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Abstract 
Operational Business Intelligence (OpBI) discusses a possible support of production-specific 
decisions by integrating and analyzing production data. The discussion of OpBI focusses 
thereby rather on common applicability aspects than on certain implementation strategies. This 
is however less conclusive for a functional reliability of OpBI in production environments and 
for associated efforts. Therefore, we introduce an OpBI framework to integrate and analyze data 
of production processes automatically. Following principles of design science research, 
framework evaluation refers to real-world data from a rod and wire rolling process. In 
conclusion, our OpBI framework improves information quality perceived by end users 
analyzing a steel’s rolling behavior.  
Keywords: Operational Business Intelligence, Smart Factory, Design Science Research 

1. Introduction  
Manufacturing companies use IT systems to execute, record, model, or control production 
processes [1]. Common examples are automation systems, tools for product development, or 
operational execution systems [11]. Moreover, manufacturing managers need intelligent and 
integrated decision support systems that provide information from different viewpoints of 
production processes systematically [8]. In order to gain such benefits from using information 
systems in production, data from different sources (e.g. automation systems) have to be 
collected, harmonized and integrated [17]. However, dynamic and networked process structures 
challenge organizations in integrating data from IT systems used in production environments 
[23]. Integration approaches come along with a huge amount of manual work and lack in 
standardized and reusable methods [8]. Consequently, analysis of production data is time-
consuming and happens in different subsystems, which do not share information for a decision 
making automatically [17]. In order to address these challenges in integrating and analyzing 
production data, manufacturing companies have the opportunity to consider IT concepts from 
an analytical information systems’ perspective. Recently, literature studies discuss OpBI as a 
beneficial strategy to generate decision-relevant information out of production data, which stem 
from different IT systems [13]. However, this discussion deals rather with a common 
applicability of OpBI in production environments [19], than with implementations of certain 
methods and tools for an automated acquisition, consolidation, and analysis of production data. 
Thus, there is no evidence that OpBI actually works in practice. Efforts, benefits and obstacles 
of integrating and analyzing production data automatically remain fuzzy in a particular 
application scenario. The paper’s goal is therefore to investigate an actual implementation of 
OpBI in a certain production environment. 
There are currently no studies that deal with automated integration and analysis of production 
data in a standardized and reusable way. Discussions about Smart Manufacturing [2, 6], 
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Manufacturing Intelligence [4], or Industry 4.0 [20] demand admittedly a data-driven decision 
support in production environments, but they do not elaborate on tangible tools and methods in 
order to prepare and analyze data of production processes adequately. To support such 
activities, we apply design science research to develop an OpBI framework that joins 
capabilities like data modelling, data transformation or data manipulation for an integrated 
analysis and control of production processes. Evaluation happens during a framework 
application in context of integrating data from a rod and wire rolling process. Analytical tools 
and methods are used to demonstrate functional reliability of OpBI in an industry-driven use 
case. Finally, process engineers perform an assessment of the OpBI application in comparison 
to the traditional approach of analyzing rod and wire rolling data. To the best of our knowledge, 
this paper is the first contribution that discusses efforts, benefits and obstacles in integrating 
and analyzing real-world production data by use of established tools and methods from 
analytical information systems’ perspective, yet. We document practical knowledge about an 
actual implementation of OpBI in a production environment, so that practitioners and 
researchers gain a standardized guideline to design an automated data-driven management 
support for production-specific decisions. 
The paper is structured as follows: Chapter 2 discusses the status quo of OpBI and its 
application in production environments. The paper uses phases of design science research 
presented in Chapter 3. Chapter 4 introduces our framework and Chapter 5 demonstrates its 
evaluation using an example process of forming industry. A discussion of results follows in 
Chapter 6. Finally, Chapter 7 concludes the paper’s implications and highlights further research 
perspectives. 

2. Status Quo  
OpBI supports a decision making of business operation managers [7]. The concept refers to 
analytical IT system capabilities that collect, integrate, and present business relevant 
information in a decision-oriented way [9]. This allows an analysis of process performances to 
identify control actions for a continuous improvement of process design and execution [14]. 
The dashed line in Figure 1 marks the decision background of OpBI. 
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Fig. 1. Decision Background of OpBI according to [14] 

An adjacent research area to OpBI are workflow systems enabling automatization and 
parallelization of process-related operations. These systems define, execute and track business 
processes [26]. Events like begin of process, moment of finishing, input and output parameters, 
used resources or interruptions are recorded. However, workflow systems do not support a 
multidimensional view on these data to evaluate process performance like OpBI, because an 
analysis of data from workflow systems is limited, yet [16], especially in contexts of 
sophisticated processes with distributed tasks [3]. 

 Problem Refinement  

Production environments open a broad potential application area for OpBI [14]. Manufacturing 
companies collect a lot of data about products, manufacturing processes or quality issues. 
Furthermore, automation systems, sensor technologies or computing devices make large 
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amounts of data available. [17] The demand for a pervasive and ubiquitous usage of data in 
production environments is even increased by future-oriented smart factory initiatives [31]. A 
tracking of products through plants and working stations represents an exemplary scenario for 
data usage in a smart factory. In that context, production cockpits [28] are able to visualize 
throughput times, upcoming bottlenecks, material consumptions, or overall efficiencies. 
An important qualification for such capabilities in a smart factory is an accurate, fast and 
automated integration of underlying production data [31]. OpBI offers standardized tools and 
methods in this context, which form a basis to take production-specific decisions, e.g. an 
allocation of new work to idle capacities. It has to be noted that such decisions cannot be easily 
reversed, if continuous workloads require a steady processing of production orders. Wrong 
decisions increase risks of defective products and lead to additional efforts for a correct task 
fulfilment. To avoid such inconvenient situations, the OpBI’s activities to consolidate and 
harmonize production data have to ensure that decision makers are well provided with high-
quality information. A seizure of quality in terms accessing and representing information can 
be guided by the following requirements [21]: 

 Concise representation requires compactness and precision of information to avoid 
overwhelming and unnecessary information. 

 Consistent representation requires a coherent and invariant format of information. 
 Interpretability requires the usage of appropriate units, definitions or labels. 
 Understandability requires unambiguously and comprehensible information. 
 Ease of operation requires easy manipulations of information. 

 A compliance of information quality in context of an automated integration and analysis of 
production data has not been investigated, yet. Literature studies theorize generally a positive 
effect of analytical IT approaches like OpBI on aspects of information quality, i.e. decision time 
and accuracy [15, 29]. However, a usability of OpBI concerning the abovementioned quality 
criteria has not been confirmed in empirical investigations [15]. The paper investigates 
therefore the effect of OpBI usage on information quality aspects in production environments. 

Related Research  
The relevance of integrating and analyzing production data becomes evident by decision 
support functionalities of industry-driven approaches. For example, Manufacturing Execution 
Systems (MES) collect, process, and present data in order to coordinate production processes 
[24]. Furthermore, Advanced Process Control (APC) characterizes an analysis of process data 
in semiconductor industries. APC solutions encompass modules to conduct operation 
inspections, error classifications or efficiency calculations. Statistical methods can be used to 
monitor equipment, or technical processes. [30] The term Manufacturing Intelligence (MI) 
belongs to the discussion about an extraction of information out of production data for decision 
support purposes, too [4]. MI focusses on a pervasive usage of data integration techniques to 
enable a problem-oriented information supply for decision makers [5]. This includes several 
aspects of analyzing production processes like for example pattern detection, real-time 
monitoring, or simulations [18]. Considering the need for networked production data within 
and across manufacturing processes, the catchphrase of Smart Manufacturing asks for an 
intensification of MI in industrial organizations [6]. This is reasoned by observations, that 
existing IT solutions in production environments entail only single process improvements with 
insufficient opportunities for decision support [2]. 
All of the industry-driven concepts pursue control functions in production environments based 
on a comprehensive usage of data. However, these concepts do not discuss standardized and 
reusable approaches for an automated data integration and analysis. A proper handling of 
production data concerning the aspects of data modelling, model implementations, data 
transformations or automated report generation is commonly ignored. OpBI is able to fill this 
gap with tools and methods for an automated data integration and analysis. This finding arises 
from a literature review across the databases of Business Source Complete, IEEE, AIS, ACM, 
Emerald, and Science Direct. We used these literature sources to assess research contributions 
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on OpBI in production environments according to MIS journal rankings [22]. In result of the 
literature review, the application of OpBI is subject of different case studies and conceptual 
papers. The literature addresses for example the ability of OpBI to improve the analysis and 
reporting functionalities of MES as part of a company-wide decision architecture [12]. OpBI 
enables furthermore a consideration of heterogeneous data from technical and economic 
perspectives [19]. The underlying data integration connects logistical and product-oriented IT 
systems, so that OpBI is able to support multidimensional views on flexibility requirements of 
production processes [13]. Looking for actual implementations of OpBI in production 
environments, the literature contains no knowledge about data integration methods or tools to 
apply OpBI in practice, yet. 

3. Research Design 
Our research follows principles of design science research (DSR) [10]. We refer to five phases 
of DSR in order to develop and evaluate an OpBI framework for a production-specific decision 
support (Cf. Figure 2). 

Awareness of the 
Problem Suggestion Development Evaluation Conclusion

Introduction & Chapter 2 Chapter 4 to 6 Concluding Chapter

 
Fig. 2. Phases of DSR according to [27] 

The first phase aims to raise awareness for the given problem domain and results in a proposal. 
This is followed by a suggestion of a tentative design.  In context of our research, the first two 
phases are carried out in the introduction of the paper and in Chapter 2. We discussed a need 
for an automated data integration to support decisions in production environments and suggest 
an application of OpBI techniques within this problem area. Subsequently, an OpBI framework 
will be developed and evaluated in the course of this paper. 

4. Development of the OpBI Framework 
Figure 3 illustrates the schematic overview of our framework. We build up on framework 
requirements stemming from a specific process design and operation. First, there is a need for 
layout data regarding the process equipment (e.g. machines, measuring points and instruments) 
and in terms of measurement parameters. Second, operational data from different process runs 
are required. This concerns for example planned input and output data for each process step, 
machine settings, or measured values. Therefore, it has to be ensured that a measurement of 
operational data happens actually. Examples for an IT support are sensor systems, process data 
acquisition tools or control stations. 
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Fig. 3. Design of the OpBI Framework 

Both, layout and operational data flow into the data provisioning component of our OpBI 
framework. The component’s output is a multidimensional structured database that is populated 
with measured values of process operation. The subsequent data analysis component generates 
analysis results that will be finally visualized to users in the data presentation component. The 
dashed line indicates a decision support for process design and operation based on achieved 
analysis results. 
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Data Provisioning  

The data provisioning component encompasses activities from data modelling right up to data 
storage (Cf. Figure 4). 
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Fig. 4. Activities of data provisioning 

At first, a data modelling concerns a semantic conceptualization of a multidimensional 
database. The content of the data model is thereby derived from process design and operation. 
This includes process hierarchies with subprocesses, phases, monitoring points, and 
determinants. Measurement parameters and process runs span further dimensions. In addition 
to these aspects of a manufacturing process, time-related dimensions (date and time of 
manufacturing) need to be modelled, too. After creating the data model, it has to be 
implemented in a database management system. Dimensions are transferred to database tables 
consisting of keys and content columns. A data type has to be defined for each column. The 
database tables store either descriptive dimensions or facts. The dimension tables are populated 
with meta-information from process design. Fact tables are populated subsequently to the data 
model implementation during an ETL process (Extract, Transform, and Load). Thereby, the 
measured values collected for example by a process data acquisition system need to be 
organized according to the implemented data model structure. In order to do so, the measured 
values from process operation must be harmonized to the data types of the fact tables during a 
data preprocessing. The data are cleaned up and enriched by additional calculations. The second 
aspect of the ETL process refers to a categorization of process actions. Logically related 
activities are filtered based on specified criteria and assigned to a unique identifier. This is 
especially relevant, if one process station handles different activities or if parallel work occurs. 
The final step of the ETL process stores the preprocessed and categorized data in the 
implemented fact tables of a database management system. 

Data Analysis and Presentation  
The data analysis component executes queries on multidimensional structured process data. 
This is carried out by a business intelligence or analytics tool in order to generate certain 
analysis results. An analytical platform provides an interface to different users interested in a 
basic reporting, an interactive data discovery or a complex ad hoc report generation. The 
necessary objects to create the reports are also defined in the analytical component. This 
requires e.g. filter or aggregation functionalities. The analysis results are finally presented and 
communicated for decision support purposes. Grids and graphs can be used exclusively as well 
as combined in dashboards or management cockpits. Figure 5 summarizes the activities for data 
analysis and presentation. 
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Fig. 5. Activities of data analysis and presentation 

5. Framework Evaluation 
We use production data from a rod and wire rolling process to evaluate our OpBI framework. 
The underlying process setting and the evaluation of the framework components is presented 
in the following. We have used different IT tools and methods for data acquisition, data 
provisioning and data analysis (Cf. Figure 6). 
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Fig. 6. Evaluation Process 

Rolling Process and Data Acquisition 

The background of our evaluation is a hot rolling process. In this context, the rolling behavior 
of different steel grades needs to be analyzed. The process is carried out on a semi-continuous 
rolling train. This plant produces round wire of eight millimeter diameter out of steel billets 
with a 45 millimeter edge length. Therefore, materials run through nine stations over a distance 
of more than 46 meters. The rolling train is divided in a roughing mill and a final rolling pass. 
Preliminary material is heated to 1,150 degree Celsius before it flows into the roughing mill 
with two reversing rollers. Different rolling calibers decrement a steel billet’s initial dimensions 
to a diameter of around twelve millimeters. Thereby, the material is handled by two workers 
using pliers to push the materials in the roughing mill and to pull it out again. After each pass, 
a button is pressed in order to change the rolling direction. The intermediate products go 
subsequently through the final rolling pass consisting of four finishing mills, a cooling line, a 
wire driver, and a looper. The finishing mills are assembled in a so called H-V-H-V 
arrangement (horizontal, vertical). This allows an alternating height and width reduction of 
wire. There is a cooling line with three water pipes after the last finishing mill. The wire is 
cooled down to a temperature of 800 to 900 degrees Celsius, and then looped by a laying unit. 
A process run consists of eleven roughing mill phases and four finishing mill phases. Before 
each run, the machines are configured according to technical parameters of a rolling schedule. 
This includes the determination of the rolling gaps and rolling speed. The process stability is 
checked in a control station during the process. Mill forces, temperatures, momenta, and 
electrical parameters are measured by use of a process data acquisition software of iba. This 
company is specialized on automation systems and has implemented different measuring points 
(e.g. dynamometer or pyrometer) on the rolling train that are networked to the control station. 

Data Provisioning 
We carried out activities of data modeling and transformation for the purpose of data 
provisioning. In context of data modelling, we refer to the method of Application Design for 
Analytical Processing Technologies (ADAPT). This allows us a modelling of dimensions, 
hierarchies and analysis cubes by predefined shapes. The semantic data model for the rod and 
wire rolling process is represented in Figure 7. 
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Fig. 7. ADAPT Model of the Rod and Wire Rolling Process 
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Each rolling pass is related to an experiment, which is conducted on the rolling train. A 
particular material is thereby formed to predefined dimensions. This is expressed by the 
experiment’s dimension in the ADAPT model. Experiments are conducted on a certain date. 
The experiment duration is between one and two and a half minutes. The acquisition of 
measurement data happens in a cycle of two milliseconds. Therefore, the dimensions time and 
date provide certain hierarchy levels in order to aggregate time and date related information. 
The transaction dimension represents the process design. The rod and wire rolling process 
consists of two subprocesses with several rolling phases. Measured forces or temperatures 
determine the rolling phases. There are overlappings of rolling phases due to the continuity of 
the finishing train. This happens if more than one monitoring point records measurement data 
at the same time. For this reason, two indicator dimensions are used in the data model. The 
rolling phase indicators consider parallel measurement, while the experiment indicator 
dimension describes the actual experiment duration. We implemented this ADAPT model in a 
SQL Server database. The DIM Date table contains data for the year of 2015. DIM Transaction 
considers 33 rolling phases with three different determinants. There are 14 monitoring points, 
two subprocesses and 15 features. The table DIM Experiment contains 26 experiments and two 
different steel grades. Time-related data encompass timestamps of a 24 hour day from second 
level to millisecond level. In order to populate the fact tables of the galaxy schema, we created 
data transformations in Pentaho Data Integration. The measurement values recorded by the iba 
process data acquisition system are exported to text files and imported into Pentaho. The data 
have a string format at the beginning of the ETL process. First, we cut these strings to a desired 
length and changed the labels of the measurement parameters according to their definition in 
the fact tables. In a next step we replaced cryptic values and added a column for an experiment 
ID so that we were able to reference the fact tables with the DIM Experiment table in our 
database. In the further progress, a variety of steps was necessary to calculate a transaction ID 
for the different rolling phases. We determined these IDs separately for the roughing mill and 
finishing mill using temperature and force parameters. The initial temperature before the 
roughing mill amounts approximately 670 degrees Celsius. The force ranges between zero and 
15 kilonewton in the initial state of the rolling train. Measurement values meeting the initial 
conditions are classified to idle state. 
To identify the further rolling phases of the roughing mill, we differentiated temperature and 
force operations. There is a pyrometer before and after the roughing mill. The temperature 
jumps up, if the material is right in front of the roller. This identifies the first rolling phase. 
Then, a measurement of forces happens during the first pass and determines the second phase. 
If the material is completely gone through the rollers, only the values at the output pyrometer 
differ from the initial state. This identifies the third rolling phase. However, these conditions 
are valid for different rolling phases, because several passes happen on the roughing mill. 
Therefore, we added a sequence and calculated the transaction ID based on changing 
operations. This represents the calculation of the transaction ID for the roughing mill. In case 
of the final rolling pass, the identification was easier due to the continuity of this rolling train 
part. We filtered the phases according to the different monitoring points. So, ten rolling phases 
were derived, which overlap each other. We built also a dataset without overlappings in order 
to trace the complete final rolling pass. Next to transaction ID and experiment ID, a date column 
was determined, too. We used a calculation to remove the time part from imported timestamps. 
Furthermore, measurement interval are calculated. This allows to determine the durations of 
each rolling phase and experiments. In result, our ETL implementation encompasses five 
transformation processes using the table output function of Pentaho. We run four ETL processes 
to transfer the transformed measurement data to 13 temporary fact tables and integrated them 
later to one phase-related fact table in the SQL server database. The experiment-related fact 
table was populated by a separate transformation. 

Data Analysis 

The data analysis was performed on the analytical platform of MicroStrategy. We created 
several reports that are presented via a web interface for example in report documents or 
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analysis dashboards in context of basic reporting. In addition, the development environment 
provides extensive possibilities to investigate the data according to various aspects. 
MicroStrategy uses a meta-data database and our implemented rolling database connected via 
ODBC to the analytical platform. In order to generate reports, we built first attributes and 
metrics within the tool environment. Attributes and metrics are placed on grid or graph 
templates and enable also the creation of additional report objects, e.g. filter or consolidations. 
The report objects definition is stored in the meta-data database. If a process is run, an analytical 
engine generates SQL statements in order to query the rolling database. Figure 8 illustrates an 
example report. 

 
Fig. 8. Example report – relation of phase durations to experiment duration 

6. Discussion 
The OpBI framework introduced in Chapter 4 has been evaluated in context of a rod and wire 
rolling process. We demonstrated that the integration of rolling data is feasible from a technical 
point of view and leads to consistent results from a functional perspective. Our framework has 
been discussed with engineers responsible for the rod and wire rolling process in order to make 
a comparison to the traditional analysis approach. Therefore, we use information quality 
requirements presented in the problem refinement of the paper. 
In a nutshell, using our OpBI framework improves analysis capabilities of users conducting 
experiments on the rolling train in favor of a profound analysis of a steel’s rolling behavior. 
This encompasses for example faster analyses in an automated way or the possibility to 
calculate indicators on a different level of detail. The traditional approach was related to 
spreadsheet software (e.g. MS Excel) and an analysis add-on of the process data acquisition 
software. In particular, the engineers pointed out that analysis results were generated in a time-
consuming, manual, and error-prone process. A detailed comparison of the framework 
approach and the traditional approach follows in Table 1. 

Table 29. Comparison of the proposed solution to the existing approach. 

 Traditional Approach OpBI Framework 

Concise 
Representation 

& 
Consistent 

Representation 

 Two-dimensional presentation 
of measurement parameters  

 Experiment-related presentation 
 Manual and unstandardized 

reports 
 Presentation by simple graphs 

or spreadsheet programs 

 Multidimensional presentation of 
descriptive information and 
measurement parameters 

 Use of hierarchies 
 Process-related presentation 
 Automated and standardized reports 
 Various presentation options  
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 Traditional Approach OpBI Framework 
Interpretability 

&  
Understandability 

 Difficulties to consider external 
or additional parameters 

 Static analysis perspectives 

 Different levels of detail 
 Opportunity of add data perspectives 
 Flexible analysis perspectives 

Ease of Operation 

 Limited data manipulation 
options 

 Time-consuming aggregations 
and calculations 

 Flexible options for data manipulation 
(drilling, pivoting, filtering, sorting) 

 Simple aggregations and calculations 

 
Table 1 indicates a positive effect of OpBI on information quality compared to the traditional 
approach of analyzing the rod and wire rolling process. The engineers mentioned in terms of 
consistent representation: 

The OpBI system presents the rolling process consistently from functional and 
technical viewpoints.  

Concerning consistent representation, the importance to explain and predict measurement 
values like temperatures or forces has been pointed out. An engineer said in that context:  

We have often complex issues in which we need to describe the effect of various 
influencing factors on a specific measurement parameter. Thereby, the OpBI system 
allows us to keep track of interactions between materials and rolling measures in 
different functional areas of the rolling train.  

The opinion in terms of interpretability and understandability was two-minded. Major 
improvements are expected in context of analyzing experiments conducted on the rolling train. 
The improved representation has been associated with a better interpretation and understanding 
of analysis issues. However, the engineers emphasize the importance and the need of expert 
knowledge, so that they see only an indirect effect of the OpBI system in this context. Moreover, 
the relevance of our framework approach for interpretations of workers operating a machine 
has been discussed. A technical assistant mentioned: 

Each run on the rolling train lasts less than two minutes. So, there is no time for 
interpretations during an experiment.  

In this context, the OpBI system cannot bring an advantage compared to the previous approach. 
Changes on working behavior will still concern subsequent experiments. In order to identify 
such changes, the ease of operation of the OpBI system was commended by the engineers:  

Using the traditional approach provides us values always on the minimum level of 
detail. So it is difficult to determine average values for process phases at the flick of a 
switch without the OpBI system.  

The discussion with the engineers reveals direct and indirect relationships between the criteria 
of information quality introduced in Chapter 2 (See Problem Refinement) and the usability of 
OpBI. This circumstance is illustrated in Figure 9. OpBI improves directly a concise and 
consistent representation of information generated from production data. A direct effect also 
exists in context of manipulating the data during analysis activities (ease of operation). 
Understandability and interpretability are indirectly improved by a better representation and 
ease of operation. However, both quality criteria depend also from analytical skills and 
experiences of end users. Following literature about information success e.g. [25], we are able 
to confirm a relationship between information quality and the usability of OpBI in production 
environments. 
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Fig. 9. Relationship between Information Quality Criteria and OpBI 

The illustrated usability and the gained benefits from OpBI depend on main efforts in 
context of data modelling, database implementation, transformation processes, and report 
generation. However, these activities have to be performed only once and can be adapted in 
case of changed situations. Created report objects are reusable for new report definitions. It has 
to be noted that the implemented data model is only valid for a specific process configuration. 
Adaptations are required in case of e.g. new monitoring points or process stations. 
Implementations of new database models and transformation processes will be necessary, if the 
rolling train is retooled to another configuration (e.g. hot-rolled strip). 
Next to the comprehensive analysis opportunities, the framework is beneficial to identify and 
carry out control actions. This concerns material characteristics in dependence on measured 
values. It is for example possible to determine hold times in order to reach a specific 
temperature. An interesting decision area is the roughing mill in context of the rod and wire 
rolling process. Due to the interaction of humans and machine, there are various potential 
relationships as for example the reversing time on a material’s temperature profile. 
Furthermore, decisions can be made about the usefulness of monitoring points and 
measurement parameters in a given process configuration. The framework and its analytical 
tools builds upon a process data acquisition software. Such tracking systems to control process 
stability are not replaced. However, the analysis opportunities of our proposed OpBI solution 
allow process engineers to link measurement values with input parameters of machine controls 
dynamically. This makes a parameter setting in a given context more precise than a merely 
experience-based approach. 
The application of OpBI in the given context requires tools that integrate and analyze 
production data. In order to evaluate our framework components, we used specific data 
integration and analysis tools. The framework application is however independent from the 
presented tool selection and can be done by comparable BI-related tools, too. Nevertheless, a 
new acquisition of software solutions or an extension of already existing analytical 
environments is required. This forces system developers to examine design and execution data 
in order to gain a comprehensive understanding of the underlying process. The consistency of 
the analysis results should be scrutinized by experts during each OpBI project. This ensures a 
coherent and accurate information base to analyze a material’s behavior on the rolling train and 
to derive actions for decision support. Gained experiences need to be documented for future 
projects. 

7. Conclusion 
OpBI is able to automate the integration and analysis of production data in favor of a 
multidimensional decision support, if specific efforts in context of data provisioning and data 
analysis are managed. The paper’s contribution takes the implementation of OpBI 
functionalities into account in order to improve the analysis capabilities of decision makers in 
production environments. In this context, we designed and evaluated a framework that guides 
actual applications of OpBI to integrate production data automatically. Central components of 
our proposed solution are a modelling of multidimensional data structures as well as a 
deployment of corresponding data transformation processes. These data processing activities 
enable an annotation of stationary recorded and machine-located measurement values with 
descriptive information of a certain process design. The multidimensional structured production 
data form a basis for subsequent analyses and a production-specific decision making. 
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The paper demonstrates an OpBI-driven framework that allows a flexible design of analysis 
dimensions to assess process-related measurement values in the overall context of a production 
process. Considering opportunities for decision support in production environments, a 
feasibility of OpBI becomes evident. The paper demonstrates a new application field to research 
and study OpBI. This enhances recent discussions about topics like Smart Manufacturing or 
Industry 4.0 with novel methods and tools coming from an analytical information systems 
perspective. The proposed framework and its evaluation in a real-world context introduce new 
knowledge and experiences regarding OpBI implementations in production environments. 
Practitioners and researchers gain insights about data integration approaches, so that they are 
able to extract valuable information from production data recorded for example by process 
automation systems. Thereby, the present investigation addresses cost in terms of data 
management or software tools in context of an OpBI-driven integration and analysis of 
production data. 
The framework evaluation with data from a rod and wire rolling process provides a valid proof 
of concept. This is however only one example and embodies a gambit for repeated applications 
of OpBI in order to automate the integration and analysis of data from production processes. 
Thus, further evaluations should be part of subsequent research activities, so that the paper’s 
findings can be consolidated in favor of scalability. Thereby, comparisons of different 
application scenarios will lead to a generalizability of the OpBI-driven approach and to 
conceptual improvements. Moreover, upcoming technologies in smart factories will lead to new 
sources of generating production data. Their usage for decision making opens a broad field of 
research for an automated data integration and analysis. The feasibility of existing tools and 
methods from OpBI perspective has to be permanently evaluated against their usability in future 
smart factories. This provides a promising field for further research in order to study and to 
apply adaptations and advancements of the presented data integration approach. 
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