
Association for Information Systems
AIS Electronic Library (AISeL)

Research Papers ECIS 2016 Proceedings

Summer 6-15-2016

AUTOMATED PLANNING OF PROCESS
MODELS: THE CONSTRUCTION OF
SIMPLE MERGES
Bernd Heinrich
University of Regensburg, bernd.heinrich@wiwi.uni-regensburg.de

Dominik Schön
University of Regensburg, dominik.schoen@wiwi.uni-regensburg.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2016_rp

This material is brought to you by the ECIS 2016 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in Research Papers
by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Heinrich, Bernd and Schön, Dominik, "AUTOMATED PLANNING OF PROCESS MODELS: THE CONSTRUCTION OF
SIMPLE MERGES" (2016). Research Papers. 183.
http://aisel.aisnet.org/ecis2016_rp/183

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2016_rp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2016_rp?utm_source=aisel.aisnet.org%2Fecis2016_rp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2016?utm_source=aisel.aisnet.org%2Fecis2016_rp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2016_rp?utm_source=aisel.aisnet.org%2Fecis2016_rp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2016_rp/183?utm_source=aisel.aisnet.org%2Fecis2016_rp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016

AUTOMATED PLANNING OF PROCESS MODELS:

THE CONSTRUCTION OF SIMPLE MERGES

Research

Heinrich, Bernd, University of Regensburg, Regensburg, Germany,

bernd.heinrich@wiwi.uni-regensburg.de

Schön, Dominik, University of Regensburg, Regensburg, Germany,

dominik.schoen@wiwi.uni-regensburg.de

Abstract

Business processes evolve dynamically with changing business demands. Because of these fast changes,

traditional process improvement techniques have to be adapted and extended since they often require a

high degree of manual work. To reduce this degree of manual work, the automated planning of process

models is proposed. In this context, we present a novel approach for an automated construction of the

control flow structure simple merge (XOR join). This accounts for a necessary step towards an auto-

mated planning of entire process models. Here we build upon a planning domain, which gives us a

general and formal basis to apply our approach independently from a specific process modeling lan-

guage. To analyze the feasibility of our method, we mathematically evaluate the approach in terms of

key properties like termination and completeness. Moreover, we implement the approach in a process

planning software and apply it to several real-world processes.

Keywords: Business Process Management, Process planning, Automated planning, Control Flow Struc-

tures.

1 Introduction

Nowadays, as markets change, customer needs shift and new competitors evolve dynamically, compa-

nies must frequently (re)design their business processes to adapt them. At the same time, business pro-

cesses span not only across departments of a single company but also across interorganizational collab-

orations of multiple companies, which makes process models even more complex. For instance, accord-

ing to Heinrich et al. (2015), a European bank has modeled and (re)designed over 2,000 processes in

different departments and areas in a project. These process models, which are composed of actions and

corresponding control flow structures, have been modeled using the ARIS toolset and documented to

support upcoming improvements and adaptations of processes. To keep the process models up-to-date,

frequent (re)designs due to, for instance, the aforementioned challenges of today’s business world have

been necessary. Moreover, the authors state that employees of the bank as well as executives of other

branches such as insurance and engineering highlighted the fact that process flexibility has become more

and more important within the last decade. The reasons most frequently mentioned for this increased

demand for flexibility are the growing frequency and complexity of such process (re)design projects,

which involve a significant degree of manual work (cf. also Hornung et al., 2007).

To ensure the required flexibility, several research fields in Business Process Management (BPM) striv-

ing to support modelers and business analysts via automatic techniques are of increasing importance.

The research fields process mining as well as process model verification and validation assist the analyst

in the process analysis phase (e.g., Wetzstein et al., 2007). Automated (web) service composition can

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 2

be seen as part of the phases process implementation and process execution (Weber, 2007; Khan et al.,

2010). In the process modeling phase, which we will focus on in this paper, the goal of the research

strand automated process planning is to enable the automated construction of process models using

planning algorithms (Heinrich et al., 2011; Heinrich et al., 2009; Henneberger et al., 2008; Hoffmann

et al., 2012; Lautenbacher et al., 2009). Automated planning aims to increase the flexibility by definition

(cf. van der Aalst, 2013) of the resulting process models and to (re)design process models - for processes

that must be frequently (re)designed. The task of an automated construction of process models can be

understood as a planning problem (Ghallab et al., 2004) with the objective to arrange actions and control

flow structures in an appropriate order based on both, an initial state as well as a non-empty set of goal

states. Here, using a nondeterministic planning domain, allowing an abstract representation of process

models, independent from a specific process representation language, enables a widespread use. A fun-

damental challenge for the automated planning of process models is to construct control flow structures

which represent the control flow of a process (Russell et al., 2006; van der Aalst et al., 2003). More

precisely, in order to plan more complex process models, not only a sequence of actions but also control

flow structures like exclusive choice, parallel split or simple merge have to be constructed in an auto-

mated manner (cf., e.g., Heinrich et al., 2015; Heinrich et al., 2009; Hoffmann et al., 2012).

The specific research goal of this paper is the automated construction of one of the most important

control flow structures, namely simple merge. The simple merge serves as a join connector for two or

more paths-segments (called branch) into one single subsequent branch (cf., e.g., Russell et al., 2006;

van der Aalst et al., 2003) and thus reduces the size of process models. However, the construction of

simple merges within an automated planning approach does not only focus on reducing the size of pro-

cess models and thus – according to, for instance, Moreno-Montes de Oca et al. (2015), Mendling et al.

(2010), Sánchez González et al. (2010), Cardoso (2007) – its complexity. More generally, we have to

be able to construct minimal process models in our context by removing redundant and duplicate path-

segments “as early as possible”. Further, to increase the readability and understandability of process

models especially for laymen, La Rosa et al. (2011) propose to use pattern-compounds (cf. also

Gschwind et al., 2008; Mendling et al., 2010; Mendling et al., 2007) as they represent well-formed and

sound block-structured fragments of a process model. Simple merges as so called “join connectors”

(Mendling et al., 2010) therefore should only be constructed in accordance with the related “split con-

nector” (i.e., the control flow structure exclusive choice). Following this, we aim to construct simple

merges in accordance to existing exclusive choices.

The contributions of this paper are a formal definition of our planning domain and an algorithm for the

automated construction of simple merges. In more detail:

 To follow the research field of automated process planning and thus to ensure a widespread use of

our approach, we consider belief states (possibly infinite sets of world states that may exist before

and after applying an action) as we address the planning of process models and thus abstract from

individual process executions (cf. Ghallab et al., 2004).

 When constructing simple merges in an automated manner, we have to construct minimal process

models. Thus, we address nested simple merges in order to simplify process models by removing

duplicate sequences of actions in several paths and construct simple merges “as early as possible”.

 We further focus on constructing simple merges in complete in terms of merging all distinct paths of

process models that can be merged.

 We have to consider block structures (cf. La Rosa et al., 2011; Gschwind et al., 2008; Mendling et

al., 2010; Mendling et al., 2007) in order to increase the readability and understandability of process

models by means of constructed simple merges.

In the following section, we discuss related work regarding our contributions  to . Thereafter we

present the formal foundation for our approach in Section 3 and the running example, we will use to

illustrate our approach, in Section 4. Sections 5 and 6 elaborate the major design decisions and the

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 3

proposed method to construct simple merges. In Section 7 we evaluate our approach before we conclude

with a discussion, limitations of our work and an outlook to future research.

2 Related Work

Our work contributes to the research fields in BPM striving to support modelers and business analysts

via automatic techniques. Especially, it focusses on the (1) automated planning of process models and

is related to (2) process model complexity, (3) process modeling recommender systems and (4) process

mining. Thus, we want to summarize and delimit existing research in these fields to our approach.

Ad (1): The research strand of automated planning of process models envisions the construction of pro-

cess models by means of semantically annotated process elements and a semantic reasoning (Heinrich

and Schön, 2015; Heinrich et al., 2008; Heinrich et al., 2011; Henneberger et al., 2008; Hoffmann et

al., 2012; Lautenbacher et al., 2009). Especially in Heinrich et al. (2008) and Henneberger et al. (2008)

the challenges and the general planning approach is discussed. In this context, Heinrich et al. (2009) and

Heinrich et al. (2015) propose an algorithm that copes with the construction of exclusive choices based

on the determination of conditions. Their approach creates conditions that enable the construction of

different outgoing branches of an exclusive choice, based on co-domain of belief state variables. How-

ever, they do not cope with simple merges. In contrast, Hoffmann et al. (2012) and Hoffmann et al.

(2009) discuss the need of constructing simple merges (XOR joins) within their planning. However they

do not provide any kind of algorithm or implementation for this problem (we ensured this by requesting

an implementation from the authors). Summing up, an approach to construct simple merges in an auto-

mated manner is not presented so far (cf. contributions  to ).

Ad (2): Following the idea of reducing the amount of manual work through automation, several works

in the field of process model complexity address the appropriate construction of control flow structures

as well. Process models need to be refactored based on rules regarding the envisioned structure of pro-

cess models. Therefore, control flow structures need to be transformed and constructed respectively.

Vanhatalo et al. (2008b), for example, present an approach for the automated completion of workflow

graphs. Their method is based on a “well-behaved” graph with a single source (initial state) and a single

sink (goal state). They aim at constructing simple merges only at the end of a process model (i.e., prior

to the sink). Vanhatalo et al. (2009) and (2008a) introduce the concept of refined process structure trees

and a method to represent workflow graphs in such a tree-based hierarchy of sub-workflows. They aim

to identify these sub-workflows but not to consolidate equal sub-workflows (cf. ). Polyvyanyy et al.

(2011) extend this approach and present an algorithm to transform a “multi-terminal graph” (MTG),

which means, a graph that has at least one source and at least one sink, to a “two-terminal graph” (TTG),

which means, a graph that has exactly one source and exactly one sink. They aim to connect the existing,

multiple sinks of a MTG to one common single sink of the resulting TTG, but not at consolidating equal

subtrees (i.e., the representation of equal sequences of actions in different paths; cf. contributions  and

). Munoz-Gama et al. (2014) present an approach for the decomposition of process models. Their

decomposition is based on so called “transition boundaries” or “place boundaries”. That means that they

identify subgraphs based on a single common action or belief state at the beginning of each subgraph.

However, this is not a sufficient criterion for the construction of minimal process models and especially

of nested simple merges (cf. ). Such nested simple merges do not necessarily require a single common

action or belief state at the beginning of a subgraph. Further, none of the approaches in research field

(2) copes with a nondeterministic planning domain and a state space with possibly infinite sets of world

states, which is essential when addressing the automated planning of process models (cf. ).

Ad (3): The research strand of process modeling recommender systems focusses on issues like auto-

completion of process models, finding (substructures of) process models in a repository suitable for a

given problem definition or deciding where to start and stop modeling a process (cf., e.g., Fellmann et

al., 2015; Koschmider, 2007; Koschmider et al., 2011) in order to reduce the manual modeling efforts.

These works aim at suggestions on correct and fitting process fragments that can be used to complete

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 4

existing process models. In detail, during the construction of process models, recommender systems

propose fitting process fragments (saved in a process model repository) based on (semantic) similarity

measures of the fragments and the given problem definition, represented by, for instance, incomplete

constructed process models at hand. This promising work, however, does not aim on constructing simple

merges in an automated manner (cf. especially  to ).

Ad (4): Besides these approaches, process mining aims at the partially automated reconstruction and

redesign of process models based on event logs. Process mining allows discovering, checking and en-

hancing process models including workflow patterns (cf., e.g., Gaaloul et al., 2005a) by means of event

logs (cf., e.g., Accorsi et al., 2012; van der Aalst et al., 2012). As van der Aalst et al. (2012) explicate,

process mining should support basic control flow structures. The authors stated that existing algorithms

like the alpha algorithm (cf., e.g., van der Aalst et al., 2004; Gaaloul et al., 2005b; Gaaloul et al., 2005a)

are able to construct simple merges. However, these algorithms follow a local perspective by examining

pairwise relations between two actions. Thus, they do not aim to construct simple merges in complete

(cf. ) and may not provide minimal process models (cf. ). Further, to the best of our knowledge, we

found no approach to construct simple merges in an automated manner that considers block structures

(cf. ) for increasing the readability of the constructed process models. Moreover, current conversion

algorithms (cf., e.g., Kalenkova et al., 2015), that translate Petri Nets into Process Models (here:

BPMN), do not deal with the completeness (cf. ) of the constructed simple merges. Moreover, as

process mining aims to reconstruct as-is process models based on event logs, it does not cope with the

ex-ante construction of to-be process models as it is addressed in this paper. Further, the field of process

mining usually does not cope with a nondeterministic planning domain and a state space with possibly

infinite sets of world states. So, the approaches for the construction of workflow patterns (as stated in

e.g., Gaaloul et al., 2005b; van der Aalst et al., 2010), used in process mining, do not aim to address

contribution . To sum up, to the best of our knowledge, there exists no approach that addresses all

contributions  to .

3 Fundamentals

As stated above, the construction of simple merges is a nondeterministic planning problem with belief

states because we abstract from an individual process execution (Ghallab et al., 2004). Using a nonde-

terministic planning domain which is independent from a particular process representation language

enables a widespread use and guarantees compatibility with many existing approaches in the literature

(e.g., Bertoli et al., 2001; Bertoli et al., 2006). A nondeterministic planning domain consists of a non-

deterministic belief state-transition system which is defined in terms of its belief states, its actions, and

of a transition function that describes how (the application of) an action leads from one belief state to

possibly many belief states (acc. Bertoli et al., 2006; Ghallab et al., 2004). More formally, a belief state-

transition system and (non-)determinism in state space are defined as follows:

Definition 1 (Nondeterministic state-transition system). A nondeterministic belief state-transition sys-

tem is a tuple  = (BS, A, R), where

 BS is a finite set of belief states. A belief state bsBS contains a set BST of belief state tuples. A

belief state tuple p is a tuple of a belief state variable v(p) and a subset r(p) of its predefined domain

dom(p), which we will write as p:=(v(p),r(p)).

 A is a finite set of actions. Each action aA is a triple consisting of the action name and two sets,

which we will write as a:=(name(a), precond(a), effects(a)). The set precond(a)BST are the pre-

conditions of a and the set effects(a)BST are the effects of a.

 And R: BS×A → 2BS is the transition function. The transition function associates to each belief state

bsBS and to each action aA the set R(bs, a) BS of next belief states.

According to this definition it is possible to represent possibly infinite sets of world states quite easily.

Furthermore, it is a rather intuitive way – from a process modeling perspective – to represent certain

preconditions and effects of actions.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 5

Definition 2 ((Non-)determinism in state space). An action a is applicable in a belief state bs iff |R(bs,

a)| > 0; it is deterministic (nondeterministic) in bs iff |R(bs, a)| = 1 (|R(bs, a)| > 1). If a is applicable in

bs, then R(bs, a) is the set of belief states that can be reached from bs by performing a.

Based on both Definitions 1 and 2, a planning graph can be generated by means of different existing

algorithms that progress from an initial belief state to goal belief states (see, e.g., Bertoli et al., 2001;

Bertoli et al., 2006; Heinrich et al., 2009; Heinrich et al., 2011). In this paper, we primarily are extending

these works by means of an approach to construct simple merges in an automated manner. With that

said, we define our planning graph as follows:

Definition 3 (planning graph). A planning graph is an acyclic, bipartite, directed graph G=(N, E), with

the set of nodes N and the set of edges E. Henceforth, the set of nodes N consists of two partitions: First,

the set of flow nodes PartF (set F of flow nodes) which further contains two partitions, the set of action

nodes PartAPartF (set A of actions) and the set of exclusive choice nodes PartECPartF (set EC of

exclusive choices), and second the set of belief state nodes PartBS (set BS of belief states). Each node

bsPartBS is representing one distinct belief state in the planning graph. Each node aPartA is repre-

senting an action in the planning graph. Each node ecPartEC is representing an exclusive choice node

in the planning graph. The planning graph starts with one initial belief state and ends with one to prob-

ably many goal belief states (with InitBS and GoaljBS).

When focusing on automated process planning, identical or very similar actions of a planning graph –

as specified in Definition 3 – can be identified by using semantic concepts and automated reasoning (cf.

e.g., Step 1, Heinrich et al., 2015, p. 3). Such actions can then be identically (syntactically) labelled in

the planning graph, which we will use in the following. However, our approach is not limited to the

strand of automated process planning. In fact, for instance, within the research field of process mining,

several works exist (see, e.g., Kindler et al., 2006; van der Aalst et al., 2010; Verbeek et al., 2007) that

use or construct graphs similar to planning graphs. Moreover, we envision to apply our approach to

manually constructed process models by transferring them to the notions of a planning graph.

Given Definition 3, a planning graph consists of one to many paths. Here, a path is defined as follows:

Definition 4 (path). A path is sequence of nodes npN starting with the initial belief state and ending in

exactly one goal belief state.

Further, we define a branch as a subset of nodes regarding a particular path, starting with an exclusive

choice node ecPartEC:

Definition 5 (branch). A branch is a sequence of nodes nbN starting right after an exclusive choice

node ecPartEC and ending in exactly one goal belief state. A branch therefore is a subset of nodes of a

specific path.

4 Running example

We will use an excerpt of a real-world process taken from the order management of a European bank to

illustrate our approach in the following. This excerpt of an order execution process model is represented

by the planning graph (such a graph can be constructed with one of the approaches proposed by Bertoli

et al., 2006; Heinrich et al., 2015; Heinrich et al., 2009) shown in Figure 1. As illustrated, the order data

must be entered and determined in a first step. After that, depending on the type of the security (condi-

tions), a check must be stated and the order amount must be entered or calculated (in case of a stock

order). Then, the plausibility of the order has to be proven and the order will get executed before the

order is processed internally or externally and has to be assigned to a portfolio and documented. Finally,

the order gets routed (note: the uppercase letters A-G are used to refer to the according XORs hereafter).

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 6

Figure 1. Planning graph of our running example

5 Design Process

In this section we will outline the major design decisions to address the contributions -. These major

design decisions are as follows:

1) Traverse backwards: To construct simple merges, we traverse the planning graph backwards, start-

ing from the goal belief states. As the planning graph ends with one to many goal belief states, it is

necessary to start the traversal with these goal belief states to identify all potentially mergeable paths

and thus to cope with  and . The reason for traversing the planning graph backwards is that we

are able to identify mergeable paths directly and do not need to traverse them completely from the

initial state (like if we would use a forward traversal). Precisely, traversing backwards is effective

because paths that can be combined by a simple merge need to end in both equal actions and equal

control flow structures.

2) Mark flow nodes with tokens: To identify mergeable paths, we compare the flow nodes (partition

PartF) of the paths in a breadth-first manner, i.e., all flow nodes preceding the goal belief states are

compared in the first iteration, all flow nodes preceding these in the second and so on. This approach,

combined with 1), allows us to identify all mergeable paths directly (cf.  and ), as they would

be equal from a specific action in the path until the goal belief state. We use tokens to mark sets of

equal flow nodes being part of different paths. For instance, given that the last flow node before the

goal belief state is equal in three paths, we mark these flow nodes with the same token, otherwise

with different ones. Continuing traversing backwards and annotating actions with tokens breadth-

first allows us to recognize potentially mergeable paths even if they differ in subsequent iterations.

3) Construct simple merges: To assure that paths are merged only if they were split by an exclusive

choice previously (cf. ), we construct simple merges when we reach an exclusive choice in the

backward traversal. Here, the annotated tokens are used to identify mergeable paths.

Addressing design decision 2), we have to handle the need of identifying equal sequences of flow nodes

within different paths. Thus, we define so-called equality groups:

Definition 6 (equality group). An equality group 𝑒𝑔𝑡 = (𝑛1, … , 𝑛𝑚) is a tuple of flow nodes with the

following properties:

 𝑛𝑖 𝜖 𝑃𝑎𝑟𝑡𝐹 for all 𝑖 𝜖 {1, … , 𝑚}

 𝑛𝑖+1 succeeds 𝑛𝑖 for all 𝑖 𝜖 {1, … , 𝑚 − 1}

 A token 𝑇𝑡 denotes a flow node as member of the equality group 𝑒𝑔𝑡

enter and determine
order data

XOR

determine
market value

enter
quantity

prove
stock

S
ec

u
ri

ty
T

y
p
e:

[s
to

ck
]

enter
order amount

prove
certificate

prove
fund

enter
order amount

execute
order

prove
plausibility

S
ec

u
ri

ty
T

y
p
e:

[c
er

ti
fi

ca
te

]

S
ec

u
ri

ty
T

y
p
e:

[f
u
n
d
]

execute
order

check
routability

XOR
pass order
to backlog

R
o
u
ta

b
il

it
y
:

[t
ru

e]

prove
plausibility

assign to
external contractor

R-XOR

process
internally

receive portfolio assignment
and filed documentation route order

R
o
u
ta

b
il

it
y
:

[f
al

se
]

X

assign to portfolio
and file documentation route order

execute
order

check
routability

XOR
pass order
to backlog

R
o
u
ta

b
il

it
y
:

[t
ru

e]

prove
plausibility

R
o
u
ta

b
il

it
y
:

[f
al

se
]

X

check
routability

XOR

pass order
to backlog

Routability:

[true] Routability:

[false] X

assign to
external contractor

R-XOR

process
internally

receive portfolio assignment
and filed documentation route order

assign to portfolio
and file documentation route order

assign to
external contractor

R-XOR

process
internally

receive portfolio assignment
and filed documentation route order

assign to portfolio
and file documentation route order

A

D

C

B

E

F

G

bs
1

bs
3

bs
2

bs
4

bs
5

bs
10

bs
7

bs
13

bs
16

bs
11

bs
8

bs
19

bs
25

bs
24

bs
31

bs
30

bs
14

bs
17

bs
20

bs
21

bs
27

bs
26

bs
28

bs
29

bs
23

bs
22

bs
18

bs
15

bs
6

bs
9

bs
12

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 7

We denote the set of all equality groups by 𝐸𝐺.

6 Method to Construct Simple Merges

In this section, we will elaborate and employ the above mentioned major design decisions to design a

method that constructs simple merges and addresses the contributions  to .

6.1 Step 1: Merging one single exclusive choice

In the first step, we address to merge - as early as possible - two or more outgoing branches regarding a

single exclusive choice. In this simple case, we conduct the following sub steps:

(1) Check all paths, starting from their corresponding goal belief states. Mark equal flow nodes with

the same equality token, starting with the last flow node before each goal belief state.

(2) Continue traversing backwards, comparing the subsequent flow nodes of all paths. If the flow nodes

of each considered equality group are still equal, simply add the same token to the flow nodes of

these paths. If the flow nodes are different, add new tokens for each equality group of flow nodes.

Consider that flow nodes could only be marked with the same additional token, if they are member

of the same equality group so far, which means if their preceding (in the backward traversal) flow

nodes are the same. We additionally add the tokens of previously marked flow nodes to each flow

node for performance reasons with regard to later phases of our approach.

(3) If an exclusive choice is reached while traversing the branches backwards, we need to check the

first flow node of all outgoing branches. Those branches that are marked with the same equality

token are mergeable as they contain an equal sequence of flow nodes. Thus, they have to be merged

with a simple merge just before the beginning of this equal sequence, which we will recognize as

all contained actions are marked only with equal tokens. Further, the belief states of the merged

branches have be joined (regarding our running example, the set union of SecurityType: fund, Secu-

rityType: certificate and SecurityType: stock) to get the accurate belief state regarding the single

subsequent path after the simple merge. If the branches are not marked with equal tokens they will

be merged only before the goal belief state. The reached exclusive choice itself is marked with a

new token and all common tokens of the merged branches, too.

Note: If branches of an exclusive choice have different lengths, all branches, except the longest, stop

the backward traversal at the exclusive choice. When the traversal of the longest branch reaches the

exclusive choice, all outgoing branches are compared according to the upper description.

(4) Finally, we have to continue traversing backwards and marking all flow nodes with tokens. Further,

the approach finally reaches the initial state and terminates.

To demonstrate this first step, we use the introduced order execution process model. For illustration

purpose, we focus on the part of the process, which is framed in Figure 1. According to the example,

both paths are marked with the token T1, as both paths end with the equal action “route order” (sub step

(1)). Further, the actions “assign to portfolio and file documentation” and “receive portfolio assignment

and filed documentation” differ and hence are additionally marked with different tokens (T2 resp. T3)

according to sub step (2). Then, reaching the exclusive choice, the outgoing branches are identified as

mergeable, as both contain the token T1. Thus, a simple merge is inserted before the action ”route order”,

as this is the first flow node marked only with equal tokens in both branches (see rightmost graph in

Figure 2). Further, all subsequent belief states (i.e., bs3 and bs4) have be joined.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 8

Figure 2. Constructing a simple merge regarding the running example

6.2 Step 2: Merging multiple nested exclusive choices

When process models become more complex, exclusive choices could occur in branches of other exclu-

sive choices etc. Thus, our approach must be able to cope with nested exclusive choices (e.g. exclusive

choices E, F and G are nested in exclusive choice A; cf. Figure 1). To address this challenging problem,

we need to consider the main components of an exclusive choice, the outgoing branches and their con-

ditions, and define a choice construct as follows:

Definition 7 (choice construct). The choice construct C of an exclusive choice is defined as a set of c

(𝑐 ∈ 𝐶) where c is defined for each outgoing branch of this exclusive choice. Moreover, c is defined as

the tuple c:=(Condition, Tokens) consisting of the condition of the corresponding branch (or null if the

branch has no conditions) and the tokens of the first action of the branch succeeding the exclusive choice.

Based on this definition we are able to cope with multiple nested exclusive choices. To enable the merg-

ing of several paths containing exclusive choices with equal choice constructs – and therefore with equal

outgoing branches and conditions – we need to extend the above sub step (3) as follows:

(3’) As defined above in sub step (3), when reaching an exclusive choice, merge the outgoing

branches. Additionally, mark the exclusive choice with its choice construct. Compare the exclu-

sive choice with every other exclusive choice based on their choice constructs similar to compar-

ing actions and mark them with the same token, when two or more choice constructs are equal.

The general specification in the first step above in combination with the straightforward extensions of

Definition 7 and sub step (3’) allows us to cope with the problem of merging multiple nested exclusive

choices in outgoing branches now. For further comparison the tokens of the outgoing branches of a

nested exclusive choice are not required anymore and thus, when marking subsequent flow nodes, only

the token of the exclusive choice is needed.

To illustrate these extensions, we consider the whole planning graph of our running example as seen in

Figure 1, containing multiple exclusive choices (denoted by capital letters). Initially, the procedure is

equal to the excerpt in Figure 2 until the exclusive choices B, C and D are reached. When reaching each

of the exclusive choices E, F and G, both outgoing branches are marked with the equality tokens T1 and

thus are mergeable before the action “route order”. Further, exclusive choice F is marked with its choice

construct, precisely {(null, (T2, T1)), (null, (T3, T1))} (cf. sub step (3’)). As exclusive choices E and G

contain the same outgoing branches as F, they are marked with the same choice construct. According to

sub step (3’), all of those three exclusive choices get marked with T4, as their choice constructs are equal.

When continuing the backward traversal, the exclusive choices B, C and D are reached and compared.

They have to be marked with {({(Routability, false)}, null), ({(Routability, true)}, (T4, T1))} and their

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 9

outgoing branches can be merged. As there is only one outgoing branch that leads to the goal1, no further

merge is needed. Thereafter (cf. sub step (4)), the outgoing branches of exclusive choice A are checked.

As they all contain the equal token T5 (cf. the equal exclusive choices B, C and D) they will be merged

before the action “prove plausibility” resulting in the graph shown in Figure 4.

6.3 Step 3: Merging exclusive choices within parallelization compounds

Regarding Mendling et al. (2010), process models should be “as structured as possible” (i.e., “every

split connector matches a respective join connector of the same type”), which is related to contribution

. So far, the proposed approach is not able to provide this in case an exclusive choice is created within

a parallelization compound (i.e., path segments surrounded by a parallel split node and a synchronization

node). To solve this issue, the Definitions 3 to 5 must be extended to allow the representation of planning

graphs containing parallelization compounds:

Definition 3’ (planning graph). A planning graph is an acyclic, bipartite, directed graph G=(N, E), with

the set of nodes N and the set of edges E. Henceforth, the set of nodes N consists of two partitions: First,

the set of flow nodes PartF (set F of flow nodes) which further contains four partitions, the set of action

nodes PartAPartF (set A of actions), the set of exclusive choice nodes PartECPartF (set EC of exclu-

sive choices), the set of parallel split nodes PartPSPartF (set PS of parallel splits) and the set of syn-

chronization nodes PartSPartF (set S of synchronizations), and second the set of belief state nodes

PartBS (set BS of belief states). Each node bsPartBS is representing one distinct belief state in the plan-

ning graph. Each node aPartA is representing an action in the planning graph, each node ecPartEC is

representing an exclusive choice node in the planning graph, each node pPartPS is representing a par-

allel split node in the planning graph and each node sPartS is representing a synchronization node in

the planning graph. The planning graph starts with one initial belief state and ends with one to probably

many goal belief states (with InitBS and GoaljBS).

Definition 4’ (path). A path is sequence of nodes npN either 1) starting with the initial belief state and

ending in exactly one goal belief state or 2) starting with a parallel split node pPartPS and ending in

the corresponding synchronization node sPartS.

Definition 5’ (branch). A branch is a sequence of nodes nbN starting right after an exclusive choice

node ecPartEC and ending in exactly one goal belief state or a synchronization node sPartS. A branch

therefore is a subset of nodes of a specific path (see Definition 4’).

Now, we are able to represent process models containing parallelization compounds by means of our

planning domain. The upper part of Figure 3 shows an extension of our running example illustrating

this. To enable the automated construction of simple merges within parallelization compounds we care-

fully extend the previously presented sub steps (1), (3) resp. (3’) and (4) as follows:

(3’’) When reaching a synchronization node, invoke the overall method (i.e., sub steps (1para), (2), (3),

(3’), (4para)) for all paths between the parallel split node and the synchronization node.

(1para) Check all paths, starting from the final synchronization node. Mark equal flow nodes with the

same equality token, starting with the last flow node before the synchronization node.

(4para) Continue to traverse backwards and mark all flow nodes with tokens. Further, when finally reach-

ing the initial parallel split node, return to the enclosing iteration.

We follow the above presented idea, used for merging nested exclusive choices, to allow merging

branches that contain nested parallelization compounds and define a so called parallel construct based

on the contained actions:

1 The other outgoing branch leads to a so called flow final node, which terminates the process and is not needed to be merged.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 10

Definition 8 (parallel construct). A parallel construct P of a parallel split is defined as a set of Tt (TtP)

where Tt is denoted for each outgoing branch of this parallel split. Moreover, Tt is defined as the token

of the first flow node of the branch succeeding the parallel split.

Further, when merging a nested parallelization compound, we compare it with every other paralleliza-

tion compound in the currently analyzed equality group based on their parallel constructs (cf. sub step

(2)) and mark them with the same token, when two or more parallel constructs are equal.

Regarding our running example (Figure 3), we traverse the parallelization compound backwards, start-

ing with the synchronization node as stated in (1para). Thereupon, “enter quantity” could be identified as

equal in the two branches of the exclusive choice in sub step (2). When continuing the traversal and

finally reaching the exclusive choice, these two branches will be merged as seen in the lower area of

Figure 3 regarding (3). Regarding the previously defined sub steps (1) to (4), the parallel split will be

marked with the parallel construct {T2, T4} when finishing the traversal of the parallelization compound

(cf. (4para)), as “determine real-time market value” gets marked with T2 and “determine budget” gets

marked with T4. To sum up, we are now able to create minimal and block-structured (cf., e.g., La Rosa

et al., 2011; Mendling et al., 2010) process models by constructing simple merges in complete.

Figure 3. Unmerged and merged exclusive choice within a parallelization compound

7 Evaluation

In this section, we sketch the formal evaluation of our approach by mathematically proving that it pro-

vides minimal process models (i.e., simple merges are constructed “as early as possible”; cf. ), con-

structs simple merges if possible (i.e., completeness; cf. ) and terminates. We further briefly sketch

its computational complexity and evaluate the results of our approach with respect to the construction

of block structures (cf. ). Afterwards we evaluate the feasibility of the approach by means of a proto-

typical implementation and applying it to several real-world processes.

7.1 Formal evaluation of the approach

For the formal evaluation of our approach, we need to ensure that it terminates, identifies all mergeable

paths (completeness), does not construct incorrect simple merges (correctness) and constructs simple

merges as early as possible (i.e., is minimal). It is proven, that the approach meets all these criteria and

its computational complexity is O(n5) in the number of goal belief states or sequential flow nodes of the

longest path of the planning graph. This means, the algorithm is computationally efficient (cf., Arora

and Barak, 2009; Cobham, 1965). It is further proven that for each exclusive choice, exactly one simple

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 11

merge is created (cf. ) so that the results of the approach are syntactically correct and fulfill the criteria

of soundness and s-coverability. For the proof sketches see Appendices B and C2.

7.2 Operational evaluation of the results

To assess the feasibility and applicability of our approach, the following questions are evaluated:

(E1) Can our approach be instantiated in terms of a prototypical software implementation? (E2) Can it

be applied in a practical setting and what is the output resulting from its application?

Figure 4. Screenshot of the constructed process model by means of our prototype

We integrated our approach in a web-based process planning tool (cf. E1; a demo version could be

accessed at http://www-sempa.uni-regensburg.de/). The web application guides the user while populat-

ing the set of actions by providing descriptions of preconditions and effects and specifying the initial

state and goal states. To test the implementation, persons other than the programmers analyzed the

source code and several extreme value tests and unit tests have been performed. The implementation did

not show any errors at the end of the test phase.

By means of the software implementation, we applied our approach to several real-world processes of

a European bank, European insurance companies and an educational institution (cf. E2). Our running

example is a part of one of these processes and addresses the order management of the bank (cf. Figures

1 and 5). To be able to apply our algorithm, the actions of former process models, used in the area of

security order management had to be extracted and afterwards imported in our planning tool. About 200

actions including their preconditions and effects could be imported via an XML interface of ARIS, the

bank’s process modeling tool. We then reviewed them to validate, for instance, that their preconditions

and effects were accurate noted. Finally, we specified the initial state and the intended goal states with

the help of the employees of the bank’s responsible department and planned the feasible process models

using our planning tool. Hereby, two simple merges are constructed. The simple merge node that is

firstly constructed merges the branches after “receive portfolio assignment and filed documentation”

2 A version of this paper, containing all Appendices could be accessed via http://epub.uni-regensburg.de/33576/

http://www-sempa.uni-regensburg.de/

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 12

and “assign to portfolio and file documentation”. Its construction is straightforward as no nested exclu-

sive choices need to be created. In the next step, the outgoing branches of the exclusive choices B, C

and D are analyzed. As here only one branch leads to the goal and the other branch leads to a flow final

node, no further simple merge needs to be created. As the previously merged exclusive choice occurs in

this branch again, it is needed to consider the extensions for merging nested exclusive choices (cf. Sec-

tion 5.2). In the last step, a simple merge node before “prove plausibility” merges the three different

branches depending on the security type. Here, the extensions for nested exclusive choices (cf. Section

5.2) have to be considered again. In conclusion, only one action (“enter order amount”) appears twice

in the process model due to respecting pattern compounds (cf. contribution ).

Process

number
Context

Num. of ac-

tions / states

in the initial

search graph

Num. of

constructed

simple

merges

Num. of ac-

tions in-

cluded by the

simple merge

Num. of actions and

control flow struc-

tures merged by the

simple merge

Num. of

merged

paths

Run

time

in sec.

1 Project Mgmt. 17/15 1 4 1/0 3 <0.001

2 Project Mgmt. 25/18 1 1 7/2 2 <0.001

3 Project Mgmt. 26/22 3 8 8/1 4 0.002

4 Project Mgmt. 38/25 2 6 36/3 4 <0.001

5 Insurance Mgmt. 43/38 6 29 19/7 27 0.016

6 Insurance Mgmt. 54/44 8 33 18/8 3 0.006

7 Loan Mgmt. 40/31 3 25 12/3 3 0.003

8 Loan Mgmt. 57/43 4 14 11/4 20 0.013

9 Loan Mgmt. 122/69 3 54 4/0 0 0.024

10 Private Banking 278/189 25 82 69/16 6772 5.405

11 Human Res. 83/75 10 76 3/0 4 0.016

Table 1. Application of our approach in further real-use situations

As stated above, we applied the approach to further processes in different contexts of different firms.

Table 1 shows the results of these applications (executed on an Intel Core i7-2600 3.40 GHz, Windows

7 64 Bit, Kernel Version 7601.22616, Java 8). The eleven analyzed processes of different application

contexts include up to 278 actions and 189 states in the initial graph and are therefore of a small to a

large size. The largest process model No. 10, for instance, contains actions conducted by several depart-

ments of the European bank and external service providers. Other processes are run by an insurance

company, a mechanical engineering company (the context “Project management”) and a university (the

context “Human resources”). All process models include simple merges and for many process models

nested control flow structures were created that merge a significant number of actions and states. This

illustrates that nested simple merges are frequently used and relevant control flow structures. In all sit-

uations, our approach was fully applicable and generated correct and complete solutions. Thus the prac-

tical applicability of the approach is supported. The run time to construct simple merges varies from

0.001 up to 5.405 sec. and is thus very small.

Regarding economic aspects, Krause et al. (2013) present a quantitative evaluation, analyzing 18 pro-

cess modeling projects from a financial service provider. Here, automated planning generates higher

initial setup costs than manual process modeling, especially for analyzing and annotating actions. In

contrast, the ongoing modeling costs are (as expected) much lower because of the support by the auto-

mated planning approach. Moreover, Krause et al. (2013) show that the use of automated planning of

process models increases the contribution margin by about 20% which should cover its necessary higher

initial investments. Automated planning should likely be even more valuable over a long term as Krause

et al. (2013) considered only a short period of time. Alongside with this findings, applying the presented

approach allows reducing the manual efforts when constructing process models and thus reduces the

variable costs within the planning process. Hence it is supported that our approach is even more valuable

for process models that need to be redesigned frequently as the initial costs can be amortized by savings

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 13

of parts of the variable costs that occur with each redesign (cf. also Heinrich et al., 2015). Furthermore,

the complexity of the process model could be decreased by reducing the amount of nodes within the

process model, which then may lead to less errors during the execution of the process (cf. La Rosa et

al., 2011; Laue and Mendling, 2010; van der Aalst et al., 2008).

8 Discussion and Conclusion

We propose a novel approach to construct the control flow structure simple merge in an automated

manner and thus contribute to the research strand of automated process planning. Further, this work

aligns to several research fields in BPM striving to support modelers and business analysts via automatic

techniques. To abstract from individual process executions and to ensure a widespread use of our ap-

proach, we consider belief states (cf. ). We construct minimal (cf. ) and complete (cf. ) process

models. Within this paper we additionally considered the construction of pattern compounds as proposed

by e.g. La Rosa et al. (2011) in order to increase readability and understandability of the process models

(cf. ). Our approach and the planning domain are formally noted and can therefore be well-defined

and evaluated by means of mathematical proofs. This guarantees that key properties and envisioned

contributions are met. Further, we discussed its applicability, feasibility and the results from the practical

application by applying our approach (implemented in a process planning tool) to several real-world

processes. In this context, we have tested that the construction of simple merges contributes to the auto-

mated planning of entire process models and thereby to reduce the amount of manual efforts within

process (re-)design.

However, our research has some limitations that need to be addressed in the future. Constructing block

structures (cf. ) may imply redundancies in the resulting process model that will not be merged in

some cases (cf. action “enter order amount” in our running example). In some cases this might not be

favorable, for instance, if the resulting process models are used only by domain experts in process mod-

eling. In future research, this issue has to be addressed. To enable this, choice constructs of nested ex-

clusive choices have to be compared in depth instead of only using their token to identify mergeability.

To complete the automated planning of entire process models, further (advanced) control flow structures

should be constructed. Moreover, the work of Krause et al. (2013) should be followed-up to ensure a

valuable usage of automated process planning in future real-world cases. For instance, it should be eval-

uated whether automated process planning makes it easier for laymen to construct correct and feasible

process models. Further, it should be evaluated how the presented approach could be applied in other

research strands such as process mining. As process mining approaches usually employ event logs to

derive process descriptions (e.g., process graphs), we expect our approach to be beneficial especially

regarding contributions  and  in this research strand, too. However, this idea needs to be evaluated

in future research.

Further, it should be evaluated how process models modeled in a manual manner could be enriched to

enable transferring them to planning graphs. Additionally, combined with assessing the semantic simi-

larity of actions, our approach seems promising for supporting modelers as planning approaches (cf.,

e.g., Bertoli et al., 2006; Heinrich et al., 2008; Heinrich et al., 2011) are already based on semantic

annotations. For assessing the similarity of actions and subgraphs, works in the research fields of process

management (cf., e.g., Ehrig et al., 2007; Minor et al., 2007; Montani et al., 2015) and web service

composition can be applied as especially the latter ones use input and output parameters as we do (cf.,

e.g., Dong et al., 2004). Such works should be useable in the context of automated planning of process

models as well. However, actions that are similar but not equal may not be merged in an automated

manner but it might be possible to suggest modelers which actions may be merged after a modification.

Such an extension of our approach provides a basis for promising advancements in the future.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 14

Acknowledgements

The research was funded by the Austrian Science Fund (FWF): P 23546-G11.

References

Accorsi, R., Ullrich, M. and van der Aalst, W. (2012), “Aktuelles Schlagwort: Process Mining”, in In-

formatik Spektrum, Vol. 35 No. 5, pp. 354–359.

Arora, S. and Barak, B. (2009), Computational complexity: a modern approach, Cambridge University

Press.

Bertoli, P., Cimatti, A., Roveri, M. and Traverso, P. (2001), “Planning in nondeterministic domains

under partial observability via symbolic model checking”, in Proceedings of the 17th International

Joint Conference on Artificial Intelligence (IJCAI 2001), Vol. 1, pp. 473–478.

Bertoli, P., Cimatti, A., Roveri, M. and Traverso, P. (2006), “Strong planning under partial observabil-

ity”, in Artificial Intelligence, Vol. 170 No. 4–5, pp. 337–384.

Cardoso, J. (2007), “Complexity analysis of BPEL Web processes”, in Software Process: Improvement

and Practice, Vol. 12 No. 1, pp. 35–49.

Cobham, A. (1965), “The intrinsic computational difficulty of functions”, in Logic, Methodology, and

Philosophy of Science II.

Dong, X., Halevy, A., Madhavan, J., Nemes, E. and Zhang, J. (2004), “Similarity search for web ser-

vices”, in Proceedings of the Thirtieth International Conference on Very Large Data Bases: To-

ronto, Canada, Aug. 31-Sept. 3, 2004, Vol. 30, Morgan Kaufmann, St. Louis, MO, pp. 372–383.

Ehrig, M., Koschmider, A. and Oberweis, A. (2007), “Measuring Similarity between Semantic Business

Process Models”, in Roddick, J.F. and Hinze, A. (Eds.), Processdings of the Fourth Asia-Pacific

Conference on Conceptual Modelling (APCCM 2007), Vol. 67, Ballarat, Victoria, Australia, pp. 71–

80.

Fellmann, M., Zarvic, N., Metzger, D. and Koschmider, A. (2015), “Requirements Catalog for Business

Process Modeling Recommender Systems”, in Thomas, O. and Teuteberg, F. (Eds.),

Wirtschaftsinformatik Proceedings 2015, Osnabrück, pp. 393–407.

Gaaloul, W., Alaoui, S., Baïna, K. and Godart, C. (2005a), “Mining Workflow Patterns through Event-

data Analysis”, in Proceedings of the The 2005 Symposium on Applications and the Internet Work-

shops (SAINT-W’05), pp. 226–229.

Gaaloul, W., Baïna, K. and Godart, C. (2005b), “Towards Mining Structural Workflow Patterns”, in

Andersen, K., Debenham, J. and Wagner, R. (Eds.), Database and Expert Systems Applications,

Lecture Notes in Computer Science, Vol. 3588, Springer Berlin Heidelberg, pp. 24–33.

Ghallab, M., Nau, D. and Traverso, P. (2004), Automated Planning: Theory & Practice, Morgan Kauf-

mann, San Francisco.

Gschwind, T., Koehler, J. and Wong, J. (2008), “Applying Patterns during Business Process Modeling.

Business Process Management”, in Dumas, M., Reichert, M. and Shan, M.-C. (Eds.), Lecture Notes

in Computer Science, Vol. 5240, Springer Berlin / Heidelberg, pp. 4–19.

Heinrich, B., Bewernik, M.-A., Henneberger, M., Krammer, A. and Lautenbacher, F. (2008), “SEMPA

- A Semantic Business Process Management Approach for the Planning of Process Models”, in

Business & Information Systems Engineering (formerly Wirtschaftsinformatik), Vol. 50 No. 6, p.

445–460 (in German).

Heinrich, B., Bolsinger, M. and Bewernik, M. (2009), “Automated planning of process models: the

construction of exclusive choices”, in Chen, H. and Slaughter, S.A. (Eds.), 30th International Con-

ference on Information Systems (ICIS), Springer, Phoenix, Arizona, USA, pp. 1–18.

Heinrich, B., Klier, M. and Zimmermann, S. (2011), “Automated Planning of Process Models –Towards

a Semantic-based Approach”, in Smolnik, S; Teuteberg, F; Thomas, O. (Ed.): Semantic Technolo-

gies for Business and Information Systems Engineering: Concepts and Applications. Hershey: IGI

Global, pp. 169–194.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 15

Heinrich, B., Klier, M. and Zimmermann, S. (2015), “Design of a Novel Approach to Construct Exclu-

sive Choices”, in Decision Support Systems, Vol. 78, pp. 1–14.

Heinrich, B. and Schön, D. (2015), “Automated Planning of context-aware Process Models”, in Becker,

J., vom Brocke, J. and Marco, M. de (Eds.), Proceedings of the 23rd European Conference on In-

formation Systems (ECIS), Münster, Germany, May 26-29, Münster, Germany, p. Paper 75.

Henneberger, M., Heinrich, B., Lautenbacher, F. and Bauer, B. (2008), “Semantic-Based Planning of

Process Models”, in Bichler, M., Hess, T., Krcmar, H., Lechner, U., Matthes, F., Picot, A., Speit-

kamp, B. and Wolf, P. (Eds.), Multikonferenz Wirtschaftsinformatik (MKWI), GITO-Verlag, Mün-

chen, pp. 1677–1689.

Hoffmann, J., Weber, I. and Kraft, F.M. (2009), “Planning@ sap: An application in business process

management”, in Proceedings of the 2nd International Scheduling and Planning Applications

woRKshop (SPARK'09).

Hoffmann, J., Weber, I. and Kraft, F.M. (2012), “SAP Speaks PDDL: Exploiting a Software-Engineer-

ing Model for Planning in Business Process Management”, in Journal of Artificial Intelligence Re-

search, Vol. 44 No. 1, pp. 587–632.

Hornung, T., Koschmider, A. and Oberweis, A. (2007), A Rule-based Autocompletion Of Business Pro-

cess Models, available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.6389.

Kalenkova, A.A., van der Aalst, W.M.P., Lomazova, I.A. and Rubin, V.A. (2015), “Process Mining

Using BPMN: Relating Event Logs and Process Models // Process mining using BPMN. Relating

event logs and process models”, in Software and Systems Modeling, pp. 1–30.

Khan, F.H., Bashir, S., Javed, M.Y., Khan, A. and Khiyal, Malik Sikandar Hayat (2010), “QoS Based

Dynamic Web Services Composition & Execution”, in arXiv preprint arXiv:1003.1502.

Kindler, E., Rubin, V. and Schäfer, W. (2006), “Process Mining and Petri Net Synthesis”, in Hutchison,

D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O.,

Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G.,

Eder, J. and Dustdar, S. (Eds.), Business Process Management Workshops, Lecture Notes in Com-

puter Science, Vol. 4103, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 105–116.

Koschmider, A. (2007), Ähnlichkeitsbasierte Modellierungsunterstützung für Geschäftsprozesse, Univ.-

Verl. Karlsruhe, Karlsruhe.

Koschmider, A., Hornung, T. and Oberweis, A. (2011), “Recommendation-based editor for business

process modeling”, in Data & Knowledge Engineering, Vol. 70 No. 6, pp. 483–503.

Krause, F., Bewernik, M.-A. and Fridgen, G. (2013), “Valuation of Manual and Automated Process

Redesign from a Business Perspective”, in Business Process Management Journal, Vol. 19 No. 1.

La Rosa, M., Wohed, P., Mendling, J., Ter Hofstede, A.H.M., Reijers, H.A. and van der Aalst, W.M.P.

(2011), “Managing process model complexity via abstract syntax modifications”, in Industrial In-

formatics, IEEE Transactions on, Vol. 7 No. 4, pp. 614–629.

Laue, R. and Mendling, J. (2010), “Structuredness and its significance for correctness of process mod-

els”, in Information Systems and e-Business Management, Vol. 8 No. 3, pp. 287–307.

Lautenbacher, F., Eisenbarth, T. and Bauer, B. (2009), “Process model adaptation using semantic tech-

nologies”, in 2009 13th Enterprise Distributed Object Computing Conference Workshops, EDOCW,

Auckland, New Zealand, pp. 301–309.

Mendling, J., Reijers, H.A. and Cardoso, J. (2007), “What Makes Process Models Understandable?”, in

Alonso, G., Dadam, P. and Rosemann, M. (Eds.), Business Process Management, Lecture Notes in

Computer Science, Vol. 4714, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 48–63.

Mendling, J., Reijers, H.A. and van der Aalst, W.M.P. (2010), “Seven process modeling guidelines

(7PMG)”, in Information and Software Technology, Vol. 52 No. 2, pp. 127–136.

Minor, M., Tartakovski, A. and Bergmann, R. (2007), “Representation and Structure-Based Similarity

Assessment for Agile Workflows”, in Weber, R.O. and Richter, M.M. (Eds.), Case-Based Reason-

ing Research and Development, Lecture Notes in Computer Science, Vol. 4626, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 224–238.

Heinrich and Schön /Automated Construction of Simple Merges

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016 16

Montani, S., Leonardi, G., Quaglini, S., Cavallini, A. and Micieli, G. (2015), “A knowledge-intensive

approach to process similarity calculation”, in Expert Systems with Applications, Vol. 42 No. 9, pp.

4207–4215.

Moreno-Montes de Oca, I., Snoeck, M., Reijers, H.A. and Rodríguez-Morffi, A. (2015), “A systematic

literature review of studies on business process modeling quality”, in Information and Software

Technology, Vol. 58, pp. 187–205.

Munoz-Gama, J., Carmona, J. and van der Aalst, W.M. (2014), “Single-Entry Single-Exit decomposed

conformance checking”, in Information Systems, Vol. 46, pp. 102–122.

Polyvyanyy, A., Vanhatalo, J. and Völzer, H. (2011), “Simplified Computation and Generalization of

the Refined Process Structure Tree”, in Proceedings of the 7th International Conference on Web

Services and Formal Methods, Springer-Verlag, Berlin, Heidelberg, pp. 25–41.

Russell, N., Ter Hofstede, A.H.M. and Mulyar, N. (2006), “Workflow ControlFlow Patterns: A Revised

View”, in BPM Center Report BPM-06-22, http://bpmcenter.org/reports.

Sánchez González, L., García Rubio, F., Ruiz González, F. and Piattini Velthuis, M. (2010), “Measure-

ment in business processes. A systematic review”, in Business Process Management Journal,

Vol. 16 No. 1, pp. 114–134.

van der Aalst, W., Adriansyah, A., Medeiros, A. de, Arcieri, F., Baier, T., Blickle, T., Bose, J., van den

Brand, P., Brandtjen, R. and Buijs, J. (2012), “Process Mining Manifesto”, in BPM 2011 Workshops,

Part I, LNBIP 99, pp. 169–194.

van der Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C. and Mendling, J. (2008),

Metrics for Process Models, Vol. 6, Springer Berlin Heidelberg, Berlin, Heidelberg.

van der Aalst, W., Weijters, T. and Maruster, L. (2004), “Workflow mining: Discovering process models

from event logs”, in IEEE Transactions on Knowledge and Data Engineering, Vol. 16 No. 9, pp.

1128–1142.

van der Aalst, W.M.P. (1998), “The application of Petri nets to workflow management”, in Journal of

Circuits, Systems and Computers, Vol. 8 No. 1, pp. 21–66.

van der Aalst, W.M.P. (2013), “Business process management: A comprehensive survey”, in ISRN Soft-

ware Engineering, Vol. 2013.

van der Aalst, W.M.P., Rubin, V., Verbeek, H.M., van Dongen, B.F., Kindler, E. and Günther, C.W.

(2010), “Process mining: a two-step approach to balance between underfitting and overfitting”, in

Software & Systems Modeling, Vol. 9 No. 1, pp. 87–111.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. and Barros, A.P. (2003), “Workflow

Patterns”, in Distributed and Parallel Databases, Vol. 14 No. 1, pp. 5–51.

Vanhatalo, J., Völzer, H. and Koehler, J. (2008a), “The Refined Process Structure Tree”, in Dumas, M.,

Reichert, M. and Shan, M.-C. (Eds.), Business Process Management, Lecture Notes in Computer

Science, Vol. 5240, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 100–115.

Vanhatalo, J., Völzer, H. and Koehler, J. (2009), “The refined process structure tree”, in Data &

Knowledge Engineering, Vol. 68 No. 9, pp. 793–818.

Vanhatalo, J., Völzer, H., Leymann, F. and Moser, S. (2008b), “Automatic Workflow Graph Refactoring

and Completion. Service-Oriented Computing – ICSOC 2008”, in Bouguettaya, A., Krueger, I. and

Margaria, T. (Eds.), Lecture Notes in Computer Science, Vol. 5364, Springer Berlin / Heidelberg,

pp. 100–115.

Verbeek, H.M.W., Basten, T. and van der Aalst, W.M.P. (2001), “Diagnosing Workflow Processes us-

ing Woflan”, in The Computer Journal, Vol. 44 No. 4, pp. 246–279.

Verbeek, H.M.W., Pretorius, A.J., van der Aalst, W.M.P. and van Wijk, J.J. (2007), “Visualizing state

spaces with Petri nets”, in Computer Science Report, Vol. 7 No. 01.

Weber, I. (2007), “Requirements for implementing business process models through composition of

semantic web services”, in Enterprise Interoperability II, Springer, pp. 3–14.

Wetzstein, B., Ma, Z., Filipowska, A., Kaczmarek, M., Bhiri, S., Losada, S., Lopez-Cob, J.-M. and

Cicurel, L. (2007), “Semantic Business Process Management: A Lifecycle Based Requirements

Analysis”, in SBPM.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Summer 6-15-2016

	AUTOMATED PLANNING OF PROCESS MODELS: THE CONSTRUCTION OF SIMPLE MERGES
	Bernd Heinrich
	Dominik Schön
	Recommended Citation

	tmp.1473728565.pdf.jYoi5

