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Abstract  

In recent years, crowdsourcing has increasingly gained attention as a powerful sourcing mechanism 

for problem-solving in organizations. Depending on the type of activity addressed by crowdsourcing, 

the complexity of the tasks and the role of the crowdworkers may differ substantially. It is crucial that 

the tasks are designed and allocated according to the capabilities of the targeted crowds. In this pa-

per, we outline our research in progress which is concerned with the effects of task complexity and 

user expertise on performance in crowdsourced software testing. We conduct an experiment and gath-

er empirical data from expert and novice crowds that perform different software testing tasks of vary-

ing degrees of complexity. Our expected contribution is twofold. For crowdsourcing in general, we 

aim at providing valuable insights for the process of framing and allocating tasks to crowds in ways 

that increase the crowdworkers’ performance. Secondly, we intend to improve the configuration of 

crowdsourced software testing initiatives. More precisely, the results are expected to show practition-

ers what types of testing tasks should be assigned to which group of dedicated crowdworkers. In this 

vein, we deliver valuable decision support for both crowdsourcers and intermediaries to enhance the 

performance of their crowdsourcing initiatives. 

Keywords: Crowdsourcing, Complexity, Expertise, Performance, Software Testing 

1 Introduction 

With the advent of the digitization and the rise of web 2.0 technologies, crowdsourcing has increasing-

ly gained attention as a powerful sourcing mechanism for problem-solving in organizations (Jeppesen 

and Lakhani, 2010, Afuah and Tucci, 2012). Crowdsourcing describes “the act of a company or insti-

tution taking a function once performed by employees and outsourcing it to an undefined (and general-

ly large) network of people in the form of an open call” (Howe, 2006). It represents a fundamental 

shift in the way in which businesses may acquire resources and extends the frontiers of available skill 

or knowledge beyond the boundaries of their organization (Geiger et al., 2012). With crowdsourcing, 

it is possible to mobilize the expertise and creativity distributed among a large panel of people in order 

to achieve a certain set of tasks (Schenk and Guittard, 2011). This allows businesses to efficiently cope 

with growing complexity, shorter innovation cycles, and tightening resource constraints as encoun-

tered in highly dynamic and competitive environments (Zogaj et al., 2014).  

As a new form of human computer interaction, crowdsourcing has already been adopted for a vast ar-

ray of value creation activities ranging from early stages of research and development to later stages of 

testing and after-sales services (e.g., Vukovic, 2009, Leicht et al., 2015, Schlagwein and Bjørn-

Andersen, 2014, Blohm et al., 2011). However, depending on the type of activity addressed by 

crowdsourcing, the role of the contributors and the characteristics of their contributions may differ 

substantially (Doan et al., 2011, Geiger et al., 2012). Some activities require the processing of simple 
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tasks of high granularity whose effort intensity and structural complexity tend to be low. In this con-

text, the value of crowdsourcing stems from the efficient and cost-effective completion of the tasks on 

a large scale. Other activities revolve around complex and intellectually more demanding tasks that 

specifically ask for expertise in a certain domain (Rouse, 2010, Schenk and Guittard, 2011). 

Crowdsourcing then provides the opportunity to leverage the “wisdom of the  crowd” and grants ac-

cess to a pool of diverse resources that entail the required knowledge (Zwass, 2010).  

Consequently, these distinct types of tasks place different demands on the crowd. There are crowds 

that can consist of potentially any individual, crowds that need to resemble a particular profile or 

crowds that require experts with unique abilities, specializations, or skills (Zwass, 2010, Geiger et al., 

2012). Thus, it is crucial for crowdsourcing initiatives that the tasks are assigned to suitable 

crowdworkers. The performance in crowdsourcing is believed to be highly dependent upon both the 

complexity of the tasks and the crowdworkers’ degree of expertise with regard to the problem that 

needs to be solved (Zogaj et al., 2014, Rouse, 2010). However, the implications of different task and 

crowdworker configurations for the performance in crowdsourcing remain mostly unclear. More spe-

cifically, there is still a lack of empirical data that show how tasks of different degrees of complexity 

should be designed and how they should be allocated to appropriate crowdworkers in order to leverage 

performance in crowdsourcing (Kittur et al., 2013, Mäntylä and Itkonen, 2013, Dolstra et al., 2013). 

Hence, in our research, we address the following question: How do task complexity and crowdworker 

expertise jointly affect performance in crowdsourcing? 

In order to close this research gap, we conduct an experiment and gather empirical data from expert 

and novice crowdworkers that perform functional and usability-based software testing tasks of varying 

degrees of complexity. The underlying theory on task design and task complexity is grounded on the 

widely applied works of Hackman (1969), Wood (1986), and Chomsky (1957). We expect to contrib-

ute to existing literature in two ways: For crowdsourcing in general, our results may provide valuable 

insights for the process of designing and allocating tasks to crowdworkers in ways that increase the 

crowdworkers’ performance. For software testing, which represents a major application field of 

crowdsourcing in practice (Zogaj et al., 2014, Dolstra et al., 2013, Tung and Tseng, 2013, Hoßfeld et 

al., 2014), we aim to support the decision process for configuring the crowdtesting initiatives. The re-

sults are expected to show what types of testing tasks should be assigned to which group of testers. 

These findings may help to decide whether a certain form of testing can be crowdsourced or whether it 

should rather be tested with alternative testing approaches. 

In this paper, we outline our research in progress and present first preliminary results that are to be 

expanded in the future. The remainder of the paper is structured as follows: First, section 2 outlines the 

conceptual background of our research and introduces crowdsourced software testing as an application 

of crowdsourcing in practice. Secondly, section 3 and 4 are dedicated to the theoretical background 

and the development of the research hypotheses. In this part, existing literature on task complexity, 

user expertise, and human performance in a task setting will be discussed. Thirdly, section 5 describes 

the research methodology and explains the experimental setting with all related variables and 

measures in detail. Finally, in section 6 and 7, we provide preliminary results of the experiment, dis-

cuss expected contributions from our research and outline the next steps to reach these objectives.  

2 Conceptual Background: Crowdtesting 

Crowdtesting, or crowdsourced software testing, is a specific application of crowdsourcing in the do-

main of software development (Zogaj et al., 2014). It refers to the outsourcing of software testing ac-

tivities to the crowd. Following Myers et al. (2011), we define software testing as “the process of exe-

cuting a program with the intent of finding errors” (p. 6). These errors (also malfunctions or bugs) are 

deviations from the expected behavior (Beizer, 2003). In this vein, software testing can be considered 

a form of quality assurance that encompasses a wide spectrum of different activities, such as function-

al software testing or usability software testing (Bertolino, 2007). 
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As with other crowdsourcing applications, companies can either directly interact with the crowd or 

they can use intermediaries who provide this service for a fee (Chanal and Caron-Fasan, 2010). These 

intermediaries act as brokers who connect the organizations that apply crowdsourcing with potential 

crowdworkers. They play a key role in designing the tasks, providing the necessary technical infra-

structure for testing, and managing the crowd. However, depending on the type of testing (e.g., func-

tional testing, usability testing), these tasks as well as the targeted crowds can be very diverse (Stol 

and Fitzgerald, 2014). 

Crowdtesting represents an excellent example for the study of task design, task allocation, and task 

performance – not only for the domain of software testing but also for crowdsourcing in general. 

Crowdsourced software testing encompasses a broad variety of potential testing tasks with different 

purposes (Zogaj et al., 2014). These tasks may vary greatly in terms of their complexity and require 

the crowds to have specific expertise or characteristics in order to achieve the desired results. Thus, 

software testing may act as a microcosm for crowdsourcing insofar that it requires crowdsourcing to 

adapt to different degrees of task complexity and different forms of crowdworker expertise. With 

crowdtesting, it is possible to design comparable types of tasks while still being able to consider the 

effects of complexity and expertise on performance. In this vein, software testing allows performance 

to be measured and analyzed by objective software testing quality metrics. Hence, there is grounded 

truth regarding the performance in crowdsourced software testing (Bonabeau, 2009).  

3 Theoretical Background: Task Complexity and Expertise 

Crowdsourcing that revolves around the collective undertaking of value creation activities is typically 

based on a task setting – especially in software development and software testing (Stol and Fitzgerald, 

2014, Rouse, 2010, Geiger et al., 2012). As described previously, however, these tasks may vary 

greatly in terms of their complexity and expertise requirements. The following sections aim at provid-

ing a more in-depth theoretical background on task complexity and user expertise in crowdsourcing in 

order to derive research hypotheses and outline the framework for the experiment.  

3.1 Tasks and Complexity in Crowdsourcing 

Tasks can generally be defined as patterns of stimuli impinging on individuals and describe “behav-

ioural responses a person should emit in order to achieve some specific level of performance” (Wood, 

1986, p. 62, Hackman, 1969). According to Chomsky’s (1957) work in linguistics, that has been wide-

ly applied in performance research (e.g., Chi et al., 1981a, Chi et al., 1981b, Ericsson and Charness, 

1994, Schenk et al., 1998), there are two layers of representation in a task: the surface structure and the 

deep structure. The surface structure refers to the superficial characteristics of a task. These are imme-

diately available through the stimulus material and represent the task’s objective characteristics. The 

deep structure, on the other hand, refers to the underlying principles and constructs of a task. This lay-

er is “not directly observable in the stimulus material but is inferable to those with sufficient 

knowledge of the task” (Haerem and Rau, 2007). Hence, it is argued that the task performers’ subjec-

tive information-processing of objective task inputs (e.g., the way the tasks are designed and de-

scribed) may lead to a different perception and execution of the same task (Byström and Järvelin, 

1995, Campbell, 1988).  This is especially relevant to crowdsourcing, where the role of the contribu-

tors and the characteristics of their contributions may be very diverse (Doan et al., 2011, Fähling et al., 

2011, Geiger et al., 2012). In some cases, crowdsourcing revolves around the processing of simple 

tasks whose effort intensity tend to be low. In other cases, the tasks are intellectually more demanding 

and ask for expertise in a certain domain (Blohm et al., 2016, Rouse, 2010, Schenk and Guittard, 

2011). As mentioned previously, crowdsourced software testing represents an excellent example for 

this (Zogaj et al., 2014) 
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In this context, task complexity describes the demands placed on the knowledge, skills, and resources 

of the task performers and thus constitutes a major determinant for human performance in a task set-

ting (Wood, 1986, Maynard and Hakel, 1997). Task complexity can be defined either in terms of pure-

ly objective task qualities or as a subjective person-task interaction (Campbell, 1988). In this vein, the 

notion of “critical complexity” describes the complexity embodied in the resolution path that minimiz-

es the individual’s amount of information processing to complete a task (Haerem and Rau, 2007, 

Sonnentag, 1998, Frese and Zapf, 1994). It can be used to distinguish between different types of tasks 

that vary in their degree of complexity. 

Based on the work of Haerem and Rau (2007), we define simple tasks as tasks whose critical complex-

ity resides in the task’s surface structure. In order to solve these tasks in the most efficient manner, it is 

sufficient to focus on the inputs and outputs of the tasks (i.e., the objective task characteristics). As 

their effort intensity and the individual impact of a contribution tend to be low, related crowdsourcing 

systems usually revolve around the processing of these small, decomposed tasks in large quantities 

(Zwass, 2010). On the other hand, we define complex tasks as tasks whose critical complexity is em-

bedded in their deep structure. In order to complete these tasks, it is necessary to focus on the task 

process and consider the underlying principles of the problem. As these crowdsourcing tasks revolve 

around sophisticated problem-solving skills, the intellective demands, the structural complexity, and 

the effort intensity tend to be high (Zwass, 2010). A detailed discussion about how we specified these 

types of tasks in our crowdsourced software testing experiment can be found in section 5.2 below.  

3.2 Expertise and Human Performance in a Task Setting 

Depending on the degree of complexity, tasks in crowdsourcing place different demands on the char-

acteristics or, more specifically, the expertise of the crowdworkers. In this context, one of the central 

mechanisms that affects human performance is expertise. Expertise is generally defined as the result of 

acquiring vast amounts of knowledge and procedural skill in a particular domain with the ability to 

perform its pattern-based retrieval in a task setting (Chi et al., 1982). Differences in the degree of ex-

pertise have multiple implications for human performance (Chi, 2006).  

On the one hand, experts and novices differ in the way their body of knowledge is organized and how 

it is recalled when executing a task (Chi et al., 1981a). For example, Chi et al. (1981a) argue that – 

even though both skill groups use the same descriptions and features of a task – the cues themselves 

and their interactions engage greater tacit knowledge for the experts than the novices. Moreover, the 

problem schemata of experts contain a great deal of procedural knowledge with explicit conditions for 

applicability. Novices, on the other hand, may have declarative knowledge about the features of a task 

but they lack abstracted solution methods (Chi et al., 1981a). McKeithen, Reitman et al. (1981) found 

that these observations also apply to experts and novices in computer programming and software de-

velopment.  

On the other hand, Ericsson and Charness (1994) stress that experts frequently do not outperform other 

people in many relevant tasks in their domains of expertise. For example, several studies indicate that 

novices outperform experts on tasks that require memory for the surface structure of task features 

(Wiley, 1998). While experts excel at understanding and remembering the deep structure of a problem, 

they are prone to overlook details and fail to recall surface features (Chi, 2006). In this context, Ad-

elson (1984) found that novices perform better than experts in answering concrete questions about 

computer programs, whereas experts outperformed novices on abstracts questions. This implies that 

experts may have learned that paying attention to abstract elements of a task is more important than 

paying attention to low-level details (Adelson, 1984) and that novices habitually pay more attention to 

the surface structure of a problem (Haerem and Rau, 2007). Moreover, expertise may lead to function-

al fixedness and biased mental sets. A number of studies indicate novices outperform experts when a 

task runs counter to highly proceduralized behaviors (Wiley, 1998). It is suggested that expertise may 

inhibit creative problem solving and that novices are more likely to come up with creative solutions 

for certain problems. 
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4 Development of Research Hypotheses 

Based on this theoretical background, it is possible to derive a number of research hypotheses regard-

ing the performance of experts and novices on different types of crowdsourced software testing tasks. 

As discussed previously, it is to be assumed that experts acquired vast amounts of knowledge and pro-

cedural skill in software testing. Hence, they are expected to have in-depth understanding of the under-

lying principles in software development and software testing. This should especially affect their per-

formance on complex task addressed by functional software testing. Thus, for our experiment present-

ed in this paper, we hypothesize as follows: 

H1a Experts outperform novices on both complex and simple functional testing tasks. 

H1b Differences between the performance of experts and novices on functional testing tasks 

are higher for complex tasks than for simple tasks. 

On the other hand, existing literature shows that novices perform better than experts in answering con-

crete questions about software and that they habitually pay more attention to the surface structure of a 

problem. This may lead to the expectation that they are able outperform experts on tasks that run coun-

ter to highly proceduralized processes. Hence, for the full evaluation of our experiment in the future, 

we hypothesize as follows: 

H2a Novices outperform experts on usability testing tasks. 

H2b Differences between the performance of experts and novices on usability testing tasks are 

higher for simple tasks than for complex tasks. 

5 Methodology 

Given the lack of preliminary data, the research methodology of experimentation is particularly useful 

for addressing the research question of this paper (Montgomery, 1984, Box et al., 2005). By the means 

of an experiment, it’s possible to gather empirical insights on how expert and novice crowdworkers 

perform on simple and complex tasks in crowdtesting. The following sections outline the application 

of this methodology.  

5.1 Experimental Design 

We employed a 2x2 between-subjects factorial design in which we vary crowdworker expertise and 

task complexity to test our hypotheses H1a and H1b (see Table 1). In order to ensure high external va-

lidity and examine the effects in a real world setting, the experiment has been conducted as a field ex-

periment in cooperation with a German-based crowdtesting intermediary. The company ranks among 

Europe’s leading providers of crowdtesting services with more than 100’000 crowdworkers world-

wide. The stimulus object of the experiment consisted of a website for which the participants had to 

conduct a software test. The experiment was conducted in August 2015. 

 

 User Expertise 

Task Complexity Novices Experts 

Simple Tasks (Surface Structure) 32 Crowdworkers 21 Crowdworkers 

Complex Tasks  (Deep Structure) 32 Crowdworkers 20 Crowdworkers 

Table 1.  2x2 between-subjects factorial design of the experiment 

5.2 Tasks 

In order to manipulate the complexity of the crowdsourced software tests, we designed two sets of 

functional testing tasks. Both sets contained the same basic type of use cases that guided the partici-
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pants through the software application and its features. However, one set of use cases had been framed 

to represent simple tasks whose critical complexity was embedded in their surface structure while the 

other set of use cases had been framed to represent complex tasks whose critical complexity was em-

bedded in their deep structure. More precisely, simple tasks were concerned with the superficial char-

acteristics of the software. In order to complete these tasks, the testers typically needed to focus on the 

(user) interface, as surface structure tasks address bugs that can be identified by purely relying on visi-

ble inputs and outputs that are immediately available through the software (e.g., typographical errors, 

broken links or buttons, incorrect alignment of tables or images, error messages). Complex tasks, on 

the other hand, were concerned with the underlying structures and processes of software. The testers 

typically needed to think about how an application should behave when certain steps or operations are 

carried out. The bugs addressed by complex tasks were issues that produced inconsistent or unintend-

ed results (e.g., malfunctions in more complex parts of the software like a messaging system). These 

tasks generally required the participants to experiment with specific functions, use different combina-

tions and settings of certain tools or test the software and its underlying processes in a more rigorous 

way. Additionally, we designed usability testing tasks for our second set of hypotheses (i.e., H2a and 

H2b). Participants were asked open questions that allowed them to freely provide feedback about the 

website. However, as the evaluation as well as the coding of the usability feedback have yet to be 

completed, we did not include this part in our research in progress. It will be part of our full research. 

As a manipulation check, we verified that these tasks did indeed differ in terms of their complexity by 

using a card-sorting approach (Upchurch et al., 2001, Fincher and Tenenberg, 2005, Faiks and Hyland, 

2000) with two independent professionals from the intermediary used for our experiment. For this 

card-sorting approach, the professionals received a randomized list with all tasks and were asked to 

put the separated tasks faced down on their table. One by one, they classified the tasks as either simple 

or complex testing tasks. The results of this procedure with the two independent professionals validat-

ed that our tasks did indeed differ in terms of their complexity.  

5.3 Participants 

In order to create two groups with crowdworkers of low and high expertise, we used two proxies for 

expertise: professional experience in software testing (cf. Faraj and Sproull, 2000) and the number of 

completed (crowdsourced) software tests on the platform (cf. Bandura, 1977, Quińones et al., 1995, 

Maynard and Hakel, 1997). Crowdworkers were considered experts if they either test software profes-

sionally or if they have completed more than 20 tests on the platform. If the potential participants did 

not have professional experience in software testing and if they had completed less than 5 crowdtests 

in the past, they were considered novices. According to these criteria, the intermediary randomly in-

vited and assigned potential participants from their pool of crowdworkers to their respective groups 

until a minimum of 20 participants for each group of experts and novices had been acquired. 

A total of n=105 crowdworkers participated in the experiment. With regard to their nationality, 102 of 

these crowdworkers were from Germany, Austria, and Switzerland. The age of the crowdworkers 

ranged from 15 to 58 years with an average of 27.9 years and a standard deviation of 8.09 years. The 

64 novices in our experiment were 25.9 years old on average (SD: 7.66). The 41 experts in our exper-

iment were 31.0 years old on average (SD: 7.80). 54.3% of all participants were male, 25.7% were 

female. The remaining 20.0% of the crowdworkers provided no answer to this question. In general, 

these characteristics represent the target demographic for the website and thus suggest that the partici-

pants are appropriate subjects for the experiment. 

To ensure that the software tests were performed in similar technical environments, all participants 

were required to use the same operating system (Windows 7) and browser (Google Chrome 46) during 

the experiment. These requirements were based on the system specifications that are most prevalent 

amongst crowdworkers registered on the intermediary’s platform. Furthermore, the participants were 

compensated according to the compensation system employed by the crowdtesting intermediary. It 

grants the crowdworkers a fixed base pay for completing the software test and adds a variable compo-
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nent based on the number and type of bugs found during the testing process. Duplicates, issues that 

cannot be reproduced, issues that are out of scope (i.e., not addressed by the tasks), or reports that in-

clude intended behaviour (i.e., website behaviour that users perceived as malfunctions but that were 

actually within the specifications) are declined. There are several reasons for adopting this compensa-

tion system: First, the fixed base pay reimburses the testers for completing all tasks and performing the 

software test. Secondly, the variable component acts as an incentive and warrants that differences in 

performance are reflected in the crowdworkers’ financial rewards. Finally, using a compensation sys-

tem as employed by the intermediary allows the experiment to be conducted under real conditions and 

ensures high external validity of the results. This compensation system represents the industry stand-

ard and thus allows for a better generalizability of the results. 

Finally, we employed a manipulation check in order to verify that crowdworkers did indeed differ sig-

nificantly in terms of their expertise. We analysed their subjective knowledge and experience in soft-

ware testing. We adapted the 5 items developed by Flynn and Goldsmith (1999) to measure the partic-

ipants’ software testing knowledge on a 7-point Likert scale and the 4 items developed by Griffin, Ba-

bin and Attaway (1996) to measure their software testing experience on a 5-point Likert scale. Both 

scales proved to be internally reliable for our experiment with α = .828 and α = .827 respectively 

(Nunally and Bernstein, 1978). We calculated the means for these scales and compared the values for 

experts and novices using independent-samples t-tests. The results show that experts had significantly 

higher software testing knowledge (p < .05) and experience (p < .01). In consequence, it can be said 

that we successfully manipulated our crowdworker expertise factor. 

5.4 Measures 

For the functional testing tasks, we use three measures to capture the crowdworkers’ performance 

(Farooq et al., 2011, Lee and Chang, 2013, Nirpal and Kale, 2011). First, we measure the number of 

bugs that have been submitted and accepted. In the final stage of our research, we are interested in the 

number of implemented bugs which represents a key performance indicator for functional testing. Ad-

ditionally, we measure the severity of the bugs and the acceptance rates (i.e., the number of accepted 

bugs divided by the number of submitted bugs per tester). The process of reviewing the bugs was con-

ducted by two independent professionals who both used a consistent review scheme employed by the 

intermediary in practice.  

For the analysis of the test reports and the usability feedback, which is still in progress, we conduct a 

content analysis using category-based coding (Huberman and Miles, 1994). Additionally, we use the 

number of implemented usability issues and suggestions as a quantitative measure. 

6 Preliminary Results 

In the following, we will present our preliminary results regarding the performance of experts and 

novices on different tasks in crowdsourced software testing. These preliminary results focus on the 

descriptive statistics of the functional software test and provide first insights into potential findings for 

H1a and H1b. At this stage, we are not yet able to discuss the final statistical evaluation of the experi-

ment for two reasons: As defined earlier, one of the most important measures in software testing is the 

number of implemented bugs that ultimately represent the relevant outputs of the software tests for 

website providers. However, this final implementation of the bug fixes is not completed yet. Secondly, 

the evaluation and coding of the usability feedback are still in progress. 

The descriptive statistics depicted in Table 2 are concerned with the quantity of the test results (i.e., 

bug reports). With regard to both H1a and H1b, the preliminary results show that expert crowds found 

more bugs and reached higher acceptance rates than novice crowds on both simple and complex tasks 

in functional software testing – even though novice crowds were around 60% larger in the experiment 

than the expert crowds. As suggested by the literature and our hypotheses in section 4, the difference 

between the performance of experts and novices with regard the number of accepted bugs is more ap-
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parent for complex tasks than for simple tasks. The statistics depicted in Table 3 are concerned with 

the severity of all accepted bugs. A comparison between the crowds hints at two findings. First, expert 

crowds surpass novice crowds with regard to the number of bugs found on simple and complex tasks 

across all severity ratings. Secondly, the (relative) discrepancy between the number of valid bugs re-

ported by experts and novices rises with the severity of the bugs. Unsurprisingly, this discrepancy is 

larger on complex tasks than on simple tasks: the number of critical bugs found by the expert crowd 

on complex testing tasks is a lot larger than the number of critical bugs found by the novice crowd on 

the same tasks. Overall, the preliminary results indicate support our hypotheses H1a and H1b. As for our 

future work, it will be interesting to see whether novices were able to outperform experts on usability 

testing tasks. 

 

Min Max Sum Mean (SD) Min Max Sum Mean (SD) Min Max Sum Mean (SD)

Novice 0 51 189 5.91 (9.31) 0 47 119 3.72 (8.41) 0 14 70 2.19 (2.75)

Expert 0 40 229 10.91 (12.92) 0 33 168 8.00 (10.51) 0 12 61 2.90 (3.48)

Novice 0 15 110 3.44 (4.33) 0 14 64 2.00 (3.31) 0 11 46 1.44 (2.05)

Expert 0 64 146 7.30 (14.45) 0 58 103 5.15 (12.94) 0 10 43 2.15 (2.80)

TOTAL 0 64 674 6.42 (10.42) 0 58 454 4.32 (8.99) 0 14 220 2.10 (2.74)

Bugs Accepted Bugs Declined Bugs

Simple

Task

Complex

Task

 

Table 2.   Number of defects reported during the crowdsourced software test  

 

Min Max Sum Mean (SD) Min Max Sum Mean (SD) Min Max Sum Mean (SD) Min Max Sum Mean (SD)

Low 0 43 80 2.50 (7.68) 0 17 101 4.81 (6.02) 0 9 36 1.13 (2.31) 0 40 57 2.85 (8.97)

Medium 0 5 21 0.66 (1.10) 0 12 36 1.71 (3.05) 0 4 18 0.56 (0.91) 0 9 20 1.00 (2.18)

High 0 3 11 0.34 (0.70) 0 6 23 1.10 (1.79) 0 2 6 0.19 (0.54) 0 5 12 0.60 (1.23)

Critical 0 2 7 0.22 (0.49) 0 4 8 0.38 (0.973) 0 1 4 0.13 (0.34) 0 4 14 0.70 (1.03)

Expert

Severity of

Accepted 

Bugs

Novice Expert

Simple Task Complex Task

Novice

 

Table 3. Severity of defects reported during the crowdsourced software test 

7 Expected Contributions and Next Steps 

In recapitulating our research in progress, there are several interim conclusions to be drawn. It has 

been discussed that task complexity and expertise jointly impact performance in crowdsourcing. The 

preliminary results indicate that expert crowdworkers perform better than novice crowdworkers on 

functional testing tasks. This tendency seems to be even more prominent when tasks are complex. Fu-

ture research with our data will include more sophisticated statistical analyses with a more valid per-

formance measure which is based on the number of implemented defects. Furthermore, the content 

analysis of the qualitative user reports will show whether the outcomes change for usability measures 

as theory would suggest (see H2a and H2b). Hence, our expected contribution is twofold. First, we con-

tribute to crowdsourcing research by providing valuable insights for the process of designing and allo-

cating tasks to crowds in ways that increase the crowdworkers’ performance. Secondly, we investigate 

the performance of crowdsourced software testing as a novel approach for software testing. For practi-

tioners, the results are expected to show what types of testing tasks should be assigned to which group 

of dedicated crowdworkers in order to achieve the best results possible. Thereby, we deliver valuable 

decision support for both crowdsourcers and intermediaries to enhance the performance of 

crowdsourcing initiatives. 

As for our next steps, we intend to statistically test our hypotheses H1a and H1b as soon as the key per-

formance indicator (i.e., amount of implemented bugs) for functional testing is available. Furthermore, 

we aim to analyse the qualitative data by applying a content analysis (Miles and Huberman, 1994) and 

determine our key performance index for the usability testing results to test hypotheses H2a and H2b.  
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