object Management Group “Service oriented architecture Modeling Language

(SoaML) Specification,” 2012.
19. Stefan, B., 2014, “How We Build Microservices at Karma.” [Online]. Available:

https://blog.yourkarma.com/building-microservices-at-karma.[Access:2-Mar-2016].
20. Vijaya, A. and Neelanarayanan, V., 2015, “Framework for Platform Agnostic

Enterprise App. Development Supporting Multiple Clouds,” Procedia Comput. Sci.,
vol. 50.

21. Viktor, F. The DevOps 2.0 Toolkit: Automating the Continuous Deployment Pipeline
with Containerized Microservices, 1 edition, 2016, CreateSpace Independent
Publishing Platform.

22. Wettinger, J., Andrikopoulos, V., and Leymann, F., 2015, “Enabling DevOps
Collaboration and Continuous Delivery Using Diverse App. Environments,” pp. 348–
358.

23. Zuñiga-Prieto, M., Abrahao, S., and Insfran, E., 2015, “An Incremental and Model
Driven Approach for the Dynamic Reconfiguration of Cloud Application
Architectures,” in 24th Int. Conf. on Information Systems Development ISD2015.

24. Zuñiga-Prieto, M., Abrahao, S., and Insfran, E., 2015, “A UML Profile for Modeling
the Integration of Cloud Services in Incremental Software Development (spanish),” in
XI Jornadas de Ciencia e Ingeniería de los Servicios (JCIS).

25. Zuñiga-Prieto, M., Gonzalez-Huerta, J., Abrahao, S., and Insfran, E., 2014, “Towards
a Model-Driven Dynamic Architecture Reconfiguration Process for Cloud Services
Integration,” in 8th International Workshop on Models and Evolution (ME 2014), pp.
52–61.

