
RESEARCH PAPER

Supporting the Refinement of Clinical Process Models
to Computer-Interpretable Guideline Models

Begoña Martínez-Salvador · Mar Marcos

Received: 4 June 2014 / Accepted: 29 January 2016 / Published online: 9 August 2016

© Springer Fachmedien Wiesbaden 2016

Abstract Clinical guidelines contain recommendations on

the appropriate management of patients with specific

clinical conditions. A prerequisite for using clinical

guidelines in information systems is to encode them in a

Computer-Interpretable Guideline (CIG) language. How-

ever, this is a difficult and demanding task, usually done by

IT staff. The goal of the paper is to facilitate the encoding

of clinical guidelines in CIG languages, while increasing

the involvement of clinicians. To achieve this, it is pro-

posed to support the refinement of guideline processes from

a preliminary specification in a business process language

to a detailed implementation in one of the available CIG

languages. The approach relies on the use of the Business

Process Model and Notation (BPMN) for the specification

level, a CIG language for the implementation level, and on

algorithms to semi-automatically transform guideline

models in BPMN into the CIG language of choice. As a

first step towards the implementation of the approach, in

this work algorithms are implemented to transform a

BPMN specification of clinical processes into the PRO-

forma CIG language, and are successfully applied to

several clinical guidelines.

Keywords Clinical guideline representation · BPMN ·

PROforma · Transformation between process languages

1 Introduction

Clinical guidelines are defined as “systematically devel-

oped statements to assist practitioner and patient decisions

about appropriate health care for specific circumstances”

(Field and Lohr 1990). Guidelines contain evidence-based

recommendations for the best management of patients with

a particular clinical condition. Clinical guidelines improve

the process and the outcome of healthcare. For example,

they support evidence-based medicine, reduce variability in

the application of the procedures and also decrease the

possibility of errors (Boxwala et al. 2001). Clinical

guidelines are usually text documents, sometimes aug-

mented with more structured information like flowcharts to

specify some recommendation steps.

The best way to implement the clinical guideline at the

point of decision-making, when the patient-clinician

encounter occurs, is by implementing an alert-based system

or a more complex decision-support system. A prerequisite

for implementing such systems is to transform the textual

guideline into a computer-interpretable format, that is, into

a Computer-Interpretable Guideline (CIG). For this pur-

pose, in the Medical Informatics area, several languages for

modeling CIGs have been developed. The most important

languages for CIGs are (Peleg et al. 2003; de Clercq et al.

2004): Arden Syntax, Asbru, EON, GLIF, GLIDE, Prodigy

and PROforma. These languages are tailored to the sin-

gularities of the medical domain. They share many

features, although each one has its own characteristic ele-

ments. Inspite of some attempts in this direction, no CIG

language has become a standard.

In practice, it turns out that encoding the recommenda-

tions of a clinical guideline (mainly, its clinical processes)

in a CIG language is a demanding task that requires both

clinical and IT skills. On the one hand, clinical knowledge

Accepted after two revisions by Prof. Dr. Jarke.

B. Martı́nez-Salvador (&) · M. Marcos

Department of Computer Engineering and Science, Universitat

Jaume I, Av. de Vicent Sos Baynat s/n, 12071 Castellón, Spain

e-mail: begona.martinez@uji.es

M. Marcos

e-mail: marcos@uji.es

123

Bus Inf Syst Eng 58(5):355–366 (2016)

DOI 10.1007/s12599-016-0443-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-016-0443-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-016-0443-3&domain=pdf

is required for a proper understanding of most of the rec-

ommendations in clinical guidelines. On the other hand, IT

skills are required to analyze the clinical processes they

contain and to describe them in terms of a CIG language.

This is because CIG languages are not always accessible

for clinicians. Our goal is to facilitate the encoding of

clinical guidelines in CIG languages, while increasing the

involvement of clinicians in the process. To achieve this,

we propose to support the refinement of clinical processes

in guidelines from a preliminary specification in a business

process language to a detailed implementation in one of the

available CIG languages.

Concretely, our approach relies on the use of the Busi-

ness Process Model and Notation (BPMN) for the

specification level, a CIG language for the implementation

level, and on algorithms to semi-automatically transform

guideline models in BPMN into the CIG language of

choice. Because of the latter, we designate our approach as

transformation-based refinement. Compared to the direct

encoding in the CIG language, our approach supposes an

initial BPMN modeling step plus a semi-automatic trans-

formation step. An important advantage of the initial

modeling lies in its potential to increase the involvement of

clinicians. As a matter of fact, we envisage that this step

will be mainly performed by clinicians, with the assistance

of IT staff. Another advantage is that the effort to model a

clinical process in BPMN can be leveraged by the imple-

mentation of models in several CIG languages, provided

that appropriate transformation methods are developed.

Clinical processes can be represented using a standard

process modeling language, such as BPMN. Because the

last BPMN specification (OMG 2011) provides some

execution semantics in terms of BPEL, in general BPEL is

mistaken for an executable expression of BPMN. However,

the full equivalence of BPMN cannot be expressed in

BPEL (Dugan and Palmer 2012). For this reason we do not

regard BPMN as implementation language, but rather as an

initial specification that can be used as a basis for a later

implementation. BPMN has rapidly earned wide accep-

tance, becoming a de facto standard for graphical process

modeling (Recker 2010). To date most users have

employed BPMN to describe operations in a simple and

graphical way. The situation is similar in the medical

domain. Some works have used BPMN for the collabora-

tive modeling of clinical pathways (Kirchner et al. 2014;

Scheuerlein et al. 2012), resulting in higher quality models

which are better understood and accepted by domain

experts. All this supports the use of BPMN as an instru-

ment for the preliminary specification of processes in

clinical guidelines.

As implementation language, any of the aforementioned

CIG languages may be chosen. In this work, we target

PROforma, primarily due to our previous modeling

experience with this language. PROforma is one of the

most important languages for CIGs, and is actively sup-

ported by OpenClinical.org, a community of healthcare

professionals and medical informatics researchers. More-

over, there are several software tools available to work

with PROforma guidelines, such as a graphical editor, a

tester, and a web-enactment suite.

As a first step towards the implementation of our

transformation-based refinement approach, in this article

we describe the algorithms that we have implemented for

the transformation of guideline models specified in BPMN

into the PROforma language. A preliminary description of

the algorithms was introduced in Martı́nez-Salvador et al.

(2014). The transformation algorithms have been tested

with different guidelines. As an illustration, some results

obtained with a guideline for the diagnosis and treatment of

prostate cancer (Mohler et al. 2012) are presented.

The rest of the article is structured as follows. Section 2

presents an overview of BPMN, PROforma, and the

methods. Section 3 is devoted to the implementation of the

transformation algorithms. In Sect. 4, some experimental

results with a prostate cancer guideline are presented.

Finally, Sect. 5 concludes and outlines some future work.

2 Materials and Methods

2.1 BPMN

The Object Management Group (OMG) has developed the

BPMN notation which provides a standard graphical

notation for specifying business processes. The latest

published specification is BPMN 2.0 (OMG 2011).

In recent literature we can find several works using

BPMN in the medical domain. Some works report expe-

riences in modeling processes for patients with a particular

condition (Rojo et al. 2008; Rolón et al. 2008; Parra et al.

2012). Others use BPMN for modeling clinical pathways

(Svagård and Farshchian 2009; Scheuerlein et al. 2012;

Hashemian and Abidi 2012; Kirchner et al. 2014). Most of

the works agree on emphasizing that BPMN is easy to use

and understand by all stakeholders. In one of the works

BPMN is used to model the anatomic pathology processes

in a Spanish hospital (Rojo et al. 2008). The modeling

team comprised external IT experts and hospital staff,

including health experts and people responsible for

administrative and quality issues. The authors conclude

that the resulting model is understandable for involved

health professionals, and that it improves communication.

There are also works that describe the experiences in

collaborative modeling of clinical pathways by health

professionals assisted by IT staff. They report that

familiarization with BPMN is relatively quick and intuitive

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

(Scheuerlein et al. 2012), and that the fact that health

experts have a better understanding of clinical pathways

facilitates modifications and updates of the model (Kirchner

et al. 2014).

A BPMN process describes a flow of activities in an

organization with the objective of carrying out a task. It is

depicted as a Business Process Diagram (BPD). BPMN is a

complex language with many graphical elements. How-

ever, a study conducted by zur Muehlen and Recker (2008)

showed that the average BPMN model uses less than 20 %

of the available elements. In the rest of the section, we

restrict our discussion to a subset of BPMN elements:

events, gateways, tasks, sub-processes and sequence flows.

These elements roughly include the BPMN common core

and extended core defined by Recker (2010), except for the

pool and lane elements. With this subset, it is possible to

specify real-world clinical guidelines as the one used in this

paper (see Sect. 4).

BPMN flow objects are the main elements for defining

the behavior of a business process. There are three types of

flow objects: activities, events, and gateways. BPMN also

has connecting objects which are used to connect flow

objects to each other or to data objects. The main type of

connecting object are sequence flows.
An event is something that “happens” during the course

of a process. The start event indicates where a particular

process will start. Similarly, the end event indicates where a
particular process will finish.

Gateways control branching and merging of flows in a

process. The gatewayDirection might be set to converging
or diverging. If it is set to converging, then the gateway

must have multiple incoming flows and only one outgoing

flow. Reciprocally, if it is set to diverging, the gateway

cannot have multiple incoming flows but must have mul-

tiple outgoing flows. There are different types of gateways

to control the flow behavior. A diverging exclusive gateway
(split XOR-gateway) is used to create alternative paths

within a process flow. A diverging inclusive gateway (split

OR-gateway) is used to create alternative paths where more

than one of them can be followed. A diverging parallel
gateway (split AND-gateway) is used to create parallel

flows. We will refer to converging gateways as join gate-

ways, e.g., a join XOR-gateway.

Activities are points in the process where work is per-

formed. There are two types of activities: tasks and sub-
processes. A task is an atomic activity. It represents an

action that is not further refined. BPMN specifies three

types of markers for tasks. In the domain of clinical

guidelines, we have used the loop marker which indicates

that the task may be repeated. The number of iterations

depends on a condition that is evaluated for each iteration.

A sub-process is an activity whose internal details have

been modeled in another BPD. The nested elements are

represented collectively as a single activity in the diagram.

Sub-processes are used to hide the complexity of a diagram

or to define a special way of execution for the activities

within it. Ad-hoc sub-processes, a special type of sub-

processes, have an ordering attribute whose value can be

set to sequential or to parallel. If it is set to sequential, the

inner processes will be executed in every possible

sequential arrangement. If it is set to parallel, it is possible

to have several processes or activities enacted at the same

time. Sub-processes, as tasks, may also have a loop marker.

Sequence flows indicate the order in which activities will

be performed. Each sequence flow must have exactly one

source and one target flow object. Sequence flows coming

of from split gateways optionally define a condition

expression to be evaluated before deciding whether or not

to follow that flow. In the case of split XOR and OR-

gateways it is possible to define a default sequence flow,

which will indicate the path to be chosen in case all the

condition expressions evaluate to false.

Figure 1 shows the specification of the main clinical

process for the diagnosis and treatment of prostate cancer.

The figure contains events, XOR-gateways, tasks and col-

lapsed sub-processes which contain their own BPD.

2.2 PROforma

PROforma is an executable CIG language, tailored to

capture medical knowledge and successfully used for

deploying clinical decision support systems (Sutton and

Fox 2003). The Tallis implementation (COSSAC 2013b)

provides a Composer for authoring CIG-based decision

support systems that may be enacted using the Tallis

Engine. There are several examples of decision support

systems implemented in PROforma such as Bury et al.

(2005), Coulson et al. (2001), Emery et al. (2000), and

COSSAC (2013a).

The building blocks of PROforma are the tasks. Tasks
represent actions or activities to be performed by an

external agent (e.g., clinician, patient) or by the Tallis

engine itself. There are four types of tasks: Enquiry, De-
cision, Action and Plan. Enquiries request data from the

environment, to be entered by a human user or read from a

database. Decisions are activities where a choice has to be

made among different options. Actions represent those

activities that have to be performed in the external envi-

ronment (e.g., perform blood glucose level test). Finally,

plans group together any type of tasks.

Control flow is represented in PROforma by means of

scheduling constraints. Scheduling constraints are logical

expressions that determine in which order the tasks should

be enacted. Graphically, scheduling constraints are repre-

sented by directed arcs. The direction indicates that one

task (the one at the head of the arc) cannot start until

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

another task (the one at the tail) has completed. Naturally, a

task can have more than one scheduling constraint.

Besides scheduling constraints, PROforma tasks may

have a precondition, which is a truth-valued expression that

must be satisfied when the task is started, and a trigger
precondition, a truth-valued expression which will initiate a
task if it is satisfied. Tasks can be cyclical. The number of

iterations can be determined by an integer or by a truth-

valued expression (cycleUntil).
Decisions are tasks in which a choice is made among

several different options, known as candidates. Candidates
have also properties of their own: zero or more arguments,
and a recommendation rule. An argument is a truth-valued

expression representing the arguments for or against a

particular candidate. When a decision is enacted, the

expression and support type (for or against) of all argu-

ments are used to calculate the net support for the

candidate. Basically, a for-argument adds one to the net

support of the candidate, and an against-argument subtracts

one. A recommendation rule is an expression that states the

conditions under which it would be appropriate to commit

to the candidate, based on the calculated net support.

Plans have additional control flow properties. A termi-
nation condition is a truth-valued expression which

represents the sufficient condition to successfully terminate

the plan. An abort condition is a truth-valued expression

that aborts the plan.

Lastly, enquiries have sources, which are data items

whose value has to be supplied. An enquiry may define

several sources and each source is based on a data
definition.

Process descriptions are modeled in PROforma using

the set of tasks and logical constructors. From the initial

root plan, tasks are organized hierarchically into plans.

Figure 2 shows the PROforma graphical representation of

the main clinical process of the same guideline shown in

Fig. 1.

2.3 Approach

The transformation of a clinical guideline specification in

BPMN to a CIG can be approached as a transformation

between two different modeling languages.

There are several works which address the transforma-

tion from BPMN to BPEL by means of algorithms

(Mendling et al. 2008; Ouyang et al. 2009). These papers

exploit the graph-oriented paradigm of BPMN in order to

implement generic strategies for transforming graph-ori-

ented process languages into block-oriented ones (such as

BPEL). One of the transformation strategies is what those

authors call a structure-identification strategy.
Starting from certain structures of interest in the target

language, this strategy consists in identifying in the source

language structures that are equivalent to those structures

of interest. Then, each identified structure is mapped to the

target language and replaced by a single node according to

the reduction rules applied in the definition of structured

process graphs (Mendling et al. 2008). A very similar

Fig. 1 Main clinical process in BPMN for the diagnosis and treatment of prostate cancer. Events are depicted as circles. Rounded boxes are tasks,
or sub-processes if they have the mark þ. Gateways are depicted as diamonds and sequence flows as arrows

Fig. 2 PROforma graphical

notation of the main clinical

process for the diagnosis and

treatment of prostate cancer.

Plans are depicted as rounded
boxes, actions as squares and
decisions as circles. Arcs
between tasks represent

scheduling constraints

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

approach is used for transforming XPDL to a Hierarchical

Task Network (HTN) (González-Ferrer et al. 2013). The

main advantage of the structure-identification strategy is

that it produces more readable and understandable target

code. This strategy is only applicable to structured and

acyclic input models.

In order to apply the structure-identification strategy, the

input process graph is segmented into proper structures.

Few papers address the necessary graph segmentation. We

have studied two approaches: the token analysis algo-

rithm (Götz et al. 2009) and the branch-water

algorithm (Bae et al. 2004). Both algorithms have two main

phases. The first phase consists in traversing the graph

while labelling its nodes. In the second phase every

structure of interest is identified and replaced by a single

node in the graph. A component is a connected sub-graph,

with at least two nodes, with a single entry point and a

single exit point, and without start and end events. Gotz

et al. and Bae et al. decompose the source graph into serial

components, i.e. sequences, and parallel components. The

entry point of a parallel component is a split gateway, and

the exit point is the corresponding join gateway. Parallel

components comprise OR-parallel components, XOR-par-

allel components, and AND-parallel components,

according to the different types of gateways.

Although the PROforma language is not a BPM lan-

guage, it has features of graph-oriented and block-oriented

paradigms. In this work, we exploit the graph-oriented

features of the input model and detect suitable structures

that are then translated to PROforma elements. Moreover,

our approach is tailored to the characteristics of clinical

processes.

The so-called workflow patterns (Van der Aalst et al.

2003) are somehow related to the above-mentioned struc-

tures of interest, as it is possible to recognize a workflow

pattern in some of them. However, these structures are

determined exclusively on the basis of the target language

elements, which may differ considerably from the work-

flow patterns (see Sect. 3.2). Additionally, our aim is to

exploit the graph-oriented features of BPMN, and to pro-

duce readable and understandable target code.

3 Transformation to PROForma

3.1 The Input Model

In the context of clinical guidelines, our input BPMN

models have several important features that have been

taken into account in the implementation of the transfor-

mation algorithms. First and very importantly, the BPMN

input models we consider are structured process models. A

structured model is one in which every split gateway has a

matching join gateway of the same type, and in which all

split-join pairs are properly nested (Kiepuszewski et al.

2000). Since clinical guidelines are formulated in natural

language, non-structuredness is neither an essential nor

useful feature for clinical process models. This is an asset

since the structure-identification strategy is only applicable

to structured graphs. Moreover, structuredness is a desir-

able property of BPDs according to Mendling et al. (2010).

Moreover, our input models use the BPMN elements

sub-process and ad-hoc sub-process, for the following

reasons. Communication and clarity are among the most

important purposes of BPMN, also in the case of guideline

processes. However, BPMN models with a high number of

elements are difficult to understand and more error-prone.

Therefore, by convention, we split up complex BPDs with

a large number of elements into smaller and simpler BPDs

with sub-processes hiding the internal details of certain

activities (see e.g., Fig. 1). This is in line with one of the

seven process modeling guidelines by Mendling et al.

(2010).

Additionally, clinical guidelines may contain recom-

mendations that can be modeled as iterative processes. We

have considered the usage of loops in tasks or sub-pro-

cesses for modeling this type of processes. However, we do

not consider arbitrary cycles in our models.

Finally, we regard a particular type of XOR-parallel

components. When gateways are used in BPMN models,

normally at least one activity takes place in all paths

between the split and join gateway. According to our

experience, clinical guidelines frequently contain recom-

mendations to be applied only to a subgroup of patients. For

example, the guideline for the diagnosis of prostate cancer

recommends a bone scan, a tomography or a MRI for certain

patients, while no additional imaging is recommended for

the rest of patients. This kind of recommendations are

usually modeled with a sequence flow that directly connects

the split with the join XOR-gateway, as Fig. 3 shows.

3.2 The Mapping to PROforma

In order to apply the structure-identification strategy, we

have studied the building blocks of the target language, in

this case PROforma. These comprise plans, decisions,

scheduling constraints, and actions. Plans group processes

but are also used to model parallel flows. Then, it is nec-

essary to identify AND-parallel components in the input

BPMN graph in order to transform them into PROforma

plans. The identification of AND-parallel components is

done based on the split and join AND-gateways delimiting

them. Notice that these AND-gateways need not be map-

ped since parallelism is represented in PROforma by means

of a plan, which means that PROforma is more compact in

this case.

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

PROforma decisions model the control structures if-

then, pick one, and pick one or more. In the input model,

these patterns correspond either to XOR or OR-parallel

components. Therefore, XOR and OR-parallel components

must be identified to be transformed to PROforma deci-

sions. To facilitate the transformation, and given that there

can be any type of elements including other components

between the split and join gateway of an XOR or OR-

parallel component, we have transformed every such

component into a PROforma plan with a decision task

inside. A PROforma decision needs to define its candidates

and the arguments for/against these candidates (see

Sect. 2.2). In general, the successor nodes of the split XOR-

gateway will result in the candidates, although the trans-

formation also works with XOR-parallel components like

the one in Fig. 3. The condition expressions of the outgoing

sequence flows of the split gateway will define the argu-

ments for each candidate. Finally, a text analysis of these

condition expressions will provide the sources (data) of the

PROforma decision.

In PROforma, scheduling constraints are the way of

specifying the order in which tasks are enacted. In the case

of sequences, there is a scheduling constraint between each

pair of consecutive tasks. Thus, sequences are identified in

the input process graph and are translated to appropriate

scheduling constraints. A scheduling constraint connects

two consecutive tasks, and is graphically represented by a

directed arrow connecting those tasks. We could say that

plans and decisions represent the block-oriented features of

PROforma, while scheduling constraints are the graph-

oriented ones.

Finally, every BPMN task will be translated into a

PROforma action, and every sub-process will be mapped to

a PROforma plan with the aim of maintaining the same

process grouping. There are attributes, such as the loop

condition, that will be mapped to a PROforma attribute.

The mappings are listed in Table 1. The correspondence

between BPMN and PROforma elements is not always

one-to-one. This is because PROforma representation is

more compact in some cases, as illustrated by the case of

AND-parallel components. This implies that some BPMN

elements will not be taken into account in the mapping to

PROforma. Note that the fact that the representation in

PROforma is more compact in some cases does not nec-

essarily make the language less precise. In fact, the degree

of detail in the PROforma representation is at least the

same as the degree of detail in the BPMN one. At the other

extreme, PROforma representation of decisions (XOR and

OR-parallel components) requires a considerable level of

detail.

3.3 Implementation

The implementation of the approach has three steps which

are: (1) storing the BPMN model on a graph data structure;

(2) segmenting the graph, which includes graph labelling,

component identification and graph reduction; and finally,

(3) generating the target code. The algorithms have been

implemented in Java using the open-source Java JDOM

API1 for manipulating XML data.

The first step is to build a directed graph from the

BPMN specification of the clinical procedures. Thus, every

BPMN flow object is represented by a node in the graph

Fig. 3 XOR-parallel component with an arc that directly connects the

split with the join gateway, modeling the option “no imaging for some

patients”

Table 1 Mappings between the BPMN elements and PROforma

elements

BPMN PROforma

XOR-parallel component Plan with decision

OR-parallel component Plan with decision

AND-parallel component Plan

Sequential component Scheduling constraints

ConditionExpression in SequenceFlow Argument in decision

Successor node of split XOR/OR-

gateways

Candidate in decision

Variable in ConditionExpression Source in decision

Task Action

Parallel ad-hoc sub-process Plan

Sequential ad-hoc sub-process Plan with decision +

plans

Sub-process (non ad-hoc) Plan

Loop expression cycleUntil

AND gateway –

Any join gateway –

Start event –

End event –

1 http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.

html. Accessed 13 June 2013.

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html
http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html

and every sequence flow becomes an arc in the graph.

Since we deal with sub-processes, we have a graph of

graphs. In other words, we work with a recursive data

structure where every sub-process is represented as a single

node in the graph, while it contains its own graph and

possibly sub-graphs.

Moreover, this data structure has been enriched with

additional information which is read from the BPMN file.

This information includes the type of activity, the type of

gateway, the timing of activities and the type of condition

and the condition itself, if any. Conditions might be asso-

ciated to activities or to sequence flows.

In this step, there is a pre-processing of the graphs

included in ad-hoc sub-processes. Since the inner processes

of a parallel ad-hoc sub-process can be enacted simulta-

neously, we have modeled them using an AND-gateway

with an arc for each inner process. On the other hand, to

mimic the behavior of a sequential ad-hoc sub-process,

each possible sequential arrangement of the inner processes

has been modeled as an alternative after a split XOR-

gateway. Note that these sequential arrangements are not

part of the initial BPMN model. In this sense, we can say

that these components have been artificially created. Con-

sidering the preprocessing, the mapping of sequential ad-

hoc sub-processes to PROforma includes a plan with a

decision and several subplans, as Table 1 shows. This

mapping adds complexity to the resulting model, but can-

not be avoided because there is no equivalent in PROforma

for the BPMN sequential ad-hoc sub-process.

3.3.1 Segmenting the Graph

Graph segmentation into components is a key step in the

transformation algorithm. We have adapted the branch-

water algorithm to the features of our input graphs.

Therefore, in order to deal with sub-processes, we have

implemented a recursive solution.

The algorithm first labels all the vertices of the graph. It

assigns an initial value (1.0) to the first node of the graph

and propagates it through the graph. If a node splits the

flow into several branches, the value is divided by the

number of branches and propagated to the subsequent

nodes. Conversely, the value of a node with several

incoming arcs is calculated as the sum of the labels of the

precedent nodes.

The labelling method has been adapted to deal with the

type of sub-graphs shown in Fig. 3. We define the concept

of valid successor node as follows: given a node repre-

senting a split gateway, a subsequent node is said to be a

valid successor if it is not the corresponding join gateway.

Reciprocally, with regard to a join gateway, we say that a

precedent node is a valid predecessor node, if it is not the
corresponding split gateway. Thus, the labels propagated

through the arcs are calculated considering only the valid

successor nodes. Likewise, the label of a join gateway is

calculated from the values of the valid predecessor nodes.

Once all the nodes have been labelled, the algorithm

proceeds identifying components, that is, sequences and

parallel components. Each time a component is identified,

its type and content are registered, and it is replaced by a

single component node. In the end, the graph is reduced to

a trivial graph that gives rise to a tree structure of com-

ponents. In our work, we postpone the mapping to

PROforma until the tree of components is obtained.

Therefore, all components are identified first.

The branch-water algorithm always uses the minimum

value of the set of labels to find the innermost component.

Each time, starting at the beginning node, the graph is

traversed until the innermost component is found. Thus,

although the size of the graph decreases at each iteration,

the graph is traversed several times.

Our implementation first traverses the graph once,

identifies all sequences and replaces each one by a single

node. After that, the algorithm iterates looking for the

innermost parallel component which is replaced by a single

node. And then, it looks for a possible new sequence

considering the node created as a replacement of the par-

allel component.

Algorithm 1 shows the pseudo-code for the main algo-

rithm. This algorithm calls Algorithms 2 and 3. Algorithm 2

detects and replaces all sequences with at least two nodes.

Notice that only maximal sequences are of interest. A

maximal sequence is defined as a series of consecutive

nodes with the same label, excluding gateways and start and

end events, such that it is not possible to add a new node to

the existing sequence without loosing its features. Since

several arcs merge in a join gateway, nodes are marked to

avoid repeating the search of already identified sequences

following a join gateway. Finally, Algorithm 3 shows the

pseudo-code that seeks for a parallel component.

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

3.3.2 Generating the Target Code

Algorithm 1 results in a trivial graph, with just one node

plus the start and end events. From this point, the

replacement of each node by its content gives rise to a tree

structure. The generation of the PROforma code is done

following a top-down traversal of this tree. We start with

the single node of the trivial graph and translate it to

PROforma according to the mappings listed in Table 1.

Then we replace the node by its content and the same

process is repeated for each one of the new nodes.

The transformation to PROforma is done in two

traversals of the tree. In the first traversal, the mapping of

each node to PROforma is stored in the node itself, with the

exception of the scheduling constraints. In the second

traversal the mapping is written into a file, and the

scheduling constraints are defined in this second traversal

of the tree.

4 Experiments with a Prostate Cancer Guideline

We have conducted some experiments with different clin-

ical guidelines. One of them is the NCC Prostate Cancer

Guideline (Mohler et al. 2012), which is a 69-page text

document with evidence-based recommendations for the

diagnosis and treatment of prostate cancer. Prostate cancer

is one of the most important causes of mortality and the

most common cancer among males in developed countries

(Siegel et al. 2013). We had previously modeled this

guideline both in BPMN (Fig. 1) and in PROforma (Fig. 2),

to familiarize our clinical collaborators with the notations

for describing clinical processes and to gather their

impressions.

In this section, we discuss the results of applying the

transformation algorithms to the BPMN specification of the

NCC prostate cancer guideline. On the one hand, we have

manually checked that all the input model components

were appropriately translated, according to the transfor-

mations defined for the PROforma structures of interest.

On the other hand, we have executed a series of tests to

ensure that the obtained PROforma model – which we refer

to as transformed model – produced the intended results.

That is, we have checked that for a series of test cases, the

execution of the transformed model produces the same

results that would be obtained by applying the text version

of the guideline. This is the usual procedure we use for

testing our models. A formal verification of the models is

out of the scope of this work, as advanced techniques

specific to some CIG languages are already available,

including Asbru (Marcos et al. 2003) and PROforma

(Grando et al. 2012). Finally, we have manually compared

the transformed model with the version we had previously

modeled in PROforma – which we refer to as direct model
– to determine the equivalence of corresponding structures.

Table 2 shows, in the left-hand column, what BPMN

elements the input model includes and in what quantities.

The table also shows, in the right-hand column, the coun-

terpart elements in the transformed PROforma model and

their quantities. The BPMN model consists of 325 nodes,

of which 49 are sub-processes, 55 are split gateways, 55 are

the corresponding join gateways, and 166 are tasks. The

transformed PROforma model consists of 376 elements. It

has 57 plans that include a decision, which correspond to

the same number of XOR and OR-parallel components. Of

the total of 74 plans, 49 correspond to the same number of

BPMN sub-processes. The rest correspond to the XOR

gateways and the different alternatives introduced in the

preprocessing of sequential ad-hoc sub-processes (see

Sect. 3.3). For the same reason, the number of PROforma

actions is greater than the number of BPMN tasks.

Apart from the number of plans and actions, the most

noticeable difference is in the depth of the models. Both

BPMN and PROforma models define a hierarchical struc-

ture, based on sub-processes and plans, respectively. The

depth of the transformed model is 8, i.e., twice the depth of

the BPMN model. This is due to the transformation of

XOR-parallel components. Another interesting observation

regards BPMN condition expressions, which can be just

represented as plain text. This is very convenient if con-

ditions are to be used for annotation purposes in the

specification phase. In our BPMN guideline the modeler

has carefully written these expressions, which allows the

program to properly parse them and extract the data items

required for the decision tasks. However, it cannot be

presupposed that all data items can always be extracted in

this way, and therefore a manual revision of data sources

will be required.

Table 3 shows the number of elements in the direct and

in the transformed PROforma models. The direct model

has a total of 246 elements divided into 61 plans, 21

decisions, 105 actions, and 59 enquiries. Here again, the

Table 2 Comparing the input BPMN model and the transformed

PROforma models

Source BPMN Transformed PROforma

Size 325 Size 376

Depth 4 Depth 8

XOR-split gateways 49 Plans with a decision 57

OR-split gateways 6

Seq. ad-hoc sub-processes 2 Plans 74

Paral. ad-hoc sub-processes 9

Sub-processes 38

Tasks 166 Actions 188

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

number of plans in the transformed model is far larger than

in the direct model. The reason is that every XOR/OR

parallel component has been mapped to a plan. This

explains also the difference in the depth of the direct and

the transformed models. The difference in the number of

decisions is also remarkable. The reason is that the modeler

of the direct PROforma model used some enquiries as

decisions, according to her experience and criteria. In

contrast, there are not enquiries in the transformed PRO-

forma model.

As mentioned before, we have manually compared the

transformed model with the direct one, to check whether

corresponding structures were equivalent. As an illustra-

tion, we analyze a decision in the transformed model and

its corresponding decision in the direct one. Concretely, the

clinical guideline recommends three different treatments

for patients depending on their screening and cancer stage.

This recommendation is modeled in BPMN with an XOR-

gateway with three outgoing sequence flows, as shown in

Fig. 1. Likewise, a decision with three candidates has been

obtained in the transformed model. Table 4 lists these

candidates, together with the argument and the recom-

mendation rule for each candidate. Note that each

candidate has a single argument, which corresponds to the

condition of the BPMN sequence flow. Note also that the

recommendation rule of all candidates states that the net

support equals to one. This implies that a candidate will be

chosen when the condition of its only argument is satisfied.

In the direct model, the corresponding decision has also

three candidates but each candidate has multiple argu-

ments, as shown in Table 5. Despite the differences in

candidate details, the set of arguments and

recommendation rules can be regarded as semantically

equivalent. For instance, the recommendation rule for the

second candidate of Table 5 requires that the net support is

greater than or equal to one, which means that at least one

of the conditions of the two arguments should be fulfilled.

At the same time, the only argument of the second candi-

date in Table 4 contains a disjunction of roughly the same

conditions. Together with the recommendation rule, which

requires that the net support equals to one, this candidate

will be selected exactly in the same situations.

We can draw several lessons from our experiments. The

results obtained show that the implemented algorithms can

successfully transform the BPMN specification of a real-

istic guideline into the PROforma language. This

transformation is mostly done automatically, although a

manual review of the resulting model is required in points

where the degree of detail is greater than in the source

(such as logical expressions). In this sense, we regard the

transformation as semi-automatic. In general, a trans-

formed model will have a higher number of elements (and

a greater depth) than a manually developed one. However,

in our view the models are always comparable. This means,

we can draw a parallel between the corresponding com-

ponents, and we can see that these components are

semantically equivalent. Also as a consequence of the

experiments, we have a clearer idea of how the imple-

mented algorithms can be applied. We envisage an initial

BPMN modeling performed mostly by clinicians, followed

by the application of the algorithms and the manual revi-

sion of the resulting model by IT engineers. In the end, a

joint review of the final model and its components can be

made, if necessary using the information on the mappings

to trace back to the originating components.

5 Conclusions

In this paper we introduce an approach that supports the

refinement of clinical guidelines from an initial specifica-

tion in a business process language to a detailed and

executable implementation in one of the available CIG

languages. In essence, our approach relies on a semi-au-

tomatic transformation from a BPMN specification of a

Table 3 Comparing the direct and the transformed PROforma model

Direct PROforma Transformed PROforma

Size 246 376

Depth 5 8

Plans 61 131

Decisions 21 57

Actions 105 188

Enquiries 59 0

Table 4 Candidates, arguments and recommendation rules for decision main treatment dec, in the transformed PROforma model. HRFP stands

for High Risk Factors Present

Candidate Arguments Rule

T_no_further_workup (for) life_expectancy � 5 and asymptomatic=true

and HRFP=false

netsupport(main_treatment_decision, T_no_further_workup) = 1

SP_staging_workup (for) life_expectancy[5 or symptomatic=true netsupport(main_treatment_decision, SP_staging_workup) = 1

T_special_treatment

_for_highrisk_patients

(for) life_expectancy � 5 and asymptomatic=true

and HRFP=true

netsupport(main_treatment_decision,

T_special_treatment_for_highrisk _patients) = 1

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

clinical guideline into an implementation in a CIG lan-

guage. The importance of our transformation-based

refinement approach lies in the fact that it can ultimately

facilitate and speed up the development process of deci-

sion-support systems based on clinical guidelines. BPMN

is a widely-adopted standard notation for business process

modeling, able to support not only organizational processes

but also clinical ones. BPMN can be easily understood by

all stakeholders and thus has the potential to empower

clinicians to address the guideline modeling task. This is

crucial because the collaboration of clinical and IT staff

has proven superior for this task (Patel et al. 1998).

Accordingly, the combined use of BPMN and a CIG lan-

guage, targeting clinicians and IT engineers, respectively,

is a key feature of our approach.

In addition, in this paper we describe the algorithms that

we have developed for the transformation of guideline

models in BPMN into the PROforma language. The results

obtained by applying the implemented algorithms to dif-

ferent guidelines show that a transformation from BPMN to

PROforma, and hence the approach, is feasible. Moreover,

the resulting models are of a reasonable quality, although a

manual revision by IT engineers is always necessary due to

the greater degree of detail of PROforma. One limitation is

that the models resulting from the transformation are of

greater structural complexity, when compared with models

obtained in a fully manual way by IT engineers. Despite

this, we hypothesize a higher degree of acceptance by

clinicians, derived from a greater involvement in the initial

BPMN modeling. Additionally, the use of BPMN by

clinical experts can facilitate modifications and updates of

the guideline model, which may be needed on a regular

basis for certain diseases. These hypotheses have yet to be

validated. A more general limitation is that a complete

transformation might not be possible due to the different

expressiveness of the source and target languages. It is

therefore important to fully characterize the transformation

algorithms developed in our approach, and to take into

account these characteristics when applying the

transformations.

Our solution is tailored to the features of BPDs repre-

senting clinical procedures. Thus, it considers sub-

processes and specific process structures commonly found

in clinical guidelines. To our knowledge, the only trans-

formation approaches in the context of clinical guidelines

are the works by González-Ferrer et al. (2013) and by

Domı́nguez et al. (2010). González-Ferrer et al. tackle the

transformation from XPDL to a HTN language, and

Domı́nguez et al. implement Java modules from UML state

diagrams. Therefore, none of them specifically deal with

CIG languages.

An interesting aspect of our approach is that part of the

algorithms can be reused to transform BPMN to other CIG

languages. Only the last step, the generation of the target

code, would have to be implemented. In this line, we have

recently developed algorithms to transform BPMN guide-

lines to the SDA CIG language (Martı́nez-Salvador et al.

2015). Thus, from the same clinical guideline specification,

we could obtain executable models in different CIG

languages.

As future work, we plan to conduct experiments to

assess the effectiveness of our approach with respect to our

initial goal, which is to facilitate the encoding of clinical

guidelines and simultaneously to involve clinicians more

actively in the process. The setting for these experiments

should be as realistic as possible, and compel clinicians and

IT engineers to collaborate. Furthermore, we plan to

incorporate Model-Driven Engineering techniques into our

transformation algorithms. For this purpose, a logical

continuation would be to define a model-driven transfor-

mation for each component identified in the source model.

Acknowledgments This research has been supported by Universitat

Jaume I through Project P1�1B2013-15, and by the Spanish Ministry

of Economy and Competitiveness and the EU FEDER programme

through Project TIN2014-53749-C2-1-R.

Table 5 Candidates, arguments and recommendation rules for decision treatment decision, in the direct PROforma model

Candidate Arguments Rule

No_treatment (for) life_expectancy � 5 netsupport(treatment_decision, No_Treatment) = 3

(for) symptomatology=“asymptomatic”

(for) not (bulky_cancer=true and (TNM=“T3a” or

TNM=“T3b” or TNM=“T4”))

Treatment (for) life_expectancy[5 netsupport(treatment_decision, Treatment) � 1

(for) symptomatology=“symptomatic”

Treatment_for _HighRisk (for) life_expectancy � 5 netsupport(treatment_decision, Treatment_for_HighRisk) = 3

(for) symptomatology=“asymptomatic”

(for) bulky_cancer=true and (TNM=“T3a” or

TNM=“T3b” or TNM=“T4”)

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

References

Bae J, Bae H, Kang SH, Kim Y (2004) Automatic control of

workflow processes using ECA rules. IEEE Trans Knowl Data

Eng 16(8):1010–1023

Boxwala AA, Tu S, Peleg M, Zeng Q, Ogunyemi O, Greenes RA,

Shortliffe EH, Patel VL (2001) Toward a representation format

for sharable clinical guidelines. J Biomed Inform 34(3):157–169

Bury J, Hurt C, Aea Roy (2005) Lisa: a web-based decision-support

system for trial management of childhood acute lymphoblastic

leukaemia. Br J Haematol 129:746–754

COSSAC (2013a) Credo project. Interdisciplinary Research Collabo-

ration in Cognitive Science and Systems Engineering (COSSAC).

https://cossac.org/projects/credo. Accessed 28 July 2016

COSSAC (2013b) Tallis training. Interdisciplinary Research Collab-

oration in Cognitive Science and Systems Engineering. http://

archive.cossac.org/tallis/index.html. Accessed 28 July 2016

Coulson A, Glasspool D, Fox J, Emery J (2001) Rags: a novel

approach to computerised genetic risk assessment and decision

support from pedigrees. Methods Inform 40:315–322

de Clercq PA, Blom JA, Korsten HH, Hasman A et al (2004)

Approaches for creating computer-interpretable guidelines that

facilitate decision support. Artif Intell Med 31(1):1–28

Domı́nguez E, Pérez B, Zapata M (2010) Towards a traceable clinical

guidelines application. A model-driven approach. Methods Inf

Med 49(6):571–580

Dugan L, Palmer N (2012) BPMN 2.0 handbook second edition:

updated and expanded. Making a BPMN 2.0 model executable,

Future Strategies Inc., Book Division, pp 71–91

Emery J, Walton R, Murphy M et al (2000) Computer support for

interpreting family histories of breast and ovarian cancer in

primary care: comparative study with simulated cases. Br Med J

321:28–32

Field MJ, Lohr KN (1990) Clinical practice guidelines: directions for

a new program. The National Academies Press, Committee to

Advise the Public Health Service on Clinical Practice Guideli-

nes, Institute of Medicine

González-Ferrer A, Fernández-Olivares J, Castillo L (2013) From

business process models to hierarchical task network planning

domains. Knowl Eng Rev 28(2):175–193

Götz M, Roser S, Lautenbacher F, Bauer B (2009) Token analysis of

graph-oriented process models. In: 13th IEEE enterprise dis-

tributed object computing conference workshops (EDOCW),

pp 15–24

Grando MA, Glasspool D, Fox J (2012) A formal approach to the

analysis of clinical computer-interpretable guideline modeling

languages. Artif Intell Med 54(1):1–13

Hashemian N, Abidi SSR (2012) Modeling clinical workflows using

business process modeling notation. In: 25th international sym-

posium on computer-based medical systems (CBMS), pp 1–4

Kiepuszewski B, Maria ter Hofstede AH, Bussler CJ (2000) On

structured workflow modelling. LNCS 1789. Springer, Heidelberg

Kirchner K, Malessa C, Scheuerlein H, Settmacher U (2014) Experi-

ence from collaborative modeling of clinical pathways. In: Hess

M, Schlieter H (eds) Modellierung im Gesundheitswesen:

Tagungsband des Workshops im Rahmen der Modellierung, p 13

Marcos M, Balser M, ten Teije A, van Harmelen F, Duelli C (2003)

Experiences in the formalisation and verification of medical

protocols. Artificial intelligence in medicine. Springer, Heidelberg

Martı́nez-Salvador B, Marcos M, Sánchez A (2014) An algorithm for

guideline transformation: from BPMN to PROforma. Knowledge

representation for health care. Springer, Heidelberg

Martı́nez-Salvador B, Marcos M, Riaño D (2015) An algorithm for

guideline transformation: from BPMN to SDA. Procedia Comput

Sci 63:244–251

Mendling J, Lassen KB, Zdun U (2008) On the transformation of

control flow between block-oriented and graph-oriented process

modelling languages. Int J Bus Process Integr Manag 3(2):96–108

Mendling J, Reijers H, van der Aalst W (2010) Seven process

modeling guidelines (7 pgm). Inf Softw Technol 52:127–136

Mohler J, Amstrong A, Bahnson R, Boston B, Busby J, D’Amico A,

Eastham J, Enke C, Farrington T, Higano C, Horwitz E, Kantoff

P, Kawachi M, Kuette M, Lee R, MacVicar G, Malcolm A,

Miller D, Plimack E, Pow-Sang J, Mr Roach, Rohren E,

Rosenfeld S, Srinivas S, Strope S, Tward J, Twardowski P,

Walsh P, Ho M, Sheadm D (2012) Prostate cancer, version

3.2012: featured updates to the NCCN guidelines. J Natl Compr

Cancer Netw 10(9):1081–1087

OMG (2011) Busines process model and notation (BPMN) version 2.0.

http://www.omg.org/spec/BPMN/2.0. Accessed 28 July 2016

Ouyang C, Dumas M, Aalst WM, Hofstede AHT, Mendling J (2009)

From business process models to process-oriented software

systems. ACM Transactions on Software Engineering and

Methodology (TOSEM) 19(1):2

Parra C, Jódar-Sánchez F, Jiménez-Hernández MD, Vigil E,

Palomino-Garcı́a A, Moniche-Álvarez F, De la Torre-Laviana

FJ, Bonachela P, Fernández FJ, Cayuela-Domı́nguez A et al

(2012) Development, implementation, and evaluation of a

telemedicine service for the treatment of acute stroke patients:

telestroke. Interact J Med Res 1(2)

Patel VL, Allen VG, Arocha JF, Shortliffe EH (1998) Representing

clinical guidelines in GLIF individual and collaborative exper-

tise. J Am Med Inform Assoc 5(5):467–483

Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R,

Johnson PD, Jones N, Kumar A et al (2003) Comparing

computer-interpretable guideline models: a case-study approach.

J Am Med Inform Assoc 10(1):52–68

Recker J (2010) Opportunities and constraints: the current struggle

with bpmn. Bus Process Manag J 16(1):181–201

Rojo MG, Rolón E, Calahorra L, Garcı́a F, Sánchez RP, Ruiz F,

Ballester N, Armenteros M, Rodrı́guez T, Espartero RM et al

(2008) Implementation of the business process modelling

notation (BPMN) in the modelling of anatomic pathology

processes. Diagn Pathol 3(Suppl 1):S22

Rolón E, Garcı́a F, Ruiz F, Piattini M, Calahorra L, Garcı́a M, Martin

R (2008) Process modeling of the health sector using bpmn: a

case study. In: Proceedings of the first international conference

on health informatics (HEALTHINF), diagnostic pathology,

vol 2, pp 173–178

Scheuerlein H, Rauchfuss F, Dittmar Y, Molle R, Lehmann T,

Pienkos N, Settmacher U (2012) New methods for clinical

pathways – business process modeling notation (BPMN) and

tangible business process modeling (t. BPM). Langenbeck’s.

Arch Surg 397(5):755–761

Siegel R, Naishadham D, Jeme A (2013) Cancer statistics. Cancer J

Clin 63(1):11–30

Sutton DR, Fox J (2003) The syntax and semantics of the proforma

guideline modeling language. J Am Med Inform Assoc 10

(5):433–443

Svagård I, Farshchian BA (2009) Using business process modelling to

model integrated care processes: experiences from a European

project. Distributed computing, artificial intelligence, bioinfor-

matics, soft computing, and ambient assisted living. Springer,

Heidelberg

Van der Aalst WM, Ter Hofstede AH, Kiepuszewski B, Barros AP

(2003) Workflow patterns. Distrib Parallel Databases 14(1):5–51

zur Muehlen M, Recker J (2008) How much language is enough?

Theoretical and practical use of the business process modeling

notation. In: 20th international conference on advanced infor-

mation systems engineering, LNCS. Springer, Heidelberg

B. Martı́nez-Salvador, M. Marcos: Supporting the Refinement of Clinical Process Models, Bus Inf Syst Eng 58(5):355–366 (2016)

123

https://cossac.org/projects/credo
http://archive.cossac.org/tallis/index.html
http://archive.cossac.org/tallis/index.html
http://www.omg.org/spec/BPMN/2.0

	Supporting the Refinement of Clinical Process Models to Computer-Interpretable Guideline Models
	Abstract
	Introduction
	Materials and Methods
	BPMN
	PROforma
	Approach

	Transformation to PROForma
	The Input Model
	The Mapping to PROforma
	Implementation
	Segmenting the Graph
	Generating the Target Code

	Experiments with a Prostate Cancer Guideline
	Conclusions
	Acknowledgments
	References

