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Abstract 
Microservices have recently appeared as a new architectural style that is native to the cloud. The 
high availability and agility of the cloud demands organizations to migrate or design 
microservices, promoting the building of applications as a suite of small and cohesive services 
(microservices) that are independently developed, deployed and scaled. Current cloud 
development approaches do not support the incremental integration needed for microservice 
platforms, and the agility of getting new functionalities out to customers is consequently 
affected by the lack of support for the integration design and automation of the development 
and deployment tasks. This paper presents an approach for the incremental integration of 
microservices that will allow developers to specify and design microservice integration, and 
provide mechanisms with which to automatically obtain the implementation code for business 
logic and interoperation among microservices along with deployment and architectural 
reconfiguration scripts specific to the cloud environment in which the microservice will be 
deployed. 
Keywords: Microservices, incremental, integration, cloud, cloud architectures 

1. Introduction  
The need to maintain high customer satisfaction by delivering new or customized products and 
services signifies that development paradigms are changing to the Continuous Integration (CI) 
and Continuous Deployment (CD) of software functionality, in which companies offering 
internet-based services should be capable of providing customers with software functionality 
on a daily basis [9]. The microservice architectural style has therefore emerged to facilitate 
CI/CD by affecting the way in which software development teams are structured, source code 
is organized and continuously built/packed, and software products are continuously deployed 
[8]. This architectural style proposes the development of a single application as a suite of small 
and cohesive sets of microservices built around business capabilities, and independently 
developed, deployed and scaled, thus allowing them to scale their applications, gain agility and 
get new functionalities out to customers faster [10], [17].  

The flexibility in resource management (e.g. processing, memory, message queues) 
provided by cloud environments is motivating organizations to consider them as their system 
deployment environment, in which different Infrastructure as a Service (IaaS) or Platform as a 
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Service (PaaS) environments are chosen depending on the Service Level Agreement (SLA) or 
other requirements. Cloud environments are a well suited option as regards deploying 
microservices [14], [2], since they allow companies to gain agility and reduce complexity not 
only when deploying and scaling microservices, but also by acquiring resources provisioned 
according to specific microservice needs. However, applications that will be deployed in cloud 
environments (cloud applications) must be developed using cloud-specific standards, thus 
preventing developers from creating software that can be deployed on multiple clouds, which 
is known as vendor lock-in [6]. The incremental nature of the microservice-based applications 
development additionally leads to a situation in which the application’s architecture evolves 
each time a microservice is integrated into it. Building microservices for deployment in cloud 
environments therefore requires managing architectural changes (architectural reconfiguration) 
and minimizing application disruptions while the integration takes place.  

Current cloud development approaches do not support microservice 
development/migration and only a few technical reports on this can be found (e.g., [2], [16], 
[19]). Approaches that support the development of cloud applications are related to this work 
(e.g., [11], [12], [1]); however, proposals confronting the incremental development and its 
architectural implications are still lacking. Furthermore, in terms of architectural 
reconfiguration, as far as we know, there are no proposals that support a systematic reasoning 
about the architectural impact of the integration of services included in a given software 
increment into the current application architecture. In previous works [23],[25], we introduced 
a general process definition for the DIARy method which follows an incremental and MDD 
approach that supports the incremental integration of cloud service applications and their 
dynamic architecture reconfiguration triggered by the integration of new software increments 
(hereafter referred to as increments); to support the specification and generation of some 
software artifacts for service architecture reconfiguration. In this paper, we extend the DIARy 
process by defining new activities and tasks to satisfy microservices principles and support the 
incremental integration of microservices. We also provide the tool support needed to automate 
these tasks by defining the metamodels, which define the microservice integration logic, as well 
as the transformation chains, which automate the generation of software artifacts that 
implement the integration logic (orchestration among microservices), and scripts for 
architectural reconfiguration. 

The remainder of this paper is structured as follows. Section 2 contains a description of the 
background and discusses related works. Section 3 presents an overview of the method 
proposed. Section 4 illustrates the use of our approach in a case study. Finally, Section 5 
presents our conclusions and future work.  

2. Background and Related Work 
The microservice architectural style is a lightweight subset of the Service Oriented Architecture 
(SOA), in which: “the main difference between SOA and microservices is that the latter should 
be self-sufficient and deployable independently of each other while SOA tends to be 
implemented as a monolith” [21]. This architectural style is gaining acceptance as regards 
overcoming the shortcomings of a monolithic architecture in which, rather than having the 
application logic within one deployable unit, applications are decomposed into services, each 
of which is deployable on a different platform, runs its own process, and communicate by means 
of lightweight mechanisms. The main principles of microservices are [10]: 
1. Componentization via Services: Software is broken up into multiple services that are 

independently replaceable and upgradeable and communicate by means of inter-process 
communication facilities using an explicit component-published-interface.  

2. Organized Around Business Capabilities: Microservices are implemented around business 
areas, in which services include a user-interface, storage, and any external collaborations. 

3. Products not Projects: Development teams own a product throughout its entire lifetime, 
taking full responsibility for the software in production. 
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4. Smart Endpoints and Dumb Pipes: Business logic, related business rules, and data reside 
in the services themselves rather than in a centralized middleware. Simple messaging or a 
lightweight messaging bus is used to provide communication among microservices. 

5. Decentralized Governance: Standardization on a single technology platform is avoided; the 
right technological stack for a job should be used, and each microservice manages its own 
decisions regarding tools, languages, and data storage.  

6. Decentralized Data Management: Decisions concerning both the conceptual model of the 
world and data storage will differ between microservices. 

7. Infrastructure Automation: Automatic means to integrate and deploy in new environments. 
8. Evolutionary Design: Services are independently replaced and upgraded, which is achieved 

by using service decomposition as a tool so as to enable application developers to control 
changes in software applications at the pace of business changes.  
Decentralized Governance and Decentralized Data Management microservice principles 

suggest avoiding standardization in a single technology; however, certain development 
challenges (e.g., the vendor lock-in) need to be addressed in order to produce services that are 
feasible for deployment in different cloud environments. Furthermore, the Infrastructure 
Automation microservice principle suggests having an automatic means of integration and 
deployment in new environments. However, despite the fact that development teams building 
microservices use CI/CD techniques and tools[10], these techniques require the inclusion of 
reliable software artifacts (e.g., implementation code, deployment scripts, configuration scripts) 
in their automated building processes or deployment pipelines. Software artifacts should 
therefore be error free in order to ensure that the CI/CD’s automated test functionalities do not 
prevent the integration or deployment process. Finally, CI/CD requires the making of 
architectural decisions [21], and in a context in which the application architecture evolves with 
each microservice integration, mechanisms that support the specification of architectural 
decisions and manage architectural changes without preventing the execution of applications 
are therefore required. 

Model-Driven Development (MDD) is an approach used to develop software systems in 
which developers build an application by refining models at different levels of abstractions, and 
then obtain implementation artifacts by means of model transformations. We believe that an 
MDD approach provides good support as regards managing microservice integration and the 
consequent architectural evolution of the application. This approach will allows developers to: 
i) capture technology-independent microservice integration specification and deployment 
information, thus making design artifacts reusable and enabling developers to overcome the 
vendor lock-in issue; ii) propagate microservice integration specification to 
implementation/deployment/reconfiguration artifacts, thus enabling developers to obtain error 
free artifacts; and iii) automate building, packaging, deployment and the architectural 
reconfiguration process. 

Related Work 
Developing applications by using the microservice architectural style is a relatively new 
approach, and only a few related technical reports can be found (e.g., [2], [16], [19]). These 
works describe design decisions made or strategies employed in order to either satisfy 
microservice principles, or make use of CI/CD tools and techniques; however, they do not 
propose design, implementation or integration methods. Moreover, those works do not propose 
mechanisms with which to help obtain error free artifacts to be included into CI/CD pipelines. 

Microservices are cloud-native architectures, and the MDD approaches that support the 
development of cloud applications are therefore related to this work (e.g., [12], [11], [1], [20]). 
These approaches apply MDD principles in order to tackle the vendor lock-in problem when 
developing or migrating cloud applications. With regard to approaches that propose 
mechanisms with which to document design decisions in cloud environments we can highlight 
CAML [3], MULTICLAPP [13] and CloudML [4]. These works define UML profiles or other 
modeling languages used to describe deployment topologies, applications as a composition of 
software artifacts to be deployed across multiple clouds, or resources that a given application 
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may require from existing clouds. However, although “getting integration right is the single 
most important aspect of the technology associated with microservices” [17], these proposals 
do not provide mechanisms with which to specify architectural decisions regarding integration 
and the impact of integrating increments in the current cloud application architecture. Finally, 
with regard to approaches for dynamic reconfiguration, works such as SeaClouds [5] or 
MODAClouds [1] propose mechanisms that can be used to achieve architectural 
reconfiguration either by replacing orchestration or as result of the re-deployment of 
components. These proposals do not allow the specification of the architectural changes 
produced during integration nor do they take into account implementation alternatives that 
facilitate scalability and the re-deployment of services in different clouds. 

3. A Method for the Incremental Integration of Microservices 
This method allows cloud applications to be constructed as a composition of microservices, in 
which each microservice design is included in an incremental increment integration process 
that allows developers to specify how microservices will be integrated into a cloud application. 
Developers use the increment integration specification to generate software artifacts, such as 
skeletons of microservice logic, interaction protocol and scripts with which to build, deploy and 
architecturally reconfigure the current cloud application, all of which are generated according 
to each microservice technology specification. In order to define this method, we analyzed how 
our previous work satisfies the principles of the microservice architectural style; we then used 
the lessons learned to extend the DIARy-process [23],[25]. The Microservice Incremental 
Integration Method, which is made up of the Microservices Incremental Integration Process 
(also referred to as the Integration Process), the adapted DIARy-specification-profile [24] and 
transformation chains, is explained as follows. Fig.1 shows the Integration Process, whose 
main activities are explained in the next sections: 

 
Fig.1. The Microservice Incremental Integration Process 

Increment Integration Specification 

This activity aims to allow developers to specify how to integrate an increment into the current 
application (Application Architecture Model) by specifying both the integration logic and the 
architectural impact of integration without taking into consideration the specifics of any cloud 
environment. In this activity, developers take a microservice (Microservice Architecture 
Model) as input, include it as part of an increment, follow Increment Integration Specification 
Guidelines, and make integration design decisions based on SLA terms (whose definition, 
specification and representation is outside of this work scope). Since this is an iterative activity, 
it provides developers with the possibility of specifying the integration of increments composed 
of several microservices. The DIARy-Specification-profile (see [24] for more details about its 
usage) helps developers create the Extended Increment Architecture Model which describes the 
increment specification integration by documenting the increment’s architecture, the 
integration’s logic and the architectural impact of integration. This model complies with the 
Extended Increment Architecture Model metamodel, which is explained below. 



ZÚÑIGA ET AL.  INCREMENTAL INTEGRATION OF ... 
 

97 
 

The Extended Increment Architecture Model metamodel 

The Service oriented architecture Modeling Language (SoaML) [18] is an OMG specification 
that was specifically designed for the modeling of service-oriented architectures. SoaML 
leverages the Model Driven Architecture (MDA) and provides a UML profile and a metamodel 
that extends the UML metamodel. The DIARy-specification-profile extends the SoaML profile, 
resulting in an ADL that facilitates the increment integration specification. In order to facilitate 
software artifact generation, this work extends SoaML and UML metamodels in order to define 
the Extended Increment Architecture Model metamodel (see Fig.2). Owing to space limitations, 
Fig.2 includes only those meta-classes that define the main concepts used to describe 
integration logic and architectural impact, in which meta-classes belonging to the UML 
metamodel are depicted with an icon next to the meta-class name, whereas meta-classes that 
extend the SoaML/UML notations are depicted with a background color. 

 
Fig.2. Extract of Increment Architecture Model meta-model 

A Participant represents: i) a microservice to be integrated, ii) a microservice/component 
already existing in the current Application Architecture Model with which the microservice(s) 
to be integrated will interoperate, and iii) a microservice/component to be created in order to 
consume microservice services or provide it with services.  

The Services Architecture of the participant is modeled as SoaML Services Architecture 
diagrams and specifies how parts of a microservice work together to play the owning 
microservice role(s). This diagram includes the microservice’s inner architectural elements and 
its interoperation requirements.  

An Extended Increment Architecture extends a UML Collaboration, thus allowing the 
increment integration specification by describing both the integration logic and the architectural 
impact of integration. Its inner parts (ParticipantUse, RoleBindings, and ServiceContractUse) 
describe an architecture: the increment’s architecture. Each ParticipantUse is a reference to a 
Participant involved in the integration. Each ServiceContractUse is a reference to a 
ServiceContract that describes interoperation among Participants. RoleBindings, and 
ServiceContractUses define the integration logic, whereas tagging 
ExtendedIncrementArchitecture inner parts with architecturalImpact values defines the 
architectural impact of integration.  

A ServiceContract extends a UML Collaboration. When modeling the Services 
Architecture of the participant, its semantic remains the same as that defined by SoaML. When 
modeling the integration (ExtendedIncrementArchitecture), it describes specific roles that 
Participants will play. Roles have a name and an Interface type that specify operations and 
events, which comprise the interoperation Interactions among Participants after integration.  

A ParticipantUse is a Participant involved in a specific integration, where the delayLevel 
attribute makes it possible to specifying whether the Participant requires immediate processing 
of requests or whether they could be delayed by using cloud environment services (e.g., 
message queues). The elasticityLevel attribute allows the specification of requirements 
concerning the level of the Participant scaling needs. 

The ServiceContractUse extends the UML CollaborationUse and explicitly specifies the 
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use of the interoperation described in a Service Contract.  
A RoleBinding binds each of the Roles of a ServiceContract to a Participant, both of which 

are referenced in an ExtendedIncrementArchitecture. 
The attribute architecturalImpact allows developers to specify the architectural change 

(Add, Modify, and Delete) that an architectural element (i.e., ParticipantUse, RoleBinding, 
ServiceContractUse) will produce on the current ApplicationArchitectureModel. 

Integration Specification 

In order to specify increment integration, developers take the input Microservice Architecture 
Model and create a Participant that becomes its owner, and the Microservice Architecture 
Model input then becomes the Services Architecture of the Participant created. As stated 
previously, the Services Architecture of the participant not only describes the inner architectural 
elements of the microservice, but also its interoperation requirements, which describe the 
outside roles that external Participants must play in order to interact with the microservice 
along with interaction among those roles by means of the outside ServiceContracts also 
described.  

Once the Participant representing the microservice to be integrated has been created, 
developers specify integration logic by creating an ExtendedIncrementArchitecture element, 
and then create its inner parts: i) a ParticipantUse that references the already created 
Participant; ii) ParticipantUses that reference Participants belongings to the current 
Application Architecture Model that will play the outside roles, and with which the 
microservice(s) to be integrated will interoperate; iii) ServiceContractUses that specify 
interoperation among Participants by referencing the aforementioned outsideServiceContracts; 
iv) RoleBindings that bind each of the roles defined in an outsideServiceContract to the 
ParticipantUse that will play the role. 

Developers specify the architectural impact of integration by tagging 
ExtendedIncrementArchitecture inner parts with architecturalImpact values that describe how 
they collaborate to reconfigure the Application Architecture Model (e.g., by adding 
RoleBindings, adding Participants, removing Participants). Finally, developers specify 
information about the management of changes in workload required by each ParticipantUse 
and ServiceContractUse by specifying elasticityLevel and delayLevel values. 

By creating Extended Increment Architecture Models, which extend UML and SoaML, 
developers satisfy Componentization via Services and Organized Around Business Capabilities 
principles. Furthermore, having Microservice Architecture Models as input allow developers to 
take full responsibility for the software in production, which facilitates incremental integration 
and satisfies the Evolutionary Design and Products not Projects principles. Designing 
microservice integration in advance simultaneously gives different development teams working 
on different microservices the independence to design, implement and deploy microservices. 

Increment Implementation 

This activity aims to support the integration process by generating platform-specific cloud 
artifacts (software artifacts to be deployed on a cloud platform), includes the following steps: 

Check Increment Compatibility 

Developers participate in verifying whether the ExtendedIncrementArchitectureModel is 
compatible with the current ApplicationArchitectureModel. If discrepancies exist between the 
Participant’s interfaces (e.g., different names for methods and services, different message 
ordering), they design a ServiceContract that overrides outside ServiceContracts and apply 
model-to-text (M2T) transformations that generate skeletons of Cloud Adaptors (see Fig.1). 

Specify the Packaging and Deployment Structure 

In this step, developers apply model-to-model (M2M) transformations to translate the Extended 
Increment Architecture Model into a model that describes the cloud artifacts needed to 
implement its inner parts (DIARyArchitecturalElement), the Increment Cloud Artifacts Model 



ZÚÑIGA ET AL.  INCREMENTAL INTEGRATION OF ... 
 

99 
 

(see Fig.1). This model organizes cloud artifacts into projects that can be packed/built/deployed 
independently in different cloud environments in accordance with decisions made during the 
development process (e.g. technology, microservice workload management decisions). This 
model promotes the decoupling of software artifacts that implement interaction protocol from 
those that implement microservice design, thus satisfying the Smart Endpoints and Dumb Pipes 
microservice principles. The Increment Cloud Artifacts Model complies with the Cloud 
Artifacts Model meta-model (see Fig.3). 

 
Fig.3. Extract of Cloud Artifacts Model meta-model 

The Cloud Artifacts Model meta-model 

The way in which microservices are deployed has an influence on satisfying SLA terms or other 
nonfunctional requirements [7] (e.g., agility to deploy, modifiability, monitoring, cost of 
provisioning). We use Projects to manage the building, packaging and deployment options. 
M2M transformation rules map Interaction Projects onto Service Contracts (see Fig.2) 
architectural elements, and generate descriptions of cloud artifacts that allow developers to 
implement interoperation among microservices as a separate service. An Interaction Project 
includes the following cloud artifacts: Interaction Service Hosted Services that implement 
interoperation interaction protocols, Interface definitions, and Servicedata (message Types or 
data Types). M2M transformation rules map inner parts of Service Contracts architectural 
elements onto these cloud artifacts. 

ImplementationProjects, in the case of Participants that provide services, are mapped onto 
Service Architectures of the participant architectural elements (see Fig.2). These 
Implementation Projects include descriptions of Artifacts, such as FrontEndService Hosted 
Services that implement microservice business logic, Interface implementations of interfaces 
defined in related Service Contracts, or backend HostedServices that use cloud environment 
services (e.g., message queues). In the case of Participants that consume services, 
Implementation Projects are mapped onto related ServiceContracts in order to describe 
ClientObjectArtifacts that implement related Interfaces and initiate the service execution by 
invoking InteractionServices or Adaptors that correct incompatibilities between interfaces. For 
detailed mappings see [23].  

Deployment Projects and Interaction/Implementation Projects facilitate the packaging of 
Artifacts into a deployable package. Microservices whose related projects are included in a 
Deployment Project will be implemented with the same technology and deployed in the same 
cloud environment, whereas Artifacts included in an Interaction/Implementation project will be 
packed together in the same deployment artifact and deployed in the same cloud environment 
resource (e.g., virtual machine), thus sharing cloud environment resources. Including 
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microservice related Artifacts in an exclusive or shared Interaction/Implementation Project 
allows developers to manage workload changes and running costs. 

DynamicConfiguration classes describe configuration Settings (e.g., Provisioning 
Configurations) that could change at runtime. Settings and Invoked/Exposed EndPoints 
information will therefore be stored outside the deployable package. Thus enabling them to be 
updated without requiring the redeployment of the entire package, a best practice in the CD 
[15].  

In order to Specify the Packaging and Deployment Structure, we provide an Eclipse plug-
in which executes M2M transformations carried out using the Atlas Transformation Language 
(ATL) to generate Increment Cloud Artifacts Models from Extended Increment Architecture 
Models. Input/Output models are implemented as ecore models in the Eclipse Modeling 
Framework (EMF). Transformations generate descriptions of the cloud Artifacts required to 
implement architectural elements and define the packaging/deployment structure by assigning 
Artifacts to different Interaction/Implementation/Deployment Projects according to the 
architecturalImpact, delayLevel and elasticityLevel values. Fig.4 (lines 3, 6, 10) shows an 
example of the transformation rule applied to assign the Artifacts corresponding to Participants 
(e.g, microservices) that require a high elasticityLevel into an exclusive ImplementationProject 
(e.g., an exclusive virtual machine) that is assigned to a DeploymentProject (e.g., cloud 
platform). 

 
Fig.4. Extract of M2M for generating the Increment Cloud Artifact Model 

Generate Implementation Code 
In this step, cloud developers make decisions regarding implementation and deployment 
technologies that best fit the individual requirements of each microservice included in an 
increment, and then complete the previously generated Increment Cloud Artifacts Model by 
specifying: i) the technology in which each artifact included in a DeploymentProject will be 
implemented and deployed; ii) provisioning, deployment, and inter-service communication 
information for each Implementation/InteractionProject, along with microservice configuration 
information for each HostedService, by creating or updating classes of the 
DynamicConfiguration, Setting type (e.g., number of service instances, memory, credentials), 
or EndPoint (e.g., SOAP/REST service style, message format, protocols); iii) the 
representation of each Artifact (e.g., source code language); iv) the location of artifacts to be 
generated.  

Next developers execute M2T transformations that use this model and the Extended 
Increment Architecture Model as input in order to generate the cloud artifact implementations, 
which are organized into a directory structure according to the Location specified for each 
Project. The cloud artifacts generated implement (see Fig.1): i) an Interaction Protocol, ii) 
software Cloud Adaptors, iii) Cloud Artifacts that implement microservice logic, APIs that 
microservices expose, and as many configuration files as DynamicConfigurationEnvironments 
(e.g., development, production), iv) Building Scripts/Packaging Scripts to create deployable 
packages, according to the DeploymentProjects’ structure. Finally, cloud developers complete 
the cloud artifacts generated and execute packaging/and building scripts to obtain deployable 
packages. 

01. rule ParticipantUse2Implementation { -- Create a Implementation project (and related elements) per ParticipantUse
02. from
03. ParticipantInput : eiam!ParticipantUse(
04. ParticipantInput.elasticityLevel = 4 ) -- Filter elements whose elasticityLevel = high (4)
05. to 
06. implementation : cam!ImplementationProject( -- Crate an Implementation Project
07. name <- ParticipantInput.name, -- Assign the Participant name to the Project name
08. belongsToParticipant <- ParticipantInput.participantType,
09. artifacts <- front, -- Create an Artifact FrontEndService
10. deployment <- thisModule.resolveTemp( -- Assign Implementation Project to Participant’s Deployment project
11. ParticipantInput.participantType, 'DeploymentProject')),
12. front : cam!FrontEndService( -- Create a FrontEndService element
13. serviceProject <- implementation),
14. configimplement : cam!DynamicConfiguration( -- Create a DynamicConfiguration element
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Deployment & Architectural Reconfiguration 

In this activity developers select the adaptation patterns best suited to integrating the 
increment’s architecture into the current application architecture and execute M2T 
transformations that generate cloud artifacts that operationalize the adaptation patterns 
according to Extended Increment Architecture Model and the Increment Cloud Artifacts Model. 
The cloud artifacts generated are (see Fig.1): i) Deployment Scripts with which to deploy (and 
provision) previously generated packages along with the corresponding configuration files, and 
ii) scripts with which to reconfigure the application architecture, which use architectural impact 
specification to dynamically update EndPoints information stored in the microservice 
configuration files. Finally, the Extended Increment Architecture Model and the Increment 
Cloud Artifacts Model are used as the input for the M2M transformations that update both the 
current Application Architecture Model and the Application Cloud Artifacts Model by 
integrating the corresponding architectural elements and cloud artifact descriptions (see Fig.1). 

The Increment Implementation and Deploy & Architectural Reconfiguration activities 
allow developers to satisfy the Decentralized governance and Infrastructure Automation 
microservice principles by providing models that abstract implementation and deployment 
decisions from technological aspects, and tools that enable developers to obtain software 
artifacts that can be used as part of CI/CD pipelines. 

4. Case Study 
In order to illustrate the use of our approach, in this section we present an excerpt of a case 
study (adapted and extended from [3]). A manufacturing company wishes to improve the 
technological support given to its dealers, and is considering updating its already existing 
manufacturer microservice by including new functionalities with which to allow dealers to 
place production orders and obtain the products ordered by means of a shipping service. Fig. 
5a shows an extract of the current Application Architecture Model which will be involved after 
integrating the Manufacturer’s microservice update. 

The development team involved in this new requirement used SoaML to model the 
architectural design of the new manufacturer microservice functionalities and produce the 
Microservice Architecture Model (Fig. 5b), described as a Services Architecture, whose inner 
parts (e.g., ServiceContracts, Interfaces, Roles) are not shown owing to space restrictions. The 
Microservice Architecture Model includes microservice architectural elements that describe 
microservice logic and architectural elements that describe microservice interoperation 
requirements (depicted with a background color in Fig. 5b). Note that the Participants that are 
expected to interoperate with the manufacturer microservice (other components/microservices 
that consume manufacturer microservice’s services or provide it with services) are indicated 
by the ParticipantUses with dashed outlines (i.e., :Dealer and :Shipper), whereas that internal 
microservice components are normal ParticipantUses. 

Fig. 6a shows the Extended Increment Architecture Model resulting from the Increment 
Integration Specification activity, in which the Microservice Architecture Model (Fig. 5b) 
becomes the Service Architecture of the participant Manufacturer, which is referenced by the 
manufacturer ParticipanUse architectural element. The Microservice interoperation 
requirements described in the Microservice Architecture Model (depicted with a background 
color in Fig. 5b), was referenced in the Extended Increment Architecture Model, thus becoming 
the microserivice integration logic (depicted with a background color in Fig. 6a). 
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a) 

 

b)

Fig. 5.Extracts of: a) Application Architecture Model, b) Microservice Architecture Model 

Developers proceed to specify the Participants that will play the roles defined in the 
integration logic. The Participant Manufacturer already exists in the Current Architecture 
Model, and the manufacturer ParticipantUse is therefore tagged with architecturalImpact = 
Modify. The Dealer and Shipper Participants do not exist in the Current Architecture Mode 
and must therefore be created, which is specified by tagging the ParticipantUses with 
architecturalImpact = Add. Finally, the requirements for workload change management are 
specified; in this case study, the new Manufacturer functionalities require a High 
ElasticityLevel that differs from the current requirements (see Fig. 5a). 

 
Fig. 6. Main transformation chains a) Extended Increment Architecture Model, b) Increment Cloud 

Artifacts Model, c) generated cloud artifacts and updating of current application models 

During the Increment Implementation activity there were no inconsistencies among 
Participants’s interfaces, and the interaction protocols described in the interaction logic were 
not therefore changed. The Increment Artifacts Model (Fig. 6b) was generated by applying 
M2M transformations of the Eclipse plug-in provided with this method, and it was then 
completed. As the M2T transformations that generate Implementation Code (Fig. 6c) are not 
yet finished, we therefore implemented the cloud artifacts required manually, built the 
application, packed it and deployed it in the Microsoft Azure cloud environment. 

During the Deployment & Architectural Reconfiguration, we use the open source Eclipse 
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extension Acceleo M2T generator in order to obtain Reconfiguration Scripts (see Fig. 6c). We 
generated XML Document Transform (XDT) files used in Visual Studio to modify service 
configuration files while the deployment takes place. Fig.7 (lines 12, 13, 14) shows an example 
of the transformation rule applied to modify configuration information related to bindings 
among services in accordance with architectural impact specification. 

 
Fig.7. Extract of M2T used to generate Reconfiguration Scripts 

Finally, the M2M transformations that update current application models (see Fig. 6c) are 
in the process of being built; however Fig. 8 shows how the Application Model Architecture is 
expected to look after integration. 

 
Fig. 8. Current Application Model Architecture after integration 

5. Conclusions and Future Work 
We presented a general view of a method for the incremental integration of microservices into 
cloud applications. In this method, developers specify how to integrate a microservice into the 
current application by describing both the integration logic and the architectural impact of 
integration without taking into consideration the specifics of any cloud environment. They then 
use both the microservice design and the integration specification to generate: i) skeletons of 
the microservice implementation code and the integration logic implementation code, ii) scripts 
to build and package the related microservice software artifacts, iii) scripts to deploy the 
microservices, and iv) scripts to manage the current application’s architectural reconfiguration 
produced by the integration. Particular emphasis has been placed on explaining how the method 
manages to keep the microservice design independent from the integration specification, thus 
allowing different development teams to work on different microservices and giving them the 
independence to design, implement and deploy microservices according to the 
implementation/deployment technological requirements of each microservice. Providing 
developers with tools that automate integration and deployment operations help developers in 
eliminating discontinuities between development and deployment through CI/CD support 
which is required in order to deliver new functionalities to customers in an agile manner. 

We have shown the feasibility of our proposal by applying it to a case study. We are 
currently working on implementing transformation chains; however, our approach does not take 
into account the automation of infrastructure changes. We are considering the use of the 
DevOps approach in order to improve the collaboration between development and operations, 
thus allowing new software releases to be made available much faster [22]. In this context, as 
further work we plan to adapt the method presented in this work in order to satisfy DevOps 
practices which promote the automation of the process of software delivery and infrastructure 

01. [template public generateElement(aCloudArtifactsModel : CloudArtifactsModel)]
02. [for(InteractionProjects:InteractionProject | projects->select(oclIsTypeOf(InteractionProject)))]
03. [file (InteractionProjects.name.concat('/ServiceDefinicion.csdef'), false)]
04.
05. <?xml version="1.0" encoding="utf-8"?>
06. <ServiceConfiguration serviceName="[InteractionProjects.name/]" xmlns=“…" xmlns:xdt="http://.../XML-Document-Transform" >
07.
08. [for(IK:Invoked | InteractionProjects.interactionService.endpoints->select(oclIsTypeOf(Invoked)))]
09. <WebRole name="[InteractionProjects.name/]">
10. <ConfigurationSettings xdt:Transform="InsertIfMissing">
11.
12. [comment parseXDT executes a mapping between artifactImpact and XDT values /]
13. <Setting name="[IK.name.concat('_EndPoint')/]" [parseXDT(IK.artifactImpact)/]/> 
14. <Setting name="[IK.name.concat('_Binding')/]" [parseXDT(IK. artifactImpact)/]/>
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changes. Additionally, even though microservices related artifacts are generated according to 
architectural impact of microservices’ versions, we plan to provide mechanisms to manage 
incremental consistency, avoiding to lose changes introduced in the implementation code after 
generation (e.g., changes in interface implementations). Finally, we also plan to design 
experiments with which to validate the effectiveness of our approach in practice. 
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