
25TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2016 POLAND)

150

A Conceptual Investigation of Maintenance Deferral and
Implementation: Foundation for a Maintenance Lifecycle Model

Christopher Savage cns993@uowmail.edu.au
Faculty of Business, University of Wollongong
Wollongong, Australia

Karlheinz Kautz kautz@uow.edu.au
Faculty of Business, University of Wollongong
Wollongong, Australia

Rodney J. Clarke rclarke@uow.edu.au
Faculty of Business, University of Wollongong
Wollongong, Australia

Abstract
Despite the fact that society and organizations rely heavily on Information Systems (IS) and
software, the maintenance of vendor-supplied IS, in particular standard package software has
gained little attention within the academic literature. This paper presents a conceptual study of
the current state of research concerning the reasons for deferral and performance of vendor-
supplied maintenance by the purchasing organization. These reasons have so far neither been
investigated together nor from that perspective. Based on a systematic literature review and
taking the purchaser’s viewpoint, reasons for maintenance deferral and performance are
identified from the literature. They build the groundwork and foundation for a Maintenance
Lifecycle and Process Model that provides a starting point to research vendor-supplied
maintenance from the customer’s point of view.
Keywords: maintenance deferral, maintenance lifecycle model

1. Introduction
The “dependence on critical infrastructures is increasing worldwide” ([1], p.112) and “both the
impact of software on life, and our dependence on software is rapidly increasing” ([2], p.531).
Companies requiring software capability that do not want to develop the capability in-house
can choose to commission or outsource a unique build, or purchase the capability [3]. By
purchasing from a vendor, the organization “benefits [from] generic best practices and
advanced functionality supported by vendors’ research capabilities” ([4], p.219). Over time,
purchasing this capability has become increasingly attractive [5] and “once an organization has
adopted packaged software, upgrades to newer versions are inevitable” ([3], p.153). The focus
of this research is on vendor-supplied standard packaged software, abbreviated hereafter to
vendor software, which is considered to be generic software, pre-created by a third-party
organization for the purpose of sale or licensing. Vendor software is treated as including 3rd-
party, commercial-off-the-shelf (COTS) software [5], product software [2] or packaged
software [3].

IEEE defines software maintenance as “the process of modifying a software system or
component after delivery to correct faults, improve performance or other attributes, or adapt to
a changed environment” ([6], p.46) while Swanson refers to maintenance as “all modifications
made to an existing application system, including enhancements and extensions” ([7], p.311).
For this research we adopt a definition of maintenance both as a process and as the outcome of
that process. Vendors will periodically deliver maintenance to the purchasing organization in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

151

the form of patches or upgrades ready to be applied to installed systems. The vendor develops
and releases the maintenance, but each purchasing organization may have to expend significant
effort to incorporate the maintenance into the production environment which may lead to the
“typical option of ‘doing nothing’” ([8], p.451), “IT’s usual preference to ‘ride [the current
version] out as long as possible’” ([9], p.562) in which “neglect is the inertially easy path” ([1],
p.112). This conscious or unconscious decision to postpone or delay implementation of the
vendor-supplied maintenance into the operational environment is considered deferral within
this paper. The study takes the purchaser’s viewpoint and explores the current state of literature
within the topic of maintenance deferral of vendor software. It identifies the reasons for deferral
and performance of vendor-supplied maintenance by the purchasing organization. These
reasons have previously not been studied from that perspective. The identified reasons build
the groundwork and foundation for a Maintenance Lifecycle model that provides a starting
point to research vendor-supplied maintenance from the customer’s point of view.

The paper is structured as follows: some background of software maintenance and
maintenance deferral is provided in the next section, followed by the description of the applied
literature review method. The key themes and concepts are identified from the application of
this review. A Maintenance Lifecycle Model is deduced from the literature review. A discussion
and conclusion section completes the paper with a summary highlighting a key gap that
provides an opportunity for further research while stating the limitations of the current research.

2. Background
Following the purchase of vendor software, the software needs support in order to maximize its
operational life because “Systems are nevertheless subject to structural deterioration and
obsolescence with age” ([10], p.278). By installing vendor software, purchasers will have to
“be prepared for managing the impacts of [maintenance]” ([3], p.167). The cost of purchasing
vendor maintenance is not a concern as many vendors employ license agreements whereby
maintenance is made available without additional charge [11]. The comprehensive view on
maintenance which we embrace based on Swanson [7] results in the inclusion of major and
minor upgrades, patches and maintenance within this study. The maintenance period is
commonly referred to as being the longest phase of the software lifecycle [5,12]. The
maintenance period for vendor software begins during commissioning, as vendor-supplied
maintenance is incorporated into the commissioning in order to prevent the client starting
operations with an “out of date” system [13].

Within this study, deferral is treated as a conscious or unconscious decision of the
purchasing organization that postpones or delays a course of action. Implicit within this
definition of deferral is that the postponed action will have to be performed at some future time.
Referring to road maintenance, Harvey ([14] p.34) captures the essence of maintenance deferral
in any realm as “deferring maintenance can be seen as a form of borrowing. Funds are saved in
the short-term at the expense of higher outlays in the future.”

Deferral becomes a critical issue for the purchaser of vendor software when the vendor
declares an “end of life” (EOL) date, indicating that further maintenance ceases for this version
[15]. This forces the business to accept a new risk of using a component of unsupported IT
infrastructure or software, or perform maintenance to move onto a supported version of
software [9]. In reviewing papers relating to the deferral of vendor-supplied maintenance, this
paper will investigate how EOL can become a problem for purchasers of vendor software due
to the purchaser repeatedly deferring the adoption of newer versions of the software. The
backlog of software maintenance activities for software packages creates a poorly-understood
risk for organizations [13] and warrants further research.

ISD2016 POLAND

152

3. Review Method
Our conceptual investigation is based on a systematic literature review. The execution of the
review and the structure of reporting its results follow a concept-centric literature review
approach [16] to ensure that repeatable data gathering and logical analysis support the
discussions presented and conclusions drawn. Kitchenham and her associates [17,18] provided
guidance for a systematic review. The review progresses through a sequence of filtering results
as presented by [19]. The addition of a preliminary, informal step expands the number of
initially considered papers, thereby reducing the risk of accidently eliminating papers during
the initial search [18].

In preparation for the systematic review, an unstructured review of publically available
literature through a State Library was conducted using the terms “maintenance deferral”,
“project prioritization” and “project prioritisation”. Iterative snowball addition of key words
and concepts from the resulting papers created 10 different search terms related to the core
concepts listed above. To maximize the scope of literature, the initial search was not limited to
topic-specific databases, popular publications or peer-reviewed papers. This is consistent with
the advice that a wide net should be cast in order to consider all published articles in a field
[16].

The Web of ScienceTM database was selected for this review due to the wide cross-discipline
nature of the index including the Association for Information Systems’ Senior Scholars “basket
of 8” journals and all but two journals from The Financial Times 45 top journal list. For this
review, the titles of about 14900 papers were evaluated. Through the different screening
processes a total of 40 papers were included into the review. The results of this analysis are
presented in the next section.

4. Results
Despite the broad search terms, every item that passed the critical review referred to the
maintenance deferral problem from a vendor’s perspective; no papers addressed the problem
directly from the purchaser’s perspective. The papers were published over a period of nearly
40 years with the first one appearing in 1977. This demonstrates that the topic of maintenance
deferral is not new. The geographical distribution of papers indicates that the deferral problem
discussed here provides a “Western” view of the issue and may not be globally generalizable.
The literature review filtering criteria of English-language papers will have influenced this
distribution. Five concepts and themes emerged from the literature; they are: (1) maintenance
of vendor software is a problem, (2) there is too little research on the topic, (3) reasons for
maintenance deferral do exist, (4) deferral has consequences (5) there are reasons for
maintenance implementation.

4.1 Maintenance of Vendor Software is a Problem

The literature acknowledges that adoption of vendor software causes a maintenance problem
for the purchasing organization [1,8,9,13,20]. No paper expressed a dissenting opinion that
vendor software is free of maintenance impacts. Within this acknowledgement, several reasons
which we will discuss in the following subsections were identified that led to organizational
caution when assessing vendor-supplied maintenance before implementing it into production
environments.

4.2 There is too little Research on the Topic

The literature includes numerous calls for further investigation into the maintenance of vendor-
supplied systems as well as for the maintenance deferral phenomenon and highlights the
increasing issue of maintenance backlog in IT systems and infrastructure.

Already 1983 Lientz ([21], p.277) requested “much more research is needed in
maintenance”. In 1995 Swanson stated “I wouldn’t do the same [1979 Dimensions of Software
Maintenance] study [today]. … I would try to focus on the maintenance of commercial software
packages ... Or, I would address maintenance from the user perspective, which has been largely

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

153

ignored.” ([7], p.307). In the same vein several authors [3,9,20,22] lament the neglect of
investigations into vendor software maintenance. Khoo et al. ([22], p.334) implicitly call for
more research stating “Although our research provides an initial investigation into the
phenomenon of support upgrades, the empirical support for our findings were limited to a single
upgrade case.”

Hybertson et al. ([23], p.215) similarly state that “COTS use is increasing, and maintenance
issues of COTS-intensive systems need to be articulated and addressed.” They are supported
by Reifer et al. ([15] p.95, 96) who say “Currently, few COTS software lifecycle models address
[Component-Based System] maintenance processes” and demand “To make better decisions
relative to [Component-Based Systems], we need empirical knowledge. To gain this
knowledge, we must understand more fully the lifecycle processes people use when harnessing
COTS packages.” The absence of academic framework(s) or in-depth research addressing the
organizational behavior during the period between the vendor publishing maintenance to the
purchaser and the tipping point that triggers the maintenance to be applied to the purchaser’s
system(s) is also stated in [3].

Literature relating to the initial investment decision and deriving the full expected benefits
from a past investment decision were prevalent, an observation supported by [22]; however
software maintenance is either mostly ignored both by research and practice [24] or is simply
not attractive, considered “less glorious” [25] and suffering a negative image with developers
and managers involved in the process [26-28].

Finally, only few papers did employ theoretical models to describe some aspects of the
vendor-supplied maintenance deferral issues. Communicative framing theory is used to show
how consistent messages and actions prepared and supported users through the application of a
major IS maintenance activity through the use of a galvanizing negatively-framed message [22].
An inductive research strategy and comparative analysis is presented in [9] to construct a
theoretical model about the interaction of factors influencing upgrade decisions by adopting a
critical realism approach to explain motives, contingencies and dependencies impacting the
decisions. Finally, Khoo, et al. [3] extend Swanson and Beath’s [25] Relational Foundation
model to incorporate the vendor relationships in an explanation of the impacts that vendor
software upgrades have on business and IS stakeholders. Hanna and Martin [29] discuss a
model that incorporates vendor-supplied maintenance into a larger Repair Level Analysis, but
complain that IS researchers and practitioners have so far failed to embrace such modeling
within pure IT systems. In summary, there is too little research into the maintenance of vendor-
supplied systems.

4.3 Reasons for Maintenance Deferral Do Exist

From the literature, a common theme of reasons for maintenance deferral can be deduced. In
almost all cases, analysis of these reasons often expressed as risks suggests that their
consequences can be avoided through the deferral of vendor-supplied maintenance, or
exercising the ‘doing nothing’ option. Table 1 presents the reasons for deferral of maintenance
expressed across literature assessed for this conceptual study.

The risk of losing customizations, configurations, or interfaces was most recognizable in the
literature. It extends beyond the technology-based concerns into the realm of the user as “Users
also create idiosyncratic adaptations and workarounds to overcome limitations in any
customized software” ([22], p.329) that could be impacted through the application of
maintenance.

Almost as prevalent was the risk that vendor-supplied maintenance would have a huge cost
associated with it [13]. As purchasing organizations implement vendor-supplied systems to
gain a commercial advantage [20] any planned or unplanned expense in monetary or effort-
based terms may detract from this profit-making goal. In some of the few direct references to
deferral, cuts and limits in maintenance budgets are a common occurrence and the flow-on
deferral of maintenance is a direct result [15,23]. A more general economic downturn may also
lead to maintenance being seen as too costly [30].

ISD2016 POLAND

154

Table 1. Reasons for maintenance deferral

Loss of customizations, configurations,
interfaces

Complicated & expensive test environments &
infrastructure

Huge costs Disrupting to the organization & productivity
Chain reaction of cascading maintenance Unforeseen impacts, impossible to complete tests
Training efforts and steep user learning curve Dependence on vendor claims of suitability
Poor quality, conflict for existing & new
IS resources

Dependence on vendor documentation

Effort to analyze, test, or implement Conflict with the vendor
Inconvenient rate & time of arrival Resistance & user revolt
Disturbing the existing IS equilibrium Additional work for expert users to train others
Difficult or complex Requiring a re-certification for a certified system

The risk that maintenance to one system will cause a chain reaction of integration updates

and backward-compatibility issues has been very common in the literature. Both minor
inconveniences such as missing device drivers following operating system maintenance
requiring replacement of printers, faxes and scanners [3] and a case of thirteen linked vendor-
supplied systems requiring upgrade [31] related to this risk. The risk of cascading maintenance
applies also to internal maintenance requirements of a vendor-supplied system. A mandatory
maintenance action on one module may cause issues requiring further maintenance of a separate
module [13].

A further reason that appears regularly in the literature is related to training effort and user’s
learning curves. Khoo et al. ([22], p.332) state “Because SAP upgrades usually involved
downtime and training, business users normally preferred to defer an upgrade as long as
possible.” This is supported by [9,13].

The risk that a vendor-supplied maintenance release will be of poor quality and introduce
bugs and conflicts between existing and new IS resources appears already in work of the early
1980ies [32] and is frequently confirmed [7,22].

The risk that a vendor-supplied maintenance release will consume a tremendous amount of
effort to analyze, test, or implement is significant and justified. The need for testing is not
eliminated through the implementation of vendor software [33] and the literature reports testing
and implementation efforts between six months and a year for some upgrades [8,22].

The unpredictable behavior of vendors, where “it is difficult to determine when the software
will be released” ([2] p.533), or simply the “burdensome … rate of change” for vendor software
([5], p.362) leads to risks concerning the inconvenient rate and time of arrival of maintenance
releases.

A number of studies included the risk that maintenance will also disturb the existing
equilibrium of information systems in the organization [1,7,20,31]. A risk that a maintenance
project can be as difficult and complex as the original installation is also existing [1,3,5,20,23].

Also related to unpredictable behavior of vendors is a risk of the unforeseen, related to the
impossibility of fully testing a maintenance release and its un-assessable impacts and side-
effects [2]. The risk of the unknown is implicitly common to all risks listed here, but there is a
specific risk of the unforeseen, that even when everything is assessed and mitigated, something
might go wrong with a concrete example of this unforeseen risk being pointed to as
“Unexpected problems with file sharing in Access” in ([7], p. 164).

An example of the risk of maintenance disrupting the organization and its productivity was
the failure of a new feature in upgraded software causing “a mess for about three weeks” ([3],
p.161). A second example of organizational disruption [22] saw a company undergoing
slowdown in performance and system lockouts subsequent to a three-day outage to implement
the upgrade and in another case “files missing” ([3], p.162) as a side-effect from an upgrade.

Some papers lamented the complications and costs of maintaining environments for testing
[5,23,32] as a specific risk with one recording three separate environments, development, test,

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

155

and production, in an organization in order to manage and maintain their vendor-supplied
system [13].

Because organizations need the vendor for the maintenance of vendor software, they must
rely on the vendor claims concerning the suitability of the maintenance release; a risk pointed
out by [5,12,31,34,35]. A similar requirement of dependence and a related risk is specifically
valid for the documentation that accompanies a release as such documentation “might be
incorrect on incomplete” ([12], p.13).

Inevitably, applying maintenance to an operational system may cause conflict with the
vendor as illustrated by [7]: “During the … testing phase, [Information Systems] staff identified
many problems that they attributed to [the] software, but the vendor countered that the problems
were related to client [organization] configuration decisions” ([7], p.165). A risk of conflict
with the vendor can be deduced from this and has been confirmed by [31,34,36]. A risk of
maintencance leading to resistance and user revolt caused by changed software is also identified
[3,22]. Additional work for expert users in the form of training other employees is another
reason for maintence deferral [3]. Finally, a risk that upgraded software might require a re-
certification for a certified system has been stated by [5].

4.4 Deferral has Consequences

Deferral can be a logical, considered course of action when the risk of implementing the
maintenance is calculated to be unacceptable [5]. An example of unacceptable risk is an
incompatibility between the maintenance item and its environment, vendor disclosed [35] or
otherwise identified or an identified threat to the stability of a system associated with a major
release [9].

The consequences of maintenance deferral can otherwise be to avoid expense in the short
term, however the legitimacy and suitability of this approach assume that no trigger event will
occur. Should a trigger event occur and be ignored, possible consequences include economic
damage to the company [38], higher expenditure and forced outages at a later time [30], or even
demise of the purchasing organization itself [5].

Although IT maintenance can be deferred for one to two years, extended periods of deferral
can lead to “the application portfolio risks getting dangerously out of date and a systemic risk”
([39], p.1). The risks of systemic failure create a situation of positive-feedback where “the
more different infrastructures that fail concurrently, the more difficult it becomes to restore
service in any of them” ([1], p.112).

For organizations that have an understanding of the actual state of their systems, the act of
maintenance deferral can be a considered action to save expense, and improve stability leading
into a system retirement or replacement “as the end of any system’s life is eventually foreseen,
the maintenance effort itself may be moderated” ([10], p.279).

One possible consequence following repeated deferral is to completely separate from the
vendor’s support model and to “go it alone” through either maintaining the system in-house, or
paying for bespoke support, possibly receiving a lower priority than up-to-date clients of the
vendor [22]. However, the approach of deferring maintenance becomes precarious when
vendor-supplied maintenance “that we require urgently” arrives, but has a dependency on a
“backlog” of un-installed changes, which occurs because the vendor “seems to assume that you
are up to date” ([13], p.100).

4.5 There are Triggers for Maintenance

Mukherji et al. [40] put forward that investments in upgrades are best made when the gap
between the new technology and the one currently in use reaches a critical threshold. A theme
of identifiable trigger events, which cause this threshold to be reached immediately preceding
the implementation of vendor-supplied maintenance, emerges from the literature. Table 2
summarizes the identified triggers and reasons for maintenance implementation.

ISD2016 POLAND

156

Table 2. Triggers and reasons for maintenance implementation

Need for increased business benefit Standardization resulting from acquisition or merger
Avoid EOL date when vendor supports stops Remain current with the marketplace
React on changed hardware requirements Respond to a massive social change or innovation
Resolve an error relevant to the purchaser Change to such environment such as legislation
Satisfy company policy React to release of vendor maintenance
Standardization to remain compatible with
external parties

Eliminate or contain a security threat

Satisfying the need for increased business benefit is the most reoccurring theme within the

literature concerning triggering the implementation of maintenance. This could be achieved
through new functionality and features available within a newer release that fulfills user
requests or requirements especially for improved performance. In this context, an aspiration of
first-mover advantage also spurs maintenance [40]. Vendors declaring an EOL date for support
of a particular version were an often referenced trigger for maintenance implementation [20].
The adoption of vendor software creates a lock-in situation where the purchasing organizations
become dependent on the software vendor to provide them with software functionality and
technical support [9]. This means that a vendor declaring an end to that support represents a
significant risk to the purchasing organization. Lientz and Swanson [32] in their early studies
on maintenance identified a non-software trigger event, the requirement to move from
obsolescent hardware or to upgrade the hardware platform to mitigate hardware availability and
support issues. This has been confirmed through the following years [31]. Several studies
[10,13,20,22,23,41] identify the resolution of an error relevant to the purchaser as a further
trigger for maintenance. Policy within the organization aims to assist with determining the
occurrence of a trigger event, however apparently contradictory policies with the same aim
were identified in separate studies: one policy required a company remain within vendor-
support version requirements [8], another one requested to upgrade every one and a half years
[22]. A rationale for standardization as another trigger for maintenance is the need to remain
compatible with external parties that interface an organization’s information systems [37]. A
need to standardize IS infrastructure resulting from a business acquisition or merger may also
trigger maintenance [8].

A regular trigger for maintenance is the need to remain current with the marketplace
[20,21,33,40] as is change to the external environment such as legislation [21] to be dealt with
legal-change-patches [20]. In addition, other environmental factors such as competitive
pressure and general social and cultural factors were stated as triggers [21]. Major social change
was also identified as triggering maintenance: e.g. the introduction of the Euro currency within
the European Union [41]. Some papers alluded to the vendor maintenance release as a simple
and sufficient trigger for a client organization’s reaction to implement it [4,13,20,33]. Finally,
exploits or threats that increase the risk in a safety-critical, life-critical or secure system are
possible triggers for maintenance [5,38].

5. Deduction of a Maintenance Lifecycle
Beyond the identification of the reasons for maintenance deferral and implementation our
literature review also uncovered concepts which allow us to put forward a maintenance lifecycle
model. IEEE [6] puts forward a software lifecycle consisting of 8 phases, one of them being the
operation and maintenance phase. It is defined as “the period of time in the software lifecycle
during which a software product is employed in its operational environment, monitored for
satisfactory performance, and modified as necessary to correct problems or to respond to
changing requirements” ([6], p.52). Through the synthesis of concepts spanning multiple
critically reviewed papers, we deduce and propose a dedicated maintenance lifecycle from ideas
not previously unified. This cycle begins with acquisition of the asset that creates a need to
maintain the investment [1]; a trigger event causes maintenance to be required [5,9] ; the

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

157

maintenance activity is planned [31]; the purchasing organization’s IS and software users are
prepared for the maintenance [22]; the maintenance is implemented; and the implications to the
organization arising from the maintenance are stabilized [3]. Figure 1 uses the Software
Lifecycle to demonstrate the placement of this maintenance lifecycle.

Fig. 18. A Maintenance Lifecycle model

The proposed lifecycle is repetitive which refers to ongoing enhancements following the
initial system commissioning and stabilization [21]. It is also reminiscent of Deming’s Plan-
Do-Act-Check cycle, in that it iterates through the states. The difference within the
maintenance cycle is an explicit “wait” state before a trigger event, while the need for the next
planning phase arises. In other words, there is not necessarily an automatic progression prior to
the next trigger event.

6. Discussion
This study provides a summary of the reasons for maintenance deferral and implementation. It
thereby advances three research problems stated by Gable et al. [34] in an early research
framework for large packaged application software maintenance: (1) In exploring the rationale
for deferral, the identified reasons refer to the drivers for a maintenance decision. (2) It takes
up the question of to what extent can maintenance can be avoided through packaged software
solutions? Implicit in this question is the assumption that maintenance can be avoided, which
is addressed by the deferral aspect within this study. (3) Lastly, a maintenance lifecycle model
is deduced as a generic concept across all possible vendor-supplied systems and demonstrates
that packaged software maintenance concepts are in fact generic and extensible beyond a
particular vendor’s product.

The study had to address several challenges. The first challenge was gaining a suitable view
of the concept of software. For as long as IT, IS, and software investments have existed, there
have been attempts to classify the artifacts in a way common to other investments. Through
the adoption of a technical vendor viewpoint they can be divided into infrastructure, tools or
applications [2]. An alternative view is to understand IT, IS and software as representing an
asset [41]. This treatment of software as an asset supports references within the study to deferral
behaviors within the engineering realm and its physical assets. The next hurdle was the very
definition of the key term maintenance. The reviewed papers provided conflicting definitions
of maintenance, patches and upgrades that confused attempts to synthesize a clear picture of
the topic. This was reinforced through the diverse search terms required to capture the
documents assessed. Therefore the IEEE [6] definition of maintenance as a process and
Swanson’s [7] view of maintenance as an outcome or product were adopted. Although vendor-
supplied software maintenance can add new functionality, the customer judges the maintenance
as required in order for the software asset to remain useful. The study is then based on an
understanding that the maintenance phase begins following the purchase of vendor software,
not its activation. This is because the first maintenance releases “will occur before the system’s
initial delivery” ([33], p.53).

Deferral has negative connotations as “deferred maintenance is an exercise that often
detracts from the more fundamental task of attacking the problem itself. Because of the

ISD2016 POLAND

158

implication that deferral has been caused by neglect and not by conscious planning,
administrators shy away from approaching the main job” ([42], p.43). This study demonstrates
that deferral has both legitimate and neglect-based causes. From the first origins of maintenance
with the creation of tools and structures, items were used until they failed [43]. Through the
industrial revolution, systems became more complex but maintenance, apart from routine
lubrication, remained largely something performed at the point of failure. During World War
II the need for operational fighter aircrafts created a need for preventative maintenance,
maintenance before failure, therefore creating a function to support availability. From the
results of this study, the need for a trigger event before implementing maintenance strongly
indicates that some IS owners are still behaving in a mode of operating-to-failure or, operating-
to-obsolesce their software investments.

The need for different approaches to internal processes caused by the move from a
traditional in-house development team to vendor software is poorly understood and provides a
lens to understand the vendor-supplied maintenance deferral question [33]. It is possible that
some purchasing organizations fail to make the change to utilizing packaged software based
processes and therefore remain unaware of the pervasive ramifications both to people and
processes that are triggered by implementing a vendor-supplied product and subsequent
maintenance. A further area where businesses may not fully appreciate the complexity of
vendor-supplied maintenance is that traditional methods of costing, cost-benefit analysis
(CBA), return on investment (ROI) and risk-analysis, do not translate well from an in-house to
a vendor-supplied environment unless specific allowance is made for vendor-supplied
maintenance activities. Although a maintenance release may have no compelling reason to be
implemented, for example, a low ROI, a negative CBA, no improvement to risk profile, a later
more critical maintenance item may have a dependency on the earlier one. If the risk of deferral
is not factored into the original implementation decision, the cost and time required to utilize
the later critical maintenance release will be under-appreciated.

Traditional budgeting sets an IT department’s operating budget on an annual basis.
Translation of this budget into staffing allocation extends the assumption of fixed budget into
an assumption of staff costs and staff as fixed input, available to perform work. Contained
within this work is the effort required to analyze, test, and implement vendor-supplied
maintenance into the production environment. However, this study has shown that vendor
behavior does not always support such a predictable cycle of resource and budget availability.
A case study [20] emphasized that if mandatory, maintenance were implemented when it
arrived from the vendor, and 80% of the annual maintenance effort would be consumed through
fortnightly implementations; batching updates into larger, less frequent implementation
activities significantly benefited the reduction of total effort required. This is an example of
planned and managed maintenance deferral. An implication of this somewhat random vendor
behavior of maintenance production is to introduce a variable requirement for maintenance
work into an organization that is geared for a static level of effort. Incorrectly accounting for
this variability through the budgeting cycle could introduce a financial constraint on the ability
to implement vendor-supplied maintenance. The proposed lifecycle model with its planning
and preparation activities might support this processes.

When surrendering control of maintenance to the vendor, an organization largely
relinquishes the ability to manage or dictate the content of an individual maintenance package
and thus either might defer as long as possible or see no need for maintenance. Organizations
may assume that once purchased no allocation of time or effort is required for ongoing
maintenance, and that the problem was solved in the original purchase. This view is reinforced
by purchase decisions that fail to build the operational and maintenance costs into the decision
process. An alternative outcome from the trigger event may be to re-assess the vendor software
and determine that a replacement is necessary as presented in a case for optimally timed system
replacement in response to this outcome [44]. In another case an examination of the issues lead
to a system being retired, again referencing the maintenance cost/effort of the system to support
the decision [10]. In this case, a valid approach is to operate the current system without further
maintenance. This is an example of conscious deferral. It is addressed in the proposed

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

159

maintenance lifecycle wait state with a subsequent trigger event, which results in leaving the
maintenance cycle.

7. Conclusions
This study shows, and this is in particular emphasized in work concerning maintenance in
security and safety sensitive environments [38], that maintenance behavior in purchasing
organizations is not universal, but can be unified into a maintenance lifecycle model that takes
different contexts into account. It presents a comprehensive review of the reasons for
maintenance deferral and implementation within the area of vendor software from the
purchaser’s perspective. As such it provides a solid foundation for further attention and research
in this long neglected area and demonstrates that execution of a broad systematic literature
review relating to a sparsely published area of research informs research through the deduction
of themes and concepts as well as a foundational lifecycle model from an expansive selection
of literature.

This study supports practice with an understanding of organizational behavior with regard
to maintenance deferral and implementation. Through an awareness of common reasons, it can
help identify deferral causes, develop responses to these causes and forecast the upcoming need
for and implementation of maintenance within an organization. The IS community can advance
this process through further research, resulting in theories, frameworks and models that assist
practice in navigating the deferral problem in the future. The derived reasons have been distilled
from work where they form sometimes an incidental mention during the study of other topics.
Though important enough to warrant mentions, the list cannot be considered complete without
further empirical testing. Further research is thus needed to validate the identified concepts and
themes as well as the Maintenance Lifecycle model and its usefulness for understanding and
resolving the maintenance deferral problem with empirical case studies. The differences
between reasons leading to the deferral of maintenance and reasons leading to the
implementation of maintenance show that understanding the motivations that require an
upgrade decision in the present, do not explain all motivations for deferral in the past. Thus a
conceptualization of deferral as a process that recognizes that deferment and implementation of
maintenance take place in a complex social process may be beneficial in such investigations.

Any study has its limitations. The systematic literature review was performed by the first
author without a peer-review and dispute resolution process for the evaluation of each paper
against the filtering criteria. The review was limited to papers published in English. Restricting
the search to the Web of ScienceTM exposed the review to constraints of the data source
concerning publishing dates, use of search operators and keywords. These limitations may
exclude some valid articles. This study has focused on the organizational behaviors relating to
single vendor-supplied systems; organizations can operate with multiple, integrated vendor
software packages that increase the complexity of any maintenance decision [12]. This has also
to be taken into account in future research.

References
1. Horning J., Neumann, P.G.: Risks of Neglecting Infrastructure, Communications of the

ACM (51:6), pp. 112-112 (2008)
2. Xu, L., Brinkkemper, S.: Concepts of Product Software, European Journal of

Information Systems (16:5), pp. 531-541 (2007)
3. Khoo, H.M., Robey, D., Rao, S.V.: An exploratory study of the impacts of upgrading

packaged software: a stakeholder perspective, Journal of Information Technology
(26:3), pp. 153-169 (2011)

4. Maheshwari, B., Hajnal, C.: Total systems flexibility and vendor developed software:
Exploring the challenges of a divided software life cycle, IEEE International
Engineering Management Conference 2002, Vols I&II, Proceedings: Managing
Technology for the New Economy, IEEE, New York, pp. 218-223 (2002)

ISD2016 POLAND

160

5. Carney, D.,Hissam, S.A., Plakosh, D.: Complex COTS-based software systems:
practical steps for their maintenance, Journal of Software Maintenance-Research and
Practice (12:6), 2000, pp. 357-376 (2000)

6. IEEE: IEEE Standard Glossary of Software Engineering Terminology, pp. 1-84 (1990)
7. Swanson, E.B. Chapin, N.: Interview with Swanson, E. Burton, Journal of Software

Maintenance-Research and Practice (7:5), 1995, pp. 303-315 (1995)
8. Ng, C.S.P.: A decision framework for enterprise resource planning maintenance and

upgrade: A client perspective, Journal of Software Maintenance and Evolution -
Research and Practice (13:3), 2001, pp. 431-468 (2001)

9. Khoo, H.M., Robey, D.: Deciding to upgrade packaged software: a comparative case
study of motives, contingencies and dependencies", European Journal of Information
Systems (16:5), pp. 555-567 (2007)

10. Swanson, E.B., Dans, E.: System life expectancy and the maintenance effort: Exploring
their equilibration, MIS Quarterly (24:2), pp. 277-297 (2000)

11. Cusumano, M.A.: Changing software business: Moving from products to services,
Computer (41:1), pp. 20-27 (2008)

12. Vigder, M.R., Kark, A.W.: Maintaining COTS-based systems: Start with the design, in
Fifth International Conference on Commercial-off-the-Shelf, IEEE Computer Soc, Los
Alamitos, 2006, pp. 11-18 (2006)

13. Ng, C.S.P., Gable, G.G., Chan, T. Z.: An ERP-client benefit-oriented maintenance
taxonomy, Journal of Systems and Software (64:2), 2002, pp. 87-109 (2002)

14. Harvey, M.: Optimising road maintenance, in International Transport Forum,
OECD/ITF, Paris, 25-26 October 2012, viewed 24 June 2013, <http:// www.inter
nationaltransportforum.org/jtrc/DiscussionPapers/jtrcpapers.html (2012)

15. Reifer, D.J., Basili, V.R., Boehm, B.W., Clark, B.: Eight lessons learned during COTS-
based systems maintenance, IEEE Software (20:5), 2003, pp. 94-96 (2003)

16. Webster, J., Watson, R. T.: Analyzing the Past to Prepare for the Future: Writing a
Literature Review, MIS Quarterly (26:2), pp. 13-23 (2002)

17. Kitchenham, B., Brereton, O.P., Budgen, D.,Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering - A systematic literature review,
Information and Software Technology (51:1), pp. 7-15 (2009)

18. Kitchenham, B., Brereton, O.P.: A systematic Review of systematic Review Process
Research in Software Engineering, Information and Software Technology (55:12), pp.
2049-2075 (2013)

19. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review, Information and Software Technology (50:9-10), pp. 833-859 (2008)

20. Ng, C.S.P., Chan, T.Z., Gable, G.G.: A client-benefits oriented taxonomy of ERP
maintenance, in IEEE International Conference on Software Maintenance,
Proceedings: Systems and Software Evolution in the Era of the Internet, IEEE
Computer Soc, Los Alamitos, 2001, pp. 528-537 (2001)

21. Lientz, B.P.: Issues in Software Maintenance, Computing Surveys (15:3), pp. 271-278
(1983)

22. Khoo, H.M., Chua, C.E.H., Robey, D.: How organizations motivate users to participate
in support upgrades of customized packaged software, Information & Management
(48:8), pp. 328-335 (2011)

23. Hybertson, D.W., Ta, A.D., Thomas, W.M.: Maintenance of COTS-intensive software
systems, Journal of Software Maintenance-Research and Practice (9:4), pp. 203-216
(1997)

24. Ketler, K., Turban, E.: Productivity Improvements in Software Maintenance,
International Journal of Information Management (12:1), pp. 70-82 (1992)

25. Swanson, E.B., Beath, C.M.: Maintaining Information Systems in Organizations, John
Wiley & Sons, New York, (1989)

26. Biskup, H., Kautz, K.: Maintenance: Nothing Else but Evolution?!, Information
Technology & People (6:4), pp.215 – 231 (1992)

SAVAGE ET AL. A CONCEPTUAL
INVESTIGATION ...

161

27. Tan, W.G., Gable, G.G.: Attitudes of maintenance personnel towards maintenance
work: A comparative analysis, Journal of Software Maintenance-Research and Practice
(10:1), pp. 59-74 (1998)

28. Junio, M.G.A., Malta, N.N., Mossri, H.D., Marques-Neto, H.T., Valente, M.T.: On the
Benefits of Planning and Grouping Software Maintenance Requests,15th European
Conference on Software Maintenance and Reengineering (CSMR), pp. 55-64 (2011)

29. Hanna, M.L., Martin, L.: Quantitative determination of maintenance concepts for
COTS based systems, in Annual Reliability and Maintainability Symposium,
Proceedings, IEEE, New York, 2007, pp. 478-481 (2007)

30. Bloch, H.P.: Deferred Maintenance Increases Pump Failures, Power (155:2), p. 16
(2011)

31. Anderson, W., McAuley, J.: Commercial off-the-shelf product management lessons
learned - Satellite ground control system (SGCS) upgrade, in Fifth International
Conference on Commercial-off-the-Shelf, IEEE Computer Soc, Los Alamitos, pp. 206-
213 (2006)

32. Lientz, B.P., Swanson, E.B.: Problems in Application Software Maintenance,
Communications of the ACM (24:11), pp. 763-769 (1981)

33. Brownsword, L., Oberndorf, T. Sledge, C.A.: Developing new processes for COTS-
based systems, IEEE Software (17:4), pp. 48-55 (2000)

34. Gable, G.G., Chan, T.Z., Tan, W.G.: Large packaged application software
maintenance: a research framework, Journal of Software Maintenance and Evolution-
Research and Practice (13:6), pp. 351-371 (2001)

35. Bachwani, R., Crameri, O., Bianchini, R., Zwaenepoel, W.: Recommending software
upgrades with Mojave, Journal of Systems and Software (96), pp. 10-23 (2014)

36. Arora, A., Krishnan, R., Telang, R., Yang, Y.B.: An Empirical Analysis of Software
Vendors' Patch Release Behavior: Impact of Vulnerability Disclosure, Information
Systems Research, (21:1), pp. 115-132 (2010)

37. Ellison, G., Fudenberg, D.: The neo-Luddite's lament: excessive upgrades in the
software industry, Rand Journal of Economics (31:2), pp. 253-272 (200)

38. Arora, A., Forman, C., Nandkumar, A., Telang, R.: Competition and patching of
security vulnerabilities: An empirical analysis, Information Economics and Policy
(22:2), pp. 164-177 (2010)

39. Gartner: Gartner Estimates Global 'IT Debt' to Be $500 Billion This Year, with
Potential to Grow to $1 Trillion by 2015, No. 1, Gartner, gartner.com, p. 1 (2010)

40. Mukherji, N., Rajagopalan, B., Tanniru, M.: A decision support model for optimal
timing of investments in information technology upgrades, Decision Support Systems
(42:3), pp. 1684-1696 (2006)

41. Ben-Menachem, M.: Towards management of software as assets: A literature review
with additional sources, Information and Software Technology (50:4), pp. 241-258
(2008)

42. Kaiser, H.H.: Deferred Maintenance, New Directions for Higher Education (30), pp.
41-54 (1980)

43. Visser, J.K.: Maintenance management - A neglected dimension of engineering
management, in IEEE Africon, Vols 1 and 2: Electrotechnological Services for Africa,
IEEE, New York, pp. 479-484 (2002)

44. Tan, Y., Mookerjee, V.S.: Comparing uniform and flexible policies for software
maintenance and replacement, IEEE Transactions on Software Engineering (31:3), pp.
238-255 (2005)

